三角形讲义--角
初中数学几何专题-与三角形有关的角(优质讲义)
![初中数学几何专题-与三角形有关的角(优质讲义)](https://img.taocdn.com/s3/m/aa3343c6680203d8cf2f2421.png)
第二讲 与三角形相关的角【知识归类】1、三角形内角和定理;2、三角形内角和定理的推论(外角定理);3、直角三角形的性质及判定.【典例讲练】一、基础过关 【例1】(1)如图1,在△ABC 中,∠A =70°,∠B =50°,则∠C =__________°.(2)如图2,在△ABC 中,点D 在CA 的延长线上,∠B =35°,∠C =52°,则∠BAD =__________° (3)如图3,在△ABC 中,AC ⊥BC ,∠B =36°,则∠A =__________°.【练】(1)在△ABC 中,∠A =30°,则∠B +∠C =__________°.(2)在△ABC 中,∠ABC 的外角为55°,∠A =35°,则∠C =__________°.(3)在△ABC 中,∠A =37°,∠C =53°,则AB 与BC 的位置关系为__________.【拓】小明把一副含45°,30°的直角三角板如图摆放,其中∠C =∠F =90°,∠A =45°,∠D =30°,则∠1+∠2等于__________°.二、内角和、方程、不等式【例2】在△ABC 中,80C ∠=︒,20A B ∠-∠=︒,则B ∠的度数是( )A .60︒B .30︒C .20︒D .40︒【变1】在△ABC 中,若∠A ﹣2∠B +∠C =0,则∠B 的度数是( )A .30°B .45°C .60°D .75°【变2】适合条件∠A =∠B =12∠C 的三角形是( )A .锐角三角形B .等边三角形C .钝角三角形D .直角三角形图3图2图1CBADC BAC BAF EDCBA21【变3】在锐角△ABC 中,∠B =3∠C ,则∠C 的取值范围是___________.【拓】在三角形中,最大角α的取值范围是___________.〖总结〗三、简单应用【例3】如图,△ABC 中,80A ∠=︒,剪去A ∠后,得到四边形BCED ,则12∠+∠= .【变1】如图,将ABC △沿着DE 翻折,若1280∠+∠=︒,则B ∠= .【变2】如图,由图1的ABC △沿DE 折叠得到图2;图3;图4.(1)如图2,猜想BDA CEA ∠+∠与A ∠的关系,并说明理由; (2)如图3,猜想BDA ∠和CEA ∠与A ∠的关系,并说明理由; (3)如图4,猜想BDA ∠和CEA ∠与A ∠的关系,并说明理由.21ED B CA A BCDE 12图112ABCD E 图212ED CBA 图321ABCD E图421ED CBA四、高、双直角、双高【例4】如图,CD ⊥AB ,∠1=∠2,∠A =55°,求∠BCA 的度数.【变1】如图,已知在△ABC 中,∠C =∠ABC =2∠A ,BD 是AC 边上的高,求∠DBC 的度数.【变2】如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D .(1)若∠B =35°,求∠ACD 的度数; (2)求证:∠ACD =∠B .【变3】在△ABC 中,(1)如图一,AB 、AC 边上的高CE 、BD 交于点O ,若∠A =60°,则∠BOC = _________ °. (2)如图二,若∠A 为钝角,请画出AB 、AC 边上的高CE 、BD ,CE 、BD 所在直线交于点O ,则∠BAC +∠BOC = _________ °,再用你已学过的数学知识加以说明. (3)由(1)(2)可以得到,无论∠A 为锐角还是钝角,总有∠BAC +∠BOC = _________ °.〖总结〗DCBA五、高线+角平分线【例5】如图,在△ABC 中,AD 是BC 边上的高,BE 平分∠ABC 交AC 边于E ,∠BAC =60°,∠ABE =25°.求∠DAC 的度数.