浙教版7年级上数学知识点整理(精要)
浙教版七年级(上册)数学知识点复习资料全
数轴上一点a到原点的距离表示a的绝对值。
绝对值的性质:
(1) 正数的绝对值是其本身, 0的绝对值是0, 负数的绝对值 是它的相反数
(2) 绝对值可表示为:
或
绝对值的问题经常分类讨论;
(3)
5.有理数大小的概念:
(1)正数的绝对值越大, 这个数越大;
(2)正数永远比0大, 负数永远比0小;
(2)常数项: 多项式中,不含字母的项叫做常数项.
(3)多项式次数: 多项式里,次数最高的项的次数,就是这个多项式的次数.
4.整式:
单项式和多项式统称整式。
5.同类项:
所含字母相同,并且相同字母的次数也相同的项,叫做同类项. 常数项都是同类项。
合并同类项法则: 同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
(3)整式的加减运算可归结为去括号和合并同类项。
7、常用的关系:
奇数2n-1或2n+1;偶数2n;三个连续的整数一般写作n-1, n, n+1;三个连续的偶数一般写作2n-2, 2n, 2n+2;三个连续的奇数一般写作2n-1, 2n+1, 2n+3
练习题
1.已知
与
是同类项, 则
A. 4 B. 37 C. 2或4 D. 2
A
B
4、下列说法,正确是( ) A、零是最小的自然数 B、零是最小的正整数 C、零是最小的有理数 D.零既是负数又是正数
A
1、下列各对数中,互为相反数是( ) A.2和
C.
和2 D.
和
D
5、火车上的车次号有两个意义,一是数字越小表示车速越快,1∽98次为特快列车,101∽198次为直快列车,301∽398次为普快列车,401∽498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京方向.根据以上规定,杭州开往北京的某一直快列车的车次号可能是( ) A、20 B、119 C、120 D.319
浙教版《数学》七年级上(第一章)知识点整理
浙教版《数学》七年级上(第一章)知识点整理1.1 数的概念- 数是人们用来计数和度量事物的工具。
- 数的表示方法包括阿拉伯数字、汉字数字和计数法等。
1.2 自然数- 自然数是从1开始没有限制地向无穷大方向延伸的数字。
- 自然数的运算包括加法、减法、乘法和除法。
1.3 数字的序比和大小比较- 数字的序比是指将数字从小到大排列的顺序。
- 可以使用大小符号(如<、>、=)来进行数字的大小比较。
1.4 数轴与数线段- 数轴是一个以0为起点,正向延伸最大值是一个正数,负向延伸最小值是一个负数的直线。
- 数线段是数轴上的一段,由两个端点所确定。
1.5 小数的概念- 小数是有限小数和无限循环小数的统称。
- 小数可以用分数形式表示,例如0.5可以表示为1/2。
1.6 规则数列- 规则数列是一串有规律的数字按一定顺序排列而成的序列。
- 规则数列中的每个数字称为项,规律称为公式。
1.7 方体的面与棱- 方体是一种三维图形,由六个相互平行的矩形面组成。
- 方体的边界线段称为棱,相交的棱构成了方体的边。
1.8 圆- 圆是由平面上到一点的距离相等的点所组成的几何图形。
- 圆的直径是连接圆上两个任意点并且通过圆心的线段。
1.9 计算器的使用- 计算器是一种可以进行数学运算的电子设备,能够完成加减乘除等运算。
- 学会合理、正确地使用计算器可以提高运算的效率和准确性。
1.10 四则运算- 四则运算包括加法、减法、乘法和除法四种基本运算。
- 在进行四则运算时,应注意运算顺序和规则,遵循先乘除后加减的原则。
1.11 单位换算- 单位换算是指不同计量单位之间的转换。
- 常见的单位换算有长度、面积、体积、质量等。
以上是浙教版《数学》七年级上(第一章)的知识点整理,希望对你的学习有所帮助!。
浙教版7年级上数学知识点整理(精要)
第一章从自然数到有理数从自然数到分数知识点1.自然数:注意(1)0是最小的自然数,它表示没有,不要遗漏。
(2)表示不同作用的数有不同的性质,表示计数和测量的数可以进行数的运算,而表示标号或排序的数有时有指代作用,即对事物起区别作用,一般不能进行计算,这也是区别数的表示作用的重要性。
剖析用于计数和测量的数往往与量词相连,而用于标号和排序的数往往与顺序有关,在阅读是应特别注意体会这一点。
知识点2.分数:注意(1)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看做分数。
(2)百分数是分母为100的分数,它是分数的特殊形式。
知识点3.数的运算(1)数的加、减、乘、除运算顺序:先乘除,后加减,有括号先做括号内的;(2)加法、乘法的运算律:交换律、结合律、乘法分配律。
注意(1)领悟加、减、乘、除的意义。
(2)明确混合计算的运算顺序,(a)同级运算从左至右依次计算,(b)不同级先乘除后加减,括号内优先。
(3)灵活掌握能运用运算律进行的简便运算。
有理数知识点1正数和负数的定义:1、像4,3,1/2,350等比0大的数叫做正数。
2、像-5,-3,-1/2,-350等在正数前面加上‘‘-’’号的数叫做负数,负数比0小。
(3)零既不是正数也不是负数。
知识点2相反意义的量:注意用正数、负数表示相反意义的量时,哪种意义为正,是可以任意选择的,但习惯上把‘‘前进、上升、收入’’等规定为正,而把‘‘后退、下降、支出’’等规定为负。
