向心力及向心加速度的求解公式

合集下载

物理向心力知识点

物理向心力知识点

物理向心力知识点在物理学中,向心力是一个重要的概念,它在各个领域中都有着广泛的应用。

向心力是指一个体受到的力沿着指向物体运动轨迹的方向,表现为向轨迹的中心拉力的力。

接下来,我们将详细介绍一些关于向心力的知识点。

1. 向心加速度向心力与物体的质量和向心加速度有着密切的关系。

向心加速度是指物体在圆周运动过程中径向加速度的大小。

向心加速度的计算公式可以通过向心力来推导。

具体而言,向心加速度等于向心力除以物体的质量。

这表明,同样的向心力作用下,质量越大的物体所产生的向心加速度越小。

2. 向心力与速度之间的关系向心力和物体的速度也有着密切的关系。

在匀速圆周运动中,向心力与速度成正比。

当速度增大时,物体所需的向心力也增大;而当速度减小时,物体所需的向心力也减小。

这是因为速度的增大意味着物体的惯性增加,从而需要更大的向心力来保持圆周运动。

3. 向心力与质量之间的关系向心力和物体的质量之间也存在一定的关系。

在相同的速度和半径下,向心力与物体的质量成正比。

也就是说,质量越大的物体所需的向心力也越大。

这可以从向心加速度的计算公式中得出。

由于向心加速度等于向心力除以质量,所以质量越大,向心加速度越小,即所需的向心力越大。

4. 向心力与半径之间的关系在相同的速度和质量下,向心力和物体的半径也存在一定的关系。

向心力与半径成反比。

也就是说,半径越小,所需的向心力越大,从而向心加速度也越大。

这可以通过向心加速度的计算公式得到验证。

由于向心力等于质量乘以向心加速度,所以半径越小,向心加速度越大,即所需的向心力越大。

总结起来,向心力是一个描述物体在圆周运动过程中所受到的力的概念。

它与质量、速度和半径等因素有着密切的关系。

向心加速度与向心力成正比,与质量成反比,与半径成反比。

因此,在研究圆周运动问题时,我们需要综合考虑这些因素,才能全面了解物体的运动规律。

了解向心力的知识点有助于我们更好地理解和分析物体在圆周运动中的行为。

在实际应用中,向心力的概念可以被广泛运用于各个领域,例如机械工程、天文学和医学等。

向心加速度的证明

向心加速度的证明

向心加速度的证明一、引言向心加速度是物理学中一个重要的概念,它描述了物体在做圆周运动时所受到的加速度。

在许多物理学问题中,向心加速度都是必须考虑的因素。

本文将探讨向心加速度的概念、计算方法以及证明过程。

二、向心加速度的概念1. 定义向心加速度是一个物体在做圆周运动时所受到的指向圆心的加速度。

2. 公式根据牛顿第二定律可以得到向心加速度的公式:a = v²/r其中,a表示向心加速度,v表示物体在圆周运动中的线速度,r表示圆周半径。

三、计算方法1. 已知线速度和半径求向心加速度根据上述公式可以得到:a = v²/r2. 已知角速度和半径求向心加速度由于线速度v可以表示为v = ωr,因此可以将公式改写为:四、向心加速度的证明过程1. 圆周运动分析考虑一个质点在做匀速圆周运动时所受到的力情况。

根据牛顿第一定律,物体在没有外力作用时会保持匀速直线运动或静止状态。

因此,如果一个物体在做圆周运动,那么它必须受到一个向心力的作用,才能保持在圆周上运动。

2. 向心力的分析根据牛顿第二定律可以得到:F = ma其中,F表示物体所受到的合力,m表示物体的质量,a表示物体所受到的加速度。

由于圆周运动是一种加速运动,因此物体所受到的合力必须包含一个向心力Fc。

因此可以得到:Fc = ma3. 向心加速度的计算根据牛顿第二定律和圆周运动分析可以得到:Fc = ma = mv²/r其中v表示质点在做圆周运动时的线速度,r表示圆周半径。