【变1】已知△ABC 中,∠ACB =90°,CD 为AB 边上的高,BE 平分∠ABC ,分别交CD 、AC 于点F 、E ,求证:∠CFE =∠CEF .【变2】在△ABC 中,∠C >∠B ,AE 是△ABC 中∠BAC 的平分线;(1)若AD 是△ABC 的BC 边上的高,且∠B =30°,∠C =70°(如图1),求∠EAD 的度数;(2)若F 是AE 上一点,且FG ⊥BC ,垂足为G (如图2),求证:∠EFG =12(∠C -∠B );(3)若F 是AE 延长线上一点,且FG ⊥BC ,G 为垂足(如图3),②中结论是否依然成立?请给出你的结论,并说明理由.【变3】如图,已知AD 是△ABC 的角平分线(∠ACB >∠B ),EF ⊥AD 于P ,交BC 延长线于M ,(1)如果∠ACB =90°,求证:∠M =∠1;(2)求证:∠M =12(∠ACB ﹣∠B ).〖总结〗【例6】如图,求α∠的度数.【变1】如图,P 是△ABC 内一点,试比较∠BPC 与∠A 的大小.【变2】如图,127.5∠=︒,295∠=︒,338.5∠=︒,则4∠的度数为_________°.【变3】如图,CGE α∠=,则A B C D E F ∠+∠+∠+∠+∠+∠= .【变4】如图,点E 在AC 的延长线上,∠BAC 与∠DCE 的平分线交于点F ,∠B =60°,∠F =56°,则∠BDC的度数为__________°.〖总结〗αD CB A73︒30︒37︒PCBA4321ABDECαGFEDCBAFEDBA【例7】如图,求C D ∠+∠的度数.【变1】如图,线段AD 与BC 交于点O ,连接AB ,CD ,求证:∠A +∠B =∠C +∠D .【变2】(1)如图,求A B C D E ∠+∠+∠+∠+∠的度数.(2)如下图,已知133α∠=︒,83β∠=︒,求A B C D ∠+∠+∠+∠= .【拓1】(三叶草模型)如图所示,点E 和D 分别在ABC ∆的边BA 和CA 的延长线上,CF 、EF 分别平分ACB ∠和AED ∠,试探索F ∠与B ∠,D ∠的关系: .【拓2】如图,∠ABC +∠ADC =180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系__________.〖总结〗 70︒30︒E DCBA O DCBAABC D EFDCBAβαO F E D C BA【例8】在△ABC中.(1)如图①,点P在AC上(不同于A,C两点),∠BPC与∠A的大小关系是;(2)如图②,点P在△ABC内部,∠BPC与∠A的大小关系是;(3)如图③,点P是∠ABC,∠ACB平分线的交点,此时,∠BPC与∠A的等量关系是:;(4)如图④,点P是∠ABC的平分线与∠ACE的平分线交点时,∠BPC与∠A的等量关系是:;(5)如图⑤,点P是∠DBC与∠BCE的平分线交点,∠BPC与∠A的等量关系是:.【变】(1)在△ABC中,BD是ABC∠的角平分线,CD是∠ACB的外角平分线,BD、CD交于点D,若70∠=︒,则DA∠=__________.(2)在△ABC中,BI平分∠ABC,CI平分∠ACB,∠BIC=130°,则∠A=__________.(3)在△ABC中,点P是△ABC的∠A和∠C的外角平分线的交点,∠B=40°,则∠BPC=__________.【拓1】如图,已知BF、CE交于点D,BE、CF交于点A,∠AEC与∠ABF的平分线交于点M,∠ACE与∠AFB的平分线交于点N,试探究∠M与∠N的大小关系,并说明理由.【拓2】阅读下面的材料,并解决问题:已知在△ABC 中,∠A =60°. (1)如图(1),∠ABC 、∠ACB 的角平分线交于点O ,则∠BOC = ;(2)如图(2),∠ABC 、∠ACB 的三等分线交于点O 1、O 2,则∠BO 1C = ;∠BO 2C = ; (3)如图(3),∠ABC 、∠ACB 的n 等分线交于点O 1、O 2、……、O n -1,则∠BO 1C = ;∠BO n -1C = .