剖析对负数表示的意义的正确理解是解答此类问题的关键。
引入负数的意义之一,就是为了用简单的数学符号“+’’或“-”号来表示具有相反意义的量。
知识点3有理数的概念及分数(1)有理数的概念:整数和分数统称为有理数。
(a)整数包括正整数、零、负整数,例如3,5,6,,等。
(b)分数包括正分数和负分数,例如1/2,5/3,-3/7等。
(2)有理数的分类(a)按整数和分数分类: (b)a按正数、零、负数分类:正整数整数零正整数正有理数正分数有理数负整数有理数零负整数正分数负有理数分数负分数负分数注意(1)分类时,一定药注意零所属的数集。
七年级上数学浙教版知识点
七年级上数学浙教版知识点
一、实数与代数式
实数的概念,有理数、无理数的概念与判断,代数式的概念及
简单的变形。
二、一元一次方程与方程的应用
含有一个未知数的一次方程的基本概念,化简和解一元一次方程,用方程解决实际问题。
三、二元一次方程组
含有两个未知数的一次方程组的基本概念,解二元一次方程组
及应用。
四、图形的认识
各种几何图形的基本概念及简单的性质和应用,画简图、读图。
五、三角形
三角形的基本概念,特殊三角形的性质,三角形的构造和证明、应用。
六、相似
相似的概念和性质,判定、构造和应用。
七、等比数列
等比数列的概念和性质,通项公式及求和公式,等比数列在实际问题中的应用。
八、函数
函数的基本概念,函数图像和简单的函数变换,函数的应用。
九、统计图及其分析
统计图的基本类型,按比例和按数量的统计图制作,统计图的分析。
十、平面直角坐标系
平面直角坐标系的基本概念,坐标系中的图形及其性质,坐标系中的计算问题。
十一、二次根式
二次根式的基本概念,二次根式的化简及应用。
总结:七年级上数学浙教版知识点涵盖了数学基础知识、代数式、方程、几何等方面,是初步掌握数学的基础,学习这些知识点可以使学生打牢数学基础。
浙教版数学七年级上知识点总结
2024年师德演讲比赛主持词尊敬的评委、亲爱的同学们:大家好!我很荣幸能够在这里担任2024年师德演讲比赛的主持人。
首先,让我们对今天能够聚集在这里的各位老师表示最高的敬意和感谢。
正是你们的辛勤付出和无私奉献,才为我们的成长和未来铺就了坚实的道路。
师德,作为一项常识性的称号,象征着对教育事业的敬爱、热爱和奉献精神。
师德是一种职业道德,是教育工作者必须自觉遵循和践行的准则。
今天,我们将通过这一演讲比赛,探索师德的内涵和意义,分享优秀教师的故事和经验,并共同探讨如何培养师德。
首先,让我们来回顾一下师德的定义。
师德包括教师的职业道德、价值观念、教育理念、教学方法等一系列方面。
教师应该以身作则,做学生道德情操和知识水平的榜样。
他们要具备高尚的道德品质,对学生有高度的责任心和爱心,并能够正确引导学生的行为和价值观。
优秀的教师总是把学生的成长和发展放在首位。
他们以学生为中心,尊重学生的个体差异,注重培养学生的创新精神和实践能力。
他们与学生建立起良好的师生关系,为学生提供必要的关爱和支持,帮助他们全面发展。
同时,优秀教师也要自我反思和不断进取,提升自己的教育教学水平,与时俱进,不断改进自己的教学方法和理念。
在师德的发展过程中,优秀的教师不仅要具备高尚的道德品质和专业素养,还需要具备较强的心理素质和情感敏感度。
教师要能够正确认识和处理学生的心理需求,在学生面临困惑、挫折和压力时,给予他们及时的关心和支持。
只有以关爱的心态对待学生,才能实现真正的教育感化。
另外,师德也要求教师具有良好的职业道德和职业责任心。
在教学中,教师应坚守诚信原则,严禁任何形式的舞弊行为。
教师要尊重学生的知情权和隐私权,严禁泄露学生的个人信息。
教师还要履行教书育人的责任,认真备课、认真上课,并做好学生的发展记录和评价,为学生的未来做好规划和引导。
最后,让我们一起探讨如何培养师德。
首先,教育机构和学校应加强师德教育的力度,培养教师的职业素养和道德观念。
浙教版7年级上数学知识点整理
第一章:数学算法1.整除与因数-了解整数的概念-掌握整除的定义,以及整除的判断方法-掌握因数的定义,以及如何列举一个数的因数-掌握最大公因数与最小公倍数的概念与求解方法2.分数-了解分数的概念,分子、分母-掌握分数的读法,分子分母的关系-掌握分数的化简方法-掌握分数之间的比较大小方法-掌握分数的加减乘除运算方法-学会将分数转化为小数形式3.有理数-了解有理数的概念,正有理数和负有理数-学会有理数的比较大小-掌握有理数的加减乘除运算方法-能够将分数转化为有理数形式第二章:初一的正数、负数1.正数和负数的认识-了解数轴及其意义-了解正数和负数在数轴上的位置-掌握正数与负数的大小比较规律2.数的相反数-了解数的相反数的概念和性质-掌握求一个数的相反数的方法-掌握正数和负数的加减法第三章:数与运算1.运算法则-掌握加法和乘法的交换律、结合律、分配律-利用运算法则进行简便计算2.效法正数和百分数-学习虚拟的数3.有效数字和科学记数法-了解有效数字的概念和判断方法-掌握科学记数法形式和运算规则4.数与式-学习数的四则运算的规则-学习表示式的概念和性质第四章:比例与比例方程1.比例-了解比例的概念及比例的基本性质-掌握比例中的各种比例关系的性质及其应用-学习三个数的比例和多个数的复比例的概念和求解方法2.比例方程和比例不等式-了解比例方程和比例不等式的概念-学习方程的解法和方程及不等式的应用第五章:数的性质与正方形1.最大公因数和最小公倍数-掌握求最大公因数和最小公倍数的方法-学习最大公因数和最小公倍数的性质和应用2.正方形-了解正方形的性质和判断方法-掌握正方形内外角和周长、面积的计算。