将上式中Fc代入公式中可得:a = v²/r向心加速度是一个物体在做圆周运动时所受到的指向圆心的加速度。

它可以用公式a=v²/r或a=ω²r来计算。

通过对圆周运动和向心力进行分析和计算可以证明向心加速度存在,并且具有上述公式。

圆周运动的向心力计算

圆周运动的向心力计算

圆周运动的向心力计算圆周运动是物体在固定中心点周围绕圆形轨道做匀速运动的一种运动形式。

在圆周运动中,物体受到向心力的作用,使得物体沿着轨道保持运动。

本文将讨论圆周运动的向心力的计算方法。

1. 向心力的定义和方向向心力是指物体在圆周运动中,由于受到轨道中心点的作用力,保持向中心点坠落的力。

它的方向始终指向轨道中心点。

向心力的大小与物体的质量和圆周运动的速度有关。

2. 向心力的计算公式向心力的计算使用公式:F = m * a_c,其中F表示向心力,m表示物体的质量,a_c表示向心加速度。

3. 向心加速度的计算向心加速度是指物体在圆周运动中的加速度,它是因为向心力的作用而产生的。

向心加速度与物体的线速度和轨道半径有关,可以使用以下公式进行计算:a_c = v^2 / r,其中a_c表示向心加速度,v表示物体的线速度,r表示轨道的半径。

4. 向心力的数值计算通过向心加速度的计算公式,我们可以将向心力的计算转化为数值计算。

例如,如果物体的质量为m,线速度为v,轨道半径为r,那么向心力的计算公式可以变为:F = m * (v^2 / r)。

5. 例子分析假设有一个质量为0.5kg的小球以20m/s的线速度在半径为2m的圆形轨道上做匀速圆周运动。

我们可以根据上述公式计算出该小球所受的向心力:F = 0.5 * (20^2 / 2) = 200N。

6. 向心力的意义向心力的作用是保持物体在圆周运动中始终沿着轨道运动,不会脱离轨道飞出。

这是因为向心力提供了足够的向中心点的力量,使得物体能够克服离心力的影响,保持稳定的圆周运动。

总结:通过以上对圆周运动的向心力计算的讨论,我们可以得出以下结论:向心力的计算公式为F = m * a_c,其中m为物体质量,a_c为向心加速度。

向心加速度的计算公式为a_c = v^2 / r,其中v为物体线速度,r为轨道半径。

向心力的计算可以通过将向心加速度的计算结果带入公式得到。

向心力的作用是保持物体在圆周运动中保持稳定的轨道运动。

向心力公式(共8篇)

向心力公式(共8篇)

向心力公式(共8篇)向心力公式(一): 向心力公式推导~~用极限,或是中学常用的“微元法”以圆心为原点,i为x轴上的单位向量j为y轴上的单位向量速率为v0则速度(矢量)v=v0cosθi+v0sinθj(θ为某点处与x轴的夹角)又因为θ=ωtv=v0cosωti+v0sinωtja=v"=ωv0(cosωti-sinωtj)|a|=ωv0=rω^2|F|=m|a|=mrω^2=(mV^2)/r=mvω=(mr4π^2)/T^2=mr4π^2f^2向心力公式(二): 匀速圆周运动向心力公式是什么【向心力公式】设匀速运动轨迹为半径为r的圆,θ为转过的弧度,v为线速度,t为时间θ=vt/r (弧度定义)在轨迹上取AB两点,把两点上速度向量相减得到变化的向心速度向量δv θ=δv/v (弧度定义)两式合并δv/t=(v^2)/r向心加速度a=δv/t=(v^2)/rF=ma=mv^2/r向心力公式(三): 向心力公式F=mω^2r是如何推导出来的用极限,或是中学常用的“微元法” 以圆心为原点,i为x轴上的单位向量 j 为y轴上的单位向量速率为v0 则速度(矢量)v=v0sinθi+v0cosθj (θ为某点处与x轴的夹角) 又因为θ=ωt v=v0sinωti+v0cosωtja=v"=ωv0(cosωti-sinωtj) |a|=ωv0=rω^2 |F|=m|a|=mrω^2.其实这个公式用高中知识是推不出来的,涉及到微积分,矢量运算,极限法等等,推导过程高中阶段不需要掌握,背下这个公式就行了向心力公式(四): 向心力的公式有哪几个向心力公式f=mv^2/r=mw^2*r=m4π^2*r/T^2(w表示角速度,^2表示平方,*表示相乘)(1)洛伦兹力 f=qvB 代入上式 f=qvB=mv^2/r可得半径公式 r=mv/qB(2)T=2πr/v(一圈的路程除以速度等于一圈的时间) r=mv/qB代入进去可得周期公式T=2πm/qB向心力公式(五): 向心力公式怎么推导用极限,或是中学常用的“微元法”以圆心为原点,i为x轴上的单位向量 j为y轴上的单位向量速率为v0则速度(矢量)v=v0cosθi+v0sinθj(θ为某点处与x轴的夹角)又因为θ=ωtv=v0cosωti+v0sinωtja=v"=ωv0(cosωti-sinωtj)|a|=ωv0=rω^2|F|=m|a|=mrω^2=(mV^2)/r=mvω=(mr4π^2)/T^2=mr4π^2f^2向心力公式(六): 万有引力提供向心力的公式因为一般认为天体运动都是圆周运动(一般是匀速的)所以应该满足圆周运动的公式所以F=mv的平方除以r(有些无聊的老师把它叫做保持匀速圆周所需要的力的大小)或者另外一个公式:F=欧咪嘎的平方乘以r而实际上中心天体和环绕天体之间的力为万有引力:F=(M乘以m乘以G)除以r的平方鄙人奉劝一句:物理决不是只背公式就行的.公式,要自己创造,然后才能深刻的理解,处理问题要多判断,否则出手必败.有帮助记得好评,新问题请重新发帖提问,这里不再回答谢谢向心力公式(七): 向心力的定义,方向,公式,来源,作用【向心力公式】1.定义:向心力,是使质点(或物体)作曲线运动时所需的指向曲率中心(圆周运动时即为圆心)的力.2.方向:方向指向圆心,与速度v垂直.3.公式:F向=mrω2 =mv2/r=mvω=4π2mr/T2=4π2mrf2=4π2n2mr 其中:v为线速度,ω为角速度,m为物体质量,r为物体的运动半径,T为圆周运动周期,f为圆周运动频率,n为圆周运动转速.4.来源:向心力是从力的作用效果来命名的,因为它产生指向圆心的加速度,所以称它为向心力.它不是具有确定性质的某种类型的力.相反,任何性质的力(如摩擦力、弹力、引力等)都可以作为向心力.实际上它可是某种性质的一个力,或某个力的分力,还可以是几个不同性质的力沿着半径指向圆心的合外力.5.作用:维持物体做圆周运动.向心力公式(八): 怎样从理论证明向心力公式向心力,就是使保持物体做圆周运动的力,他给物体的一个圆周加速度,不好意思,能把公式告诉我吗,我应该可以证明!向心力公式推导物理向心力公式。

向心力的加速度公式

向心力的加速度公式

向心力的加速度公式
向心力的加速度公式可以表示为:
a = v^2 / r.
其中,a表示向心加速度,v表示物体的速度,r表示物体绕圆心运动的半径。

这个公式告诉我们,向心加速度与速度的平方成正比,与半径成反比。

也就是说,当物体的速度增加时,它所受到的向心加速度也会增加;而当半径增大时,向心加速度会减小。

这个公式的应用非常广泛。

例如,在机械工程中,我们可以使用这个公式来计算旋转机械零件上的受力情况;在天体物理学中,我们可以用这个公式来研究行星绕太阳的运动轨迹。

总之,向心力的加速度公式是一个非常重要的物理公式,它可以帮助我们理解圆周运动中物体的加速度变化规律,以及在实际应用中的各种问题。

通过深入理解和应用这个公式,我们可以更好地
掌握物体在圆周运动中的运动规律,从而更好地应用于实际问题的解决。

高中物理公式匀速圆周运动

高中物理公式匀速圆周运动

高中物理公式匀速圆周运动高中物理公式1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr角速度与转速的关系ω=2πn(此处频率与转速意义相同)主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

相关推荐加速度a=(Vt-V0)/t(以V0为正方向,a与V0同向(加速)a>0;a与V0反向(减速)则a<0)实验用推论Δs=aT2(Δs为连续相邻相等时间(T)内位移之差)主要物理量及单位:初速度(V0):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t):秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

a=(Vt-V o)/t只是测量式,不是决定式;其它相关内容:质点、位移和路程、参考系、时间与时刻、s--t 图、v--t图/速度与速率、瞬时速度。

质点的运动----曲线运动、万有引力平抛运动竖直方向位移:y=gt2/2运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)合速度Vt=(Vx2+Vy2)1/2=[V02+(gt)2]1/2合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0合位移:s=(x2+y2)1/2位移方向与水平夹角α:tgα=y/x=gt/2V0水平方向加速度:ax=0;竖直方向加速度:ay=g注:平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;运动时间由下落高度h(y)决定与水平抛出速度无关;θ与β的关系为tgβ=2tgα;在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

第四章 第2节 向心力与向心加速度

第四章  第2节  向心力与向心加速度
2 2π2 v 2 (5)在 x 轴方向,选用向心力公式 F2r 列方程求解,必要时再在 y 轴方向按 F 合 y=0 求解。
1.未来的星际航行中,宇航员长期处于零重力 状态,为缓解这种状态带来的不适,有人 设想在未来的航天器上加装一段圆柱形 “旋转舱”,如图 424 所示。当旋转舱绕其
4.方向 总是指向 圆心。所以,不论 a 的大小是否变化,它都是一 个变化的量。
1.自主思考——判一判 (1)做匀速圆周运动的物体所受到的向心力是恒力。 (2)向心力和重力、弹力、摩擦力一样,是性质力。 (3)向心力可以由某种性质的力来充当,是效果力。 (4)匀速圆周运动是加速度不变的运动。 (5)向心加速度描述线速度大小变化的快慢。 (6)匀速圆周运动的物体所受合外力一定指向圆心。 (× ) (× ) (√ ) ( ×) ( ×) ( √)
用细线拴住的小球 在竖直面内转动至 最高点时


向心力 线的拉力提供向心 力,F=T 转盘对物体的静摩 擦力提供向心力, F=f
示意图
用细线拴住小球在 光滑水平面内做匀 速圆周运动 物体随转盘做匀速 圆周运动,且相对 转盘静止
小球在细线作用下, 重力和细线的拉力 在水平面内做圆周 的合力提供向心力, 运动 F=F合
图 425
解析:(1)木马受骑在木马上的儿童和钢杆对它的作用力做匀 速圆周运动。木马受到的向心力由钢杆提供;儿童受到木马 对他的作用力和重力作用,向心力由木马提供。 (2)儿童所受向心力由木马提供且指向圆心,由 v2 F= m r 得 62 F=40× 3 N=480 N。 答案:(1)钢杆 木马 (2)480 N
[典例]
(多选)关于北京和广州随地球自转的向心加速度, ( )
下列说法中正确的是 A.它们的方向都是沿半径指向地心 B.它们的方向都在平行于赤道的平面内指向地轴 C.北京的向心加速度比广州的向心加速度大 D.北京的向心加速度比广州的向心加速度小