浙教版 七年级数学(上) 知识点
浙教版 七年级数学(上) 知识点第一章 有理数一. 知识框架二.知识概念 1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0. 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ³10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
浙教版七年级上册数学重点知识归纳
浙教版七年级上册数学重点知识归纳一、有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 例如:3是正整数,属于有理数; - 5是负整数,属于有理数;0.5是有限小数,可化为(1)/(2),属于有理数;0.3̇是无限循环小数,可化为(1)/(3),也属于有理数。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 数轴上的点与有理数一一对应。
右边的数总比左边的数大。
- 例如:在数轴上表示 - 2和3, - 2在原点左边距离原点2个单位长度,3在原点右边距离原点3个单位长度,且3> - 2。
3. 相反数。
- 只有符号不同的两个数互为相反数。
0的相反数是0。
- 若a与b互为相反数,则a + b=0。
例如:3与 - 3互为相反数,3+( -3)=0。
4. 绝对值。
- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
- 即| a|=a(a≥0) - a(a < 0)。
例如:|5| = 5,| - 3|=3。
5. 有理数的运算。
- 加法法则。
- 同号两数相加,取相同的符号,并把绝对值相加。
例如:2 + 3 = 5,( - 2)+( - 3)= - 5。
- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如:2+( - 3)= - 1,( - 2)+3 = 1。
- 一个数同0相加,仍得这个数。
- 减法法则:减去一个数,等于加上这个数的相反数。
即a - b=a+( - b)。
例如:5 - 3 = 5+( - 3)=2。
- 乘法法则。
- 两数相乘,同号得正,异号得负,并把绝对值相乘。
例如:2×3 = 6,( - 2)×( - 3)=6,2×( - 3)= - 6。
- 任何数同0相乘,都得0。
- 除法法则。
浙教版数学七年级上知识点总结
一、数的扩展与应用1.自然数与整数的扩展:掌握自然数和整数的概念,并能够进行自然数和整数的相互转化。
2.有理数与实数的性质:了解有理数和实数的概念,能够判断给定数是否是有理数或实数。
二、数的计算1.完全平方公式:熟练掌握完全平方公式,能够运用该公式计算平方和差式。
2.分式的四则运算:了解分式的概念,熟练运用加、减、乘、除的方法进行分式的计算。
3.科学记数法:了解科学记数法的概念,能够进行科学记数法的转化和运算。
三、比例与比例运算1.比例的概念:了解比例的定义和性质,能够根据已知比例进行比例的计算。
2.比例的应用:掌握比例在日常生活中的应用,如解决实际问题中的比例关系。
3.速度与密度的计算:能够运用速度与密度的计算公式解决实际问题。
四、代数式与代数计算1.代数式的概念:了解代数式的定义和基本概念,能够根据已知条件建立代数式。
2.代数计算的基本法则:熟练掌握代数式加减乘除的基本法则,能够进行简单的代数计算。
3.一元一次方程的解及其应用:了解一元一次方程的概念、解法和应用,能够解决实际问题中的一元一次方程。
五、平面图形的认识1.角的基本概念:了解角的定义、分类和性质,能够根据已知条件判断角的大小关系。
2.三角形的分类:掌握三角形的分类标准和性质,如根据边长、角度判断三角形的类型。
3.直角三角形及其特殊性质:熟练掌握直角三角形的定义和特殊性质,如勾股定理等。
六、理解空间与图形1.空间的认识:了解空间及其基本性质,如点、线、面等的概念和关系。
2.空间图形的认识:认识几种常见的空间图形,如正方体、长方体等,并了解它们的特征和性质。
七、统计与概率1.统计调查:了解统计调查的方法和步骤,并能够进行简单的数据收集和整理。
2.平均数的计算:掌握求一组数据的平均数的方法,能够运用平均数解决实际问题。
3.基本概率:了解概率的基本概念和计算方法,能够进行简单的概率计算。
浙教版七年级上册数学知识点
浙教版七年级上册数学知识点浙江省教育出版社出版的七年级上册数学教科书涵盖了多个重要的数学知识点。
以下是该教材中的主要知识点概述,以便于教师、学生和家长了解和复习。