2 匀速圆周运动的向心力和向心加速度

2 匀速圆周运动的向心力和向心加速度
图 2- 2- 4
).
解析 物体做变加速曲线运动,合力不为零, A错.物体做速度大小变化的圆周运动,合力 不指向圆心,合力沿半径方向的分力等于向 心力,合力沿切线方向的分力使物体速度变 大,即除在最低点外,物体的速度方向与合 外力的方向夹角为锐角,合力与速度不垂直, B、C错,D对. 答案 D
对向心力的理解 1.汽车甲和汽车乙质量相等,以相等的速率 沿同一水平弯道做匀速圆周运动,甲车在 乙车的外侧.两车沿半径方向受到的摩擦 力分别为f甲和f乙,以下说法正确的是 ( ). A.f甲小于f乙 B.f甲等于f乙 C.f甲大于f乙 D.f甲和f乙大小均与汽车速率无关
意义:描述线速度方向改变的快慢. 向心加速度公式也适用于非匀速圆周运动 (1) 物体做匀速圆周运动时,向心加速度就 是物体运动的合加速度.
(2)物体做非匀速圆周运动时, 合加速度必有一个沿切线方向 的分量和指向圆心方向的分量,其指向圆心方向的分量就 v2 是向心加速度,此时向心加速度仍然满足:an= r =rω2. 由上述分析可知,物体做圆周运动的加速度不一定指向圆 心,向心加速度只是物体实际加速度的一个分量,只有做匀 速圆周运动的加速度才一定指向圆心; 但向心加速度方向是 v2 始终指向圆心的,其大小表达式 an= r =rω2 适用于所有圆 周运动,式中的 v 指某个瞬间的瞬时速度大小,an 即指那个 瞬间的瞬时向心加速度大小.
v2 (2)大小:Fn=man=m r =m ω2r =m ωv .
(3)方向:总是沿着半径指向圆心,方向时刻改变,所以向心 力是变力.
向心加速度 (1) 定义:做匀速圆周运动的物体的加速度 指向圆心.这个加速度称为向心加速度. (2) 物 理 意 义 : 描 述 线 速 度 方 向 改 变 的 快 慢.

高中物理向心加速度公式

高中物理向心加速度公式

向心加速度公式
向心加速度的公式是a(n)=W·V,其中a(n)表示向心加速度,W表示物体圆周运动的角速度,V表示物体圆周运动的线速度(切向速度)。

向心加速度也叫法向加速度,表示的是质点作曲线运动时,指向圆心(曲率中心)的加速度。

向心加速度公式
an=Fn/m
=4π²R/T²=4π²f²R
=v²/R=ω²R=vω
上式中,an表示向心加速度,Fn表示向心力,m表示物体质量,v表示物体圆周运动的线速度(切向速度),ω表示物体圆周运动的角速度,T表示物体圆周运动的周期,f表示物体圆周运动的频率,R表示物体圆周运动的半径。

(ω=2π/T)
由牛顿第二定律,力的作用会使物体产生一个加速度。

合外力提供向心力,向心力产生的加速度就是向心加速度。

可能是实际加速度,也可能是物体实际加速度的一个分加速度。

法向加速度
法向加速度又称向心加速度,在匀速圆周运动中,法向加速度大小不变,方向可用右手螺旋定则确定。

质点作曲线运动时,所具有的沿轨道法线方向的加速度叫做法向加速度。

数值上等于速度v的平方除曲率半径r,即v²/r;或角
— 1 —
速度的平方与半径r的乘积,即ω²r。

其作用只改变物体速度的方向,但不改变速度的大小。

— 2 —。

高中物理--向心力--总结

高中物理--向心力--总结
2、物体作离心运动的条件:
F合 0或F合 mr 2
F合
v2 m
r
mw 2r
向心力的来源:可以是重力、弹力、摩擦力等各种性质 的力,也可以是几个力的合力,还可以是某个力的分力。
物体做匀速圆周运动时,由合力提供向心力。
非匀速圆周运动:
F向 F合
F F F 向是 合的指向圆心方向的分力 n
练习 例1:关于向心力说法中正确的是(B )
A、物体由于做圆周运动而产生的力叫向心力;
第七节: 向心力
一、向心力
1、定义:
做匀速圆周运动的物体受到的合外力指向圆心的,这个力叫 做向心力。
2、方向: 总指向圆心,与速度垂直,方向不断变化。
二、向心力的大小
Fn man
v2 m
r
mr 2
只改变速度的方向,不改变速度的大小。
验证向心力公式:
(1)设计实验:控制变量法
保持r、ω一定 保持r、m 一定 保持m、ω一定
A B
fB 4fA
rB 2rA
N
fA
AB mg
匀 速圆 周运动 实例分析
圆周运动中的临界问题
本节课的学习目标
1、知道向心力是物体沿半径方向所受的合外力提供的。 2、知道向心力、向心加速度的公式也适用于变速圆周运动。 3、会在具体问题中分析向心力的来源,并进行有关计算。
一、汽车过桥问题
1.求汽车以速度v 过半径为r 的拱桥时对拱桥的压力?
F向
mgtan
mv2 R
v临 Rg tan 火车转弯规定临界速度
1.v=V临时,车轮对内、外都无侧压力。 2.V>V临时,车轮对外轨有侧压力。 3.V<V临时,车轮对内轨有侧压力。