# 第一章数与式1. 有理数- 有理数的概念- 有理数的分类(正数、负数、整数、分数)- 有理数的运算(加法、减法、乘法、除法、乘方)- 有理数的比较大小- 绝对值的概念和性质2. 整式的加减- 整式的概念- 合并同类项- 去括号法则- 带符号的运算3. 一元一次方程- 方程的概念- 解一元一次方程- 方程的解的检验- 方程的应用问题# 第二章几何图形1. 线段、射线、直线- 线段的性质- 射线和直线的定义- 两点间的距离2. 角- 角的定义- 角的度量- 角的分类(锐角、直角、钝角、平角、周角) - 角的比较和运算3. 平行线- 平行线的定义- 平行公理及其推论- 平行线的判定和性质# 第三章数据的收集和处理1. 统计调查- 调查的分类(全面调查、抽样调查)- 调查的方法和步骤2. 数据的表示- 条形图、折线图、饼图的绘制和解读- 频数和频率的概念- 频数分布表的编制# 第四章探索规律1. 图形的变化- 平移、旋转、翻转的性质- 探索图形变化的规律2. 数字的变化- 探索数字变化的规律- 等差数列的初步认识# 第五章应用题1. 比例问题- 比例的概念- 比例的性质- 解决比例问题2. 利率问题- 利率的计算- 利息的计算3. 行程问题- 速度、时间和距离的关系- 解决行程问题# 附录- 数学公式和定理清单- 常见数学符号的使用- 练习题和答案以上是浙教版七年级上册数学的主要知识点。
这些知识点构成了学生数学基础的核心部分,对于培养学生的逻辑思维能力和解决实际问题的能力至关重要。
教师和家长应鼓励学生通过练习和实际应用来巩固这些知识点。
浙教版七年级上册数学重点知识归纳
浙教版七年级上册数学重点知识归纳一、直角三角形与勾股定理直角三角形的性质及特殊角度1.直角三角形的性质直角三角形是指三角形中有一个角是90°的三角形。
在直角三角形中,直角边、斜边的关系及三角形的其他角度关系是非常重要的基础知识。
2.特殊角度的三角函数值在直角三角形中,我们可以根据角度的大小计算三角函数的值。
特别是对于30°、45°、60°角度,我们可以得到它们的正弦、余弦和正切值的具体计算方法。
3.勾股定理在直角三角形中,勾股定理是非常重要的定理之一,它指出了直角三角形斜边的平方等于直角边的平方和。
这个定理对于解决直角三角形中的诸多问题具有重要意义。
二、几何图形的性质1.四边形的性质在七年级的数学学习中,四边形是一个非常基础且重要的几何图形。
我们需要了解四边形的特点、分类及各种性质,如平行四边形、矩形、菱形等。
2.三角形的性质三角形也是我们数学学习中重点掌握的几何图形之一。
需要了解三角形的性质、分类以及各种角度和边长关系的计算方法。
3.合作题目在解决几何图形的问题时,我们需要同时运用多种图形知识进行综合计算,这就需要我们能够灵活运用几何图形的各种性质和定理。
三、数的运算1.分数分数是我们日常生活中经常使用的一种数,需要掌握分数的加减乘除及各种情况下分数的化简和比较大小方法。
2.小数小数也是我们生活、工作中常常接触到的一种数。
在数学学习中,我们需要掌握小数的加减乘除及运算规律,以及小数和分数的相互转换方法。
3.整数整数的运算是数学学习中的重点之一。
我们需要掌握整数的加减乘除、绝对值及大小比较等运算法则。
四、代数表达式1.了解代数表达式的含义代数表达式是含有字母和数的式子,它可以用来描述数学中的种种问题。
我们需要掌握代数表达式的含义、组成要素,以及代数表达式的计算方法。
2.代数表达式的化简在代数表达式的计算中,我们需要掌握代数表达式的化简方法,包括整理同类项、提取公因式、分配律等。
浙教版数学七年级上知识点总结精选全文完整版
⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数可编辑修改精选全文完整版第一章 有理数及其运算1.整数:包含正整数和负整数,分数包含正分数和负分数。
正整数和正分数通称为正数,负整数和负分数通称为负数。
正整数和负整数通称为自然数2.正数:都比0大,负数比0小,0既不是正数也不是负数。
正整数、0、负整数、正分数、负分数这样的数称为有理数。
数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
任何一个有理数,都可以用数轴上的一个点来表示。
(反过来,不能说数轴上所有的点都表示有理数) 3.相反数:只有符号不同的两个数互为相反数,a a 和-互为相反数,0的相反数是0。
在任意的数前面添上“-”号,就表示原来的数的相反数。
在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
数轴上两点表示的数,右边的总比左边的大。
正数在原点的右边,负数在原点的左边。
4.绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“| |”表示。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a即:当a 是正数时,a a =;当a 是负数时,a a =-;当a =0时,0a =5.绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等; 任何数的绝对值总是非负数,即|a|≥0 ①对任何有理数a ,都有|a|≥0 ②若|a|=0,则|a|=0,反之亦然 ③若|a|=b ,则a=±b④对任何有理数a,都有|a|=|-a|6.比较两个负数的大小,绝对值大的反而小。
浙教版七年级数学上知识重点总结收集
⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数浙教版数学七年级上知识点总结第一章 有理数及其运算1.整数:包含正整数和负整数,分数包含正分数和负分数。
正整数和正分数通称为正数,负整数和负分数通称为负数。
正整数和负整数通称为自然数2.正数:都比0大,负数比0小,0既不是正数也不是负数。
正整数、0、负整数、正分数、负分数这样的数称为有理数。
数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
任何一个有理数,都可以用数轴上的一个点来表示。
(反过来,不能说数轴上所有的点都表示有理数)3.相反数:只有符号不同的两个数互为相反数,a a 和-互为相反数,0的相反数是0。
在任意的数前面添上“-”号,就表示原来的数的相反数。
在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
数轴上两点表示的数,右边的总比左边的大。
正数在原点的右边,负数在原点的左边。
4.绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“| |”表示。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a 即:当a 是正数时,a a =;当a 是负数时,a a =-;当a =0时,0a =5.绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥0①对任何有理数a ,都有|a|≥0②若|a|=0,则|a|=0,反之亦然越来越大③若|a|=b,则a=±b④对任何有理数a,都有|a|=|-a|6.比较两个负数的大小,绝对值大的反而小。
(完整word版)浙教版七年级数学上册知识点汇总
七年级(上册)1. 有理数1.1. 从自然数到有理数分数都可以化为小数。
分数在化成小数时, 结果可能是有限小数, 也可能是无限循环小数。
大于0的数, 叫正数;小于0的数, 叫负数;0既不是正数也不是负数。
整数和分数统称为有理数。
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫负分数正分数分数负整数自然数零正整数整数有理数 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 1.2. 数轴像这样规定了原点、单位长度和正方向的直线叫做数轴。
任何一个有理数都可以用数轴上的点表示。
如果两个数只有符号不同, 那么我们称其中一个数为另一个数的相反数, 也称这两个数互为相反数。
0的相反数是0。
1.3. 在数轴上, 表示互为相反数(0除外)的两个点, 位于原点的两侧, 并且到原点的距离相等。
1.4. 绝对值我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
一个数a 的绝对值表示为|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
互为相反数的两个数的绝对值相等。
1.5. 有理数的大小比较在数轴上表示的两个数, 右边的数总比左边的数大。
2. 正数都大于0, 负数都小于0, 正数大于负数。
3. 两个正数比较大小, 绝对值大的数大;两个负数比较大小, 绝对值大的数反而小。
4. 有理数的运算4.1. 有理数的加法同号两数相加, 取与加数相同的符号, 并把绝对值相加。
异号两数相加, 取绝对值较大的加数的符号, 并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0;一个数同0相加, 仍得这个数。
加法交换律:两个数相加, 交换加数的位置, 和不变。
a +b = b + a加法结合律: 三个数相加, 先把前面两个数相加, 或者先把后两个数相加, 和不变。
( a + b ) + c = a + ( b + c )4.2.有理数的减法4.3.减去一个数, 等于加上这个数的相反数。
浙教版初中七年级(上)数学各章知识点汇总
浙教版初中七年级(上)数学各章知识点汇总第一章有理数- 有理数的概念:是整数和分数的统称。
- 有理数的比较:可以比较大小,使用大于、小于、等于的符号。
- 有理数的加减法:可以进行加法和减法运算。
- 有理数的乘法:可以进行乘法运算。
- 有理数的除法:可以进行除法运算。
第二章整数- 整数的概念:是正整数、负整数和0的统称。
- 整数的绝对值:正整数的绝对值等于它本身,负整数的绝对值等于它的相反数。
- 整数的加减法:可以进行加法和减法运算。
- 整数的乘法:可以进行乘法运算。
- 整数的除法:可以进行除法运算。
第三章代数式- 代数式的概念:由数、字母和运算符号组成的式子。
- 代数式的加减法:可以进行加法和减法运算。
- 代数式的乘法:可以进行乘法运算。
- 代数式的除法:可以进行除法运算。
- 代数式的化简:可以进行合并同类项、提取公因式等化简操作。
第四章图形的初步认识- 点、线、面的概念:点没有长度、线没有宽度、面有长和宽。
- 点、线、面的分类:可以根据特点进行分类。
- 图形的相似:具有相同形状但大小不同的图形。