向心加速度的物理知识点

向心加速度的物理知识点

向心加速度的物理知识点目录1.向心加速度定义2.向心加速度公式3.向心力与向心加速度1.向心加速度定义质点作曲线运动时,指向瞬时曲率中心的加速度就是向心加速度。

向心加速度是反映圆周运动速度方向变化快慢的物理量。

向心加速度只改变速度的方向,不改变速度的大小。

由牛顿第二定律,力的作用会使物体产生一个加速度。

合外力提供向心力,向心力产生的加速度就是向心加速度。

可能是实际加速度,也可能是物体实际加速度的一个分加速度。

向心加速度是反映圆周运动速度方向变化快慢的物理量。

向心加速度只改变速度的方向,不改变速度的大小。

2.向心加速度公式上式中,an表示向心加速度,Fn表示向心力,m表示物体质量,v表示物体圆周运动的线速度(切向速度),w表示物体圆周运动的角速度,T表示物体圆周运动的周期,f表示物体圆周运动的频率,R表示物体圆周运动的半径。

3.向心力与向心加速度一、概述本节课是高一鲁科版物理必修2第四章的内容,课时是二节课,本教案是关于第一课时向心力的内容。

学生在前面学习了物体做曲线运动的条件,学习了对圆周运动的描述,而且在必修1中也学习了牛顿运动定律。

这节课作为这些知识的综合应用的具体例子,通过分析理解向心力的概念,掌握向心力的来源,通过实验得出向心力大小的公式。

二、教学目标分析(一)知识与技能1、知道什么是向心力,理解匀速圆周运动的向心力大小不变,方向总是指向圆心;2、知道向心力的来源;3、知道匀速圆周运动的向心力的公式,会解答有关问题;4、养成探究物理问题的习惯,养成观察实验的能力和分析综合能力。

(二)过程与方法1、要通过对物体做圆周运动的实例进行分析入手,从而认识到:做圆周运动的物体都必须受到指向圆心的力的作用,由此理解向心力的概念;2、通过充分讨论向心力来源、向心力大小可能与哪些因素有关,并设计实验进行探究活动;3、能通过思考交流,体验探究与合作学习。

(三)情感态度与价值观1、领略到物理就在自己的身边,体验自然界的奇妙与和谐,发展好奇心与求知欲;2、在探究合作过程中,增强探究意识与合作意识,增强与人交流的意识;3、养成敢于发表自己观点,既坚持原则又尊重他人的良好习惯;4、意识到物理规律在现实生活中的重要作用,增强对物理学习的兴趣;5、在用实验得出结论的过程中,逐步树立严谨科学的实验态度和正确的认识观。

向心加速度和向心力

向心加速度和向心力
思 考
加速度的定义式是什么?
速度的变化量Δv
Δv a = Δt
如何确 定Δv的 方向?
a 的方向与Δv 的方向相同
用 矢 量 图 表 示 速 度 变 化 量
曲线运动中的速度的变化量:
v1
v2
Δv
作法:从同一点作出物体在一段时间的始末两 个速度矢量v1和v2,从初速度v1的末端至末速度 v2的末端所作的矢量就是速度的变化量△v 。
[答案]
3R
2.要注意竖直平面内圆周运动的两种临界的不同: 分类 实例 最高点无支撑 球与绳连接、水流星、翻滚过 山车 最高点有支撑 球与杆连接,车过拱 桥、球过竖直管道、 套在圆环上的物体等
图示 重力、弹力 F 弹向下、 向上或等于零 v2 mg± F 弹=m r
弹向下或等于零 在最高 重力、弹力 F 2 v 点受力 mg+ F 弹 = m r
D
A
3.如图3所示,O1为皮带传动的主动轮的轴心, 轮半径为r1,O2为从动轮的轴心,轮半径为r2,r3 为固定在从动轮上的小轮的半径.已知r2=2r1, r3=1.5r1.A、B、C分别是3个轮边缘上的点,则 质点A、B、C的向心加速度之比是(假设皮带不打 滑)( ) A.1∶2∶3 B.2∶4∶3 C.8∶4∶3 D.3∶6∶2
[答案] (1)
sin θ+μcos θ gr cos θ-μsin θ
9如图 8所示,半径为R、内径很
小的光滑半圆管竖直放置,两个质量 均为m的小球A、B以不同的速度进入 管内。A通过最高点C 时,对管壁上部压力为3 mg,B通过最高 点C时,对管壁下部压力为0.75 mg,求A、B两球落地点间的距
力加速度g取10 m/s2)
(1)为使汽车转弯时不打滑,汽车行驶的最大速度 是多少?

向心力

向心力

长为L=2m的细线,拴一质量为m=0.4kg的小球,一端固定 于O点.让其在水平面内做匀速圆周运动(这种运动通常称 为圆锥摆运动),求摆线L与竖直方向的夹角为α=370时: (1)线的拉力F; (2)小球运动的线速度的大小; (3)小球运动的角速度.
这些实例中的圆周运动有两个共同点:
一、 水平面内的圆周运动 1、都是匀速圆周运动;
2

小球的向心力由T和mg的合力提 供
4 由牛顿第二定律: F ma m R 2 T 2 4 mgtg m 2 R 即验证: T
F向心 F mgtg
R F mg
想一想
L
θ
1、小球质量必须测出吗? 2、半径r如何得到?
F F合 r
O
3、周期T如何得到?
4、tanθ如何得到?
3.向心力的方向:始终指向圆心 4.向心力的作用效果:只改变速度方向,不改 变速度大小。 5.变速圆周运动和一般曲线运动的处理方法。
B.小球以相同的角速度运动时,长绳易断
C.小球以相同的角速度运动时,短绳易断
D.不管怎样都是短绳易断
小物块放在转盘上距离圆心r处随盘一起做匀速圆周运动(物块与 盘间无相对滑动),分析物块向心力的来源。
如图,A、B、C三个物体放在水平旋转的圆盘上随盘一 起做匀速圆周运动,三物与转盘的最大静摩擦因数均为 μ, A、B和C的质量均为m,A、B离轴距离为R,C离轴2R, 若三物相对盘静止,则 . A.每个物体均受重力、支持力、 静摩擦力、向心力四个力作用 B.C的向心加速度最大 C.C受到的摩擦力最小 D.当圆台转速不断增大时, C最先被甩出去
杆拉小 球模型
,
r
v gr
若v gr , F 0

高一物理所有公式

高一物理所有公式

第一章 力1. 重力:G = mg2. 摩擦力:(1) 滑动摩擦力:f = μF N 即滑动摩擦力跟压力成正比。

(2) 静摩擦力:①对一般静摩擦力的计算应该利用牛顿第二定律,切记不要乱用f =μF N ;②对最大静摩擦力的计算有公式:f = μF N (注意:这里的μ与滑动摩擦定律中的μ的区别,但一般情况下,我们认为是一样的)3. 力的合成与分解:(1) 力的合成与分解都应遵循平行四边形定则。

(2) 具体计算就是解三角形,并以直角三角形为主。

第二章 直线运动1. 速度公式: v t = v 0 + at ①2. 位移公式: x= v 0t +21at 2 ② 3. 速度位移关系式: v t 2- v 20= 2as ③ 4. 平均速度公式: v = tx ④ v =21(v 0 + v t ) ⑤ v = v t2 ⑥5. 位移差公式 : △x= aT 2 ⑦公式说明:(1) 以上公式除④式之外,其它公式只适用于匀变速直线运动。

(2)公式⑥指的是在匀变速直线运动中,某一段时间的平均速度之值恰好等于这段时间中间时刻的速度,这样就在平均速度与速度之间建立了一个联系。

6. 对于初速度为零的匀加速直线运动有下列规律成立:(1). 1T 秒末、2T 秒末、3T 秒末……nT 秒末的速度之比为: 1 :2:3:……:n.(2). 1T 秒内、2T 秒内、3T 秒内……nT 秒内的位移之比为: 12 :22:32:……:n 2.(3). 第1T 秒内、第2T 秒内、第3T 秒内……第nT 秒内的位移之比为: 1:3:5:……:(2 n-1).(4). 第1T 秒内、第2T 秒内、第3T 秒内……第nT 秒内的平均速度之比为: 1:3:5:……:(2 n-1).第三章 牛顿运动定律1. 牛顿第二定律: F 合= ma注意: (1)同一性: 公式中的三个量必须是同一个物体的.(2)同时性: F 合与a 必须是同一时刻的.(3)瞬时性: 上一公式反映的是F 合与a 的瞬时关系.(4)局限性: 只成立于惯性系中, 受制于宏观低速.2. 整体法与隔离法:整体法不须考虑整体(系统)内的内力作用, 用此法解题较为简单, 用于加速度和外力的计算. 隔离法要考虑内力作用, 一般比较繁琐, 但在求内力时必须用此法, 在选哪一个物体进行隔离时有讲究, 应选取受力较少的进行隔离研究.3. 超重与失重:当物体在竖直方向存在加速度时, 便会产生超重与失重现象. 超重与失重的本质是重力的实际大小与表现出的大小不相符所致, 并不是实际重力发生了什么变化,只是表现出的重力发生了变化.第四章 物体平衡1. 物体平衡条件: F 合 = 02. 处理物体平衡问题常用方法有:(1). 在物体只受三个力时, 用合成及分解的方法是比较好的. 合成的方法就是将物体所受三个力通过合成转化成两个平衡力来处理; 分解的方法就是将物体所受三个力通过分解转化成两对平衡力来处理.(2). 在物体受四个力(含四个力)以上时, 就应该用正交分解的方法了. 正交分解的方法就是先分解而后再合成以转化成两对平衡力来处理的思想.第五章 匀速圆周运动1.对匀速圆周运动的描述:①.线速度的定义式: v =ts (s 指弧长或路程,不是位移 ②.角速度的定义式: ω= tφ ③.线速度与周期的关系:v = Tr π2 ④.角速度与周期的关系:Tπω2= ⑤.线速度与角速度的关系:v = r ω ⑥.向心加速度:a = rv 2或 a =2ωr 2. (1)向心力公式:F = ma = m rv 2= m 2ωr (2) 向心力就是物体做匀速圆周运动的合外力,在计算向心力时一定要取指向圆心的方向做为正方向。