- 图形的共线与共面:共线是指位于同一直线上,共面是指位于同一个平面上。
- 图形的投影:物体在光线下形成的阴影。
第五章小数- 小数的概念:是有限小数和无限小数的统称。
- 小数的读法和写法:可以读、写不完整的小数。
- 小数的比较:可以比较大小,使用大于、小于、等于的符号。
- 小数的加减法:可以进行加法和减法运算。
- 小数的乘法:可以进行乘法运算。
- 小数的除法:可以进行除法运算。
第六章几何图形的认识- 线段的概念:直线两点之间的部分。
- 射线的概念:起点是一个点,另一端无限延伸的部分。
- 角的概念:由两条边和一个顶点组成的图形。
- 三角形的分类:根据边长和角度可以分类。
- 四边形的分类:根据边长和角度可以分类。
第七章比例- 比例的概念:比较两个或多个有关数量之间的关系。
- 比例的性质:比例具有对称性和平移性。
浙教版七年级数学上册知识点汇总
浙教版七年级数学上册知识点汇总浙教版七年级数学上册知识点汇总第一章有理数1、有理数的概念:有理数是有限小数或无限循环小数,它可以表示成m/n的形式,其中m和n是整数,n不等于0。
2、有理数的性质:1、有理数加减法遵循代数运算法则,加法交换律和结合律均成立;减法遵循反交换律和反结合律。
2、有理数乘法遵循代数运算法则,乘法交换律、结合律和分配律均成立。
3、有理数除法转换为乘法进行计算。
3、有理数的运算:1、加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
2、减法:减去一个数,等于加上这个数的相反数。
3、乘法:几个有理数相乘,当因数有偶数个时积为正,因数有奇数个时积为负,几个有理数相乘,有一个因数为0时积为0,当每个因数都不为0时,积的符号为各个因数符号的积。
4、除法:除以一个不为0的数,等于乘以这个数的倒数。
4、有理数的混合运算:遵循先乘除后加减的原则,括号内先计算。
41、零指数幂和负整数指数幂的意义:零指数幂a^0(a≠0)等于1;负整数指数幂a^(-n)(a≠0,n是正整数)等于a的n次方的倒数。
411、有理数的轴对称性和中心对称性:有理数关于原点对称的点在数轴上对应的数为0;有理数关于1对称的点在数轴上对应的数为1;有理数关于2对称的点在数轴上对应的数为2。
第二章代数式1、代数式的概念:用运算符号把数或表示数的字母连接而成的式子叫做代数式。
2、代数式的值:用数值代替代数式中的字母所得的代数式叫做代数式的值。
3、代数式的分类:整式、分式、根式和代数式的其他形式。
4、代数式的应用:在解决实际问题中,可以用代数式表示一些量,建立方程或不等式来解决问题。
5、代数式的恒等变形:恒等变形是依据代数式的基本性质进行的变形,包括提取公因式、乘法公式、完全平方公式等。
第三章一元一次方程1、一元一次方程的概念:只含有一个未知数,且未知数的最高次数是1的整式方程叫做一元一次方程。
浙教版数学七年级上-知识点汇总全章节
浙教版数学七年级上-知识点汇总二、有理数2.分类⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数(按定义分类)负整数正分数分数负分数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数(按符号分类)零(零既不是正数,也不是负数)负整数负有理数负分数第一章 有理数有理数知识点回顾相反数:只有符号不同的两个数互称为相反数.特别地,0的相反数是0.代数意义:互为相反数的两个数的和为零,即若a 与b 互为相反数,则0a b +=.若0a b +=,则a 与b 互为相反数.几何意义:一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.这两点是关于原点对称的.倒数:如果1ab =,则a 和b 互为倒数.绝对值:几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a的绝对值记作a .代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0. ④任何一个有理数都是由两部分组成:符号和它的绝对值. 求字母a 的绝对值:(0)(0)a a a a a ≥⎧=⎨-<⎩相反数和倒数知识点回顾绝对值化简知识点回顾数轴概念:规定了原点、正方向、单位长度的直线叫做数轴三要素:原点、正方向、单位长度等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0科学记数法:把一个大于10的数表示成10na⨯的形式(其中110a≤<,n是整数),此种记法叫做科学记数法.知识点回顾知识点回顾有理数的运算科学记数法第2章有理数的运算第3章 实 数(一)平方根与立方根 1、平方根(1)定义:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做二次方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章从自然数到有理数从自然数到分数知识点自然数:注意(1)O 是最小的自然数,它表示没有,不要遗漏。
(2)表示不同作用的数有不同 的性质,表示计数和测量的数可以进行数的运算,而表示标号或排序的数有时有指代作用,即对事物起区 别作用,一般不能进行讣算,这也是区别数的表示作用的重要性。
剖析用于讣数和测量的数往往与量词相 连,而用于标号和排序的数往往与顺序有关,在阅读是应特别注意体会这一点。
知识点2.分数•.注意(1)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示, 所以我们把有限小数和无限循环小数都看做分数。
(2)百分数是分母为IOO 的分数,它是分数的特殊形式。
知识点、数的运算数的加、减、乘、除运算顺序:先乘除,后加减,有括号先做括号内的:(2)加 法、乘法的运算律:交换律、结合律、乘法分配律。
注意(1)领悟加、减、乘、除的意义。
(2)明确混 合计算的运算顺序,(a )同级运算从左至右依次计算,(b )不同级先乘除后加减,括号内优先。
(3)灵活 掌握能运用运算律进行的简便运算。
有理数知识点1正数和负数的定义:1、像4, 3, 1/2, 350等比0大的数叫做正数。
2、像-5, -3, -1/2, -350 等在正数前面加上号的数叫做负数,负数比0小。
(3)零既不是正数也不是负数。
知识点2相反意义的童:注意用正数、负数表示相反意义的量时,哪种意义为正,是可以任意选择的,但 习惯上把''前进、上升、收入’’等规泄为正,而把''后退、下降、支岀’’等规建为负。
剖析对负数表 示的意义的正确理解是解答此类问题的关键。
引入负数的意义之一,就是为了用简单的数学符号或 “-”号来表示具有相反意义的量。
知识点3有理数的概念及分数(1) 有理数的概念:整数和分数统称为有理数。
(&)整数包括正整数、零、负整数,例如3, 5, 6,,等。
(b )分数包括正分数和负分数,例如1/2, 5/3, -3/7等。
(2) 有理数的分类(a )按整数和分数分类: (b )a 按正数、零、负数分类:正整数正整数 正有理数正分数 有理数零 负整数 负有理数 负分数负分数(2)有理数的分类标准不一样,结果也相应地发生变化。
(3)因为有限小数和无限循环小数都可以化为分数,所以都属于分数,即属于有理数。
(4)习惯上将正有理数和零 称为非负有理数:将负有理数和零称为非正有理数;将正整数和零有称为非负整数:将负整数和零有称为非正 整数。
剖析:在有理数分类中,注意分类的标准,即注意正数是相对负数而言的,整数是相对分数而言的:分数和有 限小数、无限循环小数的实质是相同的,都是分数。
数轴知识点1数轴的概念及画法(1) 概念:规左了原点、单位长度和正方向的直线叫做数轴。
(2) 画法:省略。
注意:数轴的泄义包含三层含义:(1)数轴是一条直线,可以向两端无限延伸,(2)数轴有三要素一原点、正 方向、单位长度,三者缺一不可。
(3)原点的选左、正方向的取向、单位长度大小的确左,都是根据实际需要 "规定”。
剖析:画数轴时易出现的错误:(1)三要素不全。
(2)单位长度不统一。
(3)未画成直线。
(4)将正数标在原 点的左边,负数标在原点右边。
(5)标负数时丢掉负号。
知识点2有理数与数轴上的点的关系整数零有理数 负整数正分数 分数 注意(1)分类时,一左药注意零所属的数集。
注意:所有的有理数都可以用数轴上的点赖表示,但不能说数轴上的点都表示有理数,数轴上的点还可以无理数,这一点我们以后会学到。
剖析:(1)在数轴上画一个数所对应的点时,常把点画成一个实心圆点,以免与刻度线相互混要。
(2)单位长度的选取药合适,数轴的整体效果尽量美观大方。
知识点3相反数的概念(1)相反数的代数泄义:如果两个数只有符号不同,那么我们称其中一个为另一个数的相反数•也称这两个数互为相反数。
特别地,O的相反数是O U(2)相反数的几何意义:在数轴上,表示互为相反数(0除外)的两点,位于原点的两侧,并且到原点的距离相等。
剖析:求某个式子的相反数时必须在整个式子前加上括号,即a+b的相反数为-(a+b)。
绝对值知识点1绝对值的几何意义及表示方法(1)概念:在数轴上,一个数所对应的点到原点的距离叫做这个数的绝对值。
(2)表示方法:数a的绝对值记作I a l •注意:(1)绝对值最小的数是0. (2)互为相反数的两个数的绝对值相等。
(3)绝对值相等的两个数可能相等也可能互为相反数。
(4)绝对值等于一个正数的数有两个,且它们互为相反数。
剖析:在数轴上找到与原点的距离等于这个数的点是解题关键。
知识点2绝对值的代数定义一般地,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
互为相反数的两个数的绝对值相等。
绝对值的代数定义,用式子可以表示为:丨a∣二a(a>0)或0 (a二0)或-a (a<0)o剖析:求一个数的绝对值有两种方法:(1)根据几何立义画数轴,利用它到原点的距离来求:(2)判断已知数的正、负或0,根据代数定义来求。
有理数的大小比较知识点1利用数轴比较有理数的大小(1)在数轴上本身的两个数,右边的数总比左边的数大(2)正数都大于零,负数都小于零,正数大于负数。
知识点2利用绝对值比较两数的大小两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
注意:(1)用绝对值的方法比较两数大小;比用数轴的方法简便些,但对几个数进行大小排序,用画数轴的方法更简便些。