物理:《圆周运动》课件 (复习专题)

物理:《圆周运动》课件 (复习专题)

但是这并不是竞技魅力的全部。奥林匹克运动会的发起人皮埃尔·德·顾拜旦曾说过:“奥运会重要的不是胜利而是参与,生 活的本质不是索取而是奋斗。在奥林匹克这个舞台上,有几万人在为自己的理想而奋斗,有几十万人,甚至几百万、几千万、 几亿人在为了来到这个舞台而不断超越着自我。他们中间的一些人可能最终也与金牌无缘,但一直在努力且永不放弃,应该赢 得社会的尊重和敬意”。其实,金牌并不是奥运会的全部。如果其光环被无限放大,也就背离了奥林匹克的本意。
(2)竖直平面内的圆周运动
例: 某兴趣小组设计了如图所示的玩具轨道,其 中“2008”四个等高数字用内壁光滑的薄壁细圆管 弯成,固定在竖直平面内(所有数字均由圆或半圆 组成,圆半径比细管的内径大得多),底端与水平 地面相切.弹射装置将一个小物体(可视为质点) 以Va=5 m/s的水平初速度由a点弹出,从b点进 入轨道,依次经过“8002”后从p点水平抛出.小 物体与地面ab段间的动摩擦因数μ=0.3,不计其 它机械能损失.已知ab段长L=1. 5 m,数字“0” 的半径R=0.2 m,小物体质量m=0.01 kg,g= 2 10 m/ .求:小物体经过数 s 字“0”的最高点时管道对小 物体作用力的大小和方向.
天真的提醒。相差十岁开外,已经有一代的辈份了吧?怎么好叫哥哥呢?“是。叔、叔,要教~导、你——!”轻狂书生一发 咬上了牙。小童生打个寒噤,觉得叔叔好怪哦!满脸写满疑问,就被怪叔叔脚不沾地的拖走了。各人都两两分好了组,便各安 其位,每组自据一案,个个面壁,低声商议,推一人执笔,免得由笔迹泄露哪句是谁所作。“你来写吧。”宝音对刘晨寂轻声 道。她写字还不算特别顺,不敢献丑。刘晨寂也不推让,执起笔来,问:“你要什么韵?”宝音沉思好一会儿:“我只想出几 个字,别等我了。你喜欢用什么韵?”“我不妨。”刘晨寂道,“先尽着你罢。”宝音低低道:“期。花期的期。”刘晨寂点 头,算是记下了。他总不动笔,宝音想得了一联,怕时间不够,也不好等他了,赧然道:“我有一联。”刘晨寂便提笔。宝音 当他自己要写了,等他,他只静着,反在等宝音。宝音方悟,他提笔,是要她说句子,他好录,忙红着脸报给他:“野老闲与 朱鹭钓,娇娥笑对杏花期。”怕写得不好,被他笑,声如蚊蚋,有几个字,简直连自己都听不清。他录下来,一字不错,点点 头:“挺好。”又问:“这是颈联了。后头呢?”后头,宝音想不出怎么结尾。刘晨寂道:“那我先写前半首?”宝音点头。 刘晨寂舒袖展锋,并不思索,写道:“久梦桃夭始自知,江南已是落花时。半城红谢唐人卷,两处青余陌上词。”如在静默的 冬夜,捧起一盏清茶,齿颊留香。他这样好的文风,前一题,怎交白卷?因他不在乎丢脸,宝音在乎。他特来替宝音解围、与 宝音搭档,就不能叫宝音在众人目光之下,冷汗涔涔。他为何对宝音这样好?宝音被感动了。她感动的时候,往往脑袋就会变 成一团浆糊。明柯当时若不用私奔的故事来感动她,她也不会犯糊涂去盗出金像。可惜她糊涂的时候,就写不出诗了。时间已 快到,有的人已经交卷了。刘晨寂道:“还有尾联?”宝音知道还有尾联,但她哪里编得出来了。“你心事太重了。”刘晨寂 叹道。是,宝音除了感动之外,还在猜他为何对她好,是不是跟表 有什么渊源,又想到明柯私奔的故事里,会不会有什么真 情,还在想恩与怨、情与仇、前世与今生,孰取孰舍、何去何从。“交给我罢?”刘晨寂无奈道。“嗯。”宝音应道。恍惚间 她觉得把手里一切难解的题,都交给刘晨寂发付了。刘晨寂写下收句:“须知桃下少年好,得意时节正展眉。” 看了她一眼, 这是他对她的期许么?叫她放下一切,专心享受表 的人生?宝音满眼的疑问,刘晨寂低下头去收拾纸笔,似再无意愿跟宝音 交流,纸卷底下,却不动声色递过来一件东西?宝音手指触及,但觉是张很小的纸,叠成个包,不知里头装了什么东西,心头 狂跳。这是什么?“回家之前,找空

第1讲:向心力的四大公式

第1讲:向心力的四大公式

a 2r
2 2 a( ) r T
a v

答:竖直方向重力与支持力抵消,只能是 绳子的拉力提供向心力。
向心力的四大表达式
v F向 m r
2
F向 mω r
2
2π 2 F向 m( )r T
F向 mv
向心加速度与向心力
v2 F向 m r v a r
2
F向 mω2r
2π 2 F向 m( )r T
F向 mv
第1讲:向心力的四大公式
制作人:张光明
Байду номын сангаас
问:什么是【向心力】? 答:沿半径方向的合力,时刻指向圆心 问:【向心加速度】是怎样产生的? 答:就是向心力产生的,所以向心力的方向 就是向心加速度的方向,时刻与速度垂直



问:【向心力】有什么作用? 答:不断改变速度的方向,防止甩出去

如图:小球通过绳子在光滑的水平面上作 圆周运动,问:向心力是哪个力提供?

高考物理考点18 向心加速度与向心力Word版含解析

高考物理考点18 向心加速度与向心力Word版含解析

一、圆周运动中的动力学分析1.向心加速度:描述速度方向变化快慢的物理量。

公式:r Tv r v r a n 22224πωω====。

2.向心力:作用效果产生向心加速度,F n =ma n 。

3.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力。

4.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置。

(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力。

解决圆周运动问题的主要步骤(1)审清题意,确定研究对象;(2)分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等; (3)分析物体的受力情况,画出受力示意图,确定向心力的来源; (4)根据牛顿运动定律及向心力公式列方程。

二、竖直平面内圆周运动的绳模型与杆模型问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”。

2.绳、杆模型涉及的临界问题3.竖直面内圆周运动的求解思路(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同。

(2)确定临界点:gr v =临,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N表现为支持力还是拉力的临界点。

(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况。

(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向。

(5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程。

(2018·四川省攀枝花市第十二中学)甲、乙两质点做匀速圆周运动,甲的质量与转动半径都分别是乙的一半,当甲转动60圈时,乙正好转45圈,则甲与乙的向心力之比为A.4:9 B.4:3 C.3:4 D.9:4【参考答案】A1.如图所示,一个圆盘在水平面内匀速转动,盘面上有一个小物体在随圆盘一起做匀速圆周运动。

向心力、向心加速度知识梳理

向心力、向心加速度知识梳理

向心力、向心加速度知识梳理向心力、向心加速度是涉及受力分析、牛顿运动定律的两个物理量,向心力的来源、大小及方向的确定一直是圆周运动经常考查的知识点,是本单元的重点内容。

1.向心加速度(1)物理意义:描述线速度改变的快慢。

向心加速度只改变线速度的方向,不改变线速度的大小。

所以向心加速度是描述线速度方向变化快慢的物理量。

(2)大小:PQ图(1)(3)方向:总是指向圆心。

如图(1),所以不论a的大小是否变化,它都是个变化的量,即圆周运动是变加速运动。

2.向心力(1)大小:(2)方向:总是沿半径指向圆心。

向心力F的方向不断变化,所以向心力是个变力。

(3)作用效果:产生向心加速度。

因为向心力沿半径指向圆心,而线速度总是沿着切线方向,所以向心力总是与速度相垂直,因此,向心力不做功。

图(2)例1 链球是田径运动项目之一,运动员两手握着链球的把手,人和球同时旋转,最后加力使球脱手而出,如图(2)。

某同学在练习链球时,站在某点转动后将链摆至水平状态后脱手,将链球以18m/s的速度抛出。

已知他的手臂长55cm,链球的把手到链球中心的距离为125cm,链球质量为7.26公斤。

根据以上数据请求出:①这位同学转动的角速度大小;②链球出手前的向心加速度;③不计链的质量,球脱手前瞬间该同学手上的拉力是多大?解析:由题中数据得,链球旋转的轨道半径为r=55+125(cm)=1.8m,根据线速度与角速度的关系v=rω可得角速度ω=10rad/s;根据向心加速度的公式得;根据向心力表达式得。

说明:解题过程中,灵活选用表达式非常关键,确定表达式中各已知物理量的大小则更为重要。

例2 如图(3),被称为“北京眼”的北京朝天轮项目,是座高度达208米、直径达193米的摩天轮,是全球最高的摩天轮,运转一周需要30分钟时间。

当游客乘坐朝天轮游玩时,向心加速度是多大?如果游客的质量是60kg,则需要的向心力是多大?图(3)解析:要利用公式求解向心加速度,需要两个物理量,轨道半径与线速度(或角速度、周期),代入题干中给出的已知量可得向心加速度的大小为a=1.17×10-3m/s2,利用向心力公式F=ma得F=0.07N。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档