(2)异号两数比较大小,正数大于负数。
(3)同0比较,正数大于0,负数小于0。
剖析:(1)比较异分母的负分数的绝对值时,要注意通分。
(2)在比较两个负数大小时,最终结果是比较这两个负数的大小,而不是比较其绝对值的大小。
第二章有理数的运算有理数的加法知识点1有理数的加法法则:(1)、同号两数相加,取与加数相同的符号,并把绝对值相加。
(2)、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)、互为相反数的两个数相加得零;一个数同零相加,乃得这个数。
注意:两个有理数相加所得的和,由符号和绝对值两部分组成,因此,应用加法法则进行运算时,常按下而的步骤进行:a、判断两个加数的符号,由法则确左和的符号;b、确泄两个加数的绝对值,再由法则确定和的绝对值。
剖析:运用有理数加法法则进行运算时,一般要遵守以下三步:第一步,观察两个数的符号是同号还是异号;第二部,确左使用哪条法则:第三步,求出结果。
知识点2有理数的加法运算律(1)加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a(2)加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
(a+b)+c=a+(b+c)注意:(1)加法交换律和结合律中的“两个数”和“三个数”是个概数,对两个以上或三个以上也适用。
(2)结合律的结合原理:a能凑成和为O的n个数先结合;b能凑成和为整数的n个分数或小数先结合。
剖析:多个有理数相加时,为了使运算简便,通常有下列规律:(1)互为相反数的两个数,可以先相加,(2)符号相同的数可以先相加。
(3)分母相同的数可以先相加。
(4)几个数相加能得到整数的可以先相加。
有理数的减法知识点1有理数的减法法则减去一个数,等于加上这个数的相反数,用字母表示该法则为:a-b=a+(-b). K中a、b表示任意有理数,即a、b既可以是正数,也可以是负数和OC注意:(1)进行有理数的减法运算有两个步骤:第一步,将减号变成加号,把减数的相反数变成加数。
第二步, 进行有理数加法运算,特别注意在第一步中将有理数减法“转化”为加法时,要同时改变两个符号:a运算符号由“-”号变为“ + ”号;b改变减数的性质符号。
(2)减数与被减数不能互换,即减法没有交换律。
剖析:有理数的减法体现了转化的思想,把未知的问题转化为已知的问题赖解决,以上三题就是把有理数的减法利用减法法则转化为有理数的加法来进行计算。
知识点2代数和几个正数和负数的和称为代数和。
代数和一般用省略加号、括号的和的形式来表示,因为πι-n=m+(-n),所以可将m-n看做m和F的代数和,即m+(-n)形式省略加号和括号,写成m-n的形式。
知识点3有理数的加减混合运算有理数的加减混合运算可统一为加法运算。
它的运算方法和步骤如下:(1)利用有理数减法法则将减法统一成加法;(2)省略各加数的括号和它前面的加号;(3)运用加法法则、加法交换律、加法结合律简便运算。
注意:(1)每个数字前而的符号都是这个数字的性质符号,因此在交换加数的位置时,一泄要连同符号一起交换。
(2)计算如果需要添括号,一左要连同加数前面的符号一起括进括号内,并将原来省略的符号还原。
2. 3有理数的乘法知识点1有理数的乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与零想乘,积为零。
注意:(I)计算有理数的乘法时常分两步进行:第一步,确泄积的符号:第二步确左积的绝对值由于绝对值总是非负数,因此有理数的乘法实质上是通过符号法则,归纳为算术的乘法来完成的。
(2)有理数乘法法则中"同号得正,异号得负”是专指“两数相乘”的情况。
知识点2有理数乘法法则的推广(1)几个不为零的有理数相乘,积的符号由负因数的个数确定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
(2)几个数相乘,有一个因数为零,则积为零。
剖析:三个或三个以上的非零有理数相乘,关键是数准负因数的个数,从而正确确定积的符号。
知识点3互为倒数的概念若两个有理数的乘积为1,则称这两个有理数互为倒数注意:(1)互为倒数的数是成对出现的,并且符号相同,若a、b互为倒数,则a×b=l o(2) 0没有倒数, (3)倒数等于其本身的数是1和-1。
剖析:(1)整数求倒数时把整数看成分母为1的分数,然后将分子、分母颠倒位置即可;(2)小数求倒数时首先将苴化成分数,然后分子、分母颠倒位巻:(3)带分母求倒数时,先把带分数化成假分数,然后分子、分母颠倒位置。
知识点4有理数乘法的运算律乘法交换律:两个数相乘,交换因数的位置,积不变。
a×b=b×a乘法结合律:三个数相乘.先把前两个数相乘,或者先把后两个数相乘,积不变。
(a×b)×c=a×(b×c)分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加。
a×(b+c)=a×b+a×c注意:乘法分配律可以推广:aX (b+c+d+e)=a×b+a×c+a×d+a×e;乘法分配律还可以逆用:a×b+a×c=a×(b+c)剖析:⑴利用乘法交换律和结合律简便运算时,弄淸哪几个数结合能达到简便讣算的效果是解题的关键所在。