(用含n 的代数式)图(1) 图(2) 图(3)〖总结〗【家庭作业】1、若△ABC 中,2(∠A +∠C )=3∠B ,则∠B 的外角度数为__________..2、如图,∠A =20°,∠C =90°,则∠B +∠D =__________.3、如图,已知70A ∠=︒,40B ∠=︒,20C ∠=︒,则BOC ∠度数为__________.4、如图,将纸片△ABC 沿着DE 折叠压平,则( ).A .12A ∠=∠+∠B .1(12)2A ∠=∠+∠C .1(12)3A ∠=∠+∠D .1(12)4A ∠=∠+∠5、如图,∠AEB ,∠AFD 的平分线相交于点O ,∠DAB +∠BCD =200°,则∠EOF 的度数为 .第2题图 第3题图 第4题图 第5题图 OB A CO 2O 1BA CCDA B CABCDE 12DCO FBPAE6、已知:在△ABC中,(1)如图(1),BD平分∠ABC,CD平分∠AC B.试判断∠A和∠BDC的关系.(2)如图(2),BE平分∠ABC,CE平分外角∠ACM.试判断∠A和∠BEC的关系.(3)如图(3),BF平分外角∠CBP,CF平分外角∠BCQ.试判断∠A和∠BFC的关系.7、如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式____________.8、在△ABC 中,BO 平分∠ABC ,点P 为直线AC 上一动点,PO ⊥BO 于点O . (1)如图1,当∠ABC =40°,∠BAC =60°,点P 与点C 重合时,∠APO = _________ ; (2)如图2,当点P 在AC 延长线时,求证:∠APO =12(∠ACB ﹣∠BAC );(3)如图3,当点P 在边AC 所示位置时,请直接写出∠APO 与∠ACB ,∠BAC 等量关系式 _________ .9、如图,△ABC 三条角平分线AD 、BE ,CF 交于点G ,GH ⊥BC 于H ,求证:∠BGD =∠CGH .10、如图,在三角形ABC 中,42A ∠=︒,ABC ∠和ACB ∠的三等分线分别交于D 、E ,求B D C ∠的度数.11、如图,已知∠MON=90°,点A,B分别在射线OM,ON上移动,∠OAB的角平分线与∠ABO的外角平分线交于点C.①当∠OAB=60°时,求∠ACB的度数;②试猜想,随着点A,B的移动,∠ACB的度数是否变化?说明理由.12、如图(1),AD,BC交于O点,根据“三角形内角和是180°”,不难得出两个三角形中的角存在以下关系:①∠DOC=∠AOB;②∠D+∠C=∠A+∠B.【提出问题】分别作出∠BAD和∠BCD的平分线,两条角平分线交于点E,如图(2),∠E与∠D、∠B之间是否存在某种数量关系呢?【解决问题】为了解决上面的问题,我们先从几个特殊情况开始探究.已知∠BAD的平分线与∠BCD的平分线交于点E.(1)如图(3),若AB∥CD,∠D=30°,∠B=40°,则∠E=.(2)如图(4),若AB不平行CD,∠D=30°,∠B=50°,则∠E的度数是多少呢?小明是这样思考的,请你帮他完成推理过程:易证∠D+∠1=∠E+∠3,∠B+∠4=∠E+∠2,∴∠D+∠1+∠B+∠4=,∵CE、AE分别是∠BCD、∠BAD的平分线,∴∠1=∠2,∠3=∠4.∴2∠E=,又∵∠D=30°,∠B=50°,∴∠E=度.(3)在总结前两问的基础上,借助图(2),直接写出∠E与∠D、∠B之间的数量关系是:.【类比应用】如图(5),∠BAD的平分线AE与∠BCD的平分线CE交于点E.已知:∠D=m°、∠B=n°,(m<n)求:∠E的度数.。
第三讲 直角三角形的边角关系讲义
![第三讲 直角三角形的边角关系讲义](https://img.taocdn.com/s3/m/4ff19cf2f61fb7360b4c653b.png)
第三讲 直角三角形的边角关系知识点一 正切,正弦及余弦的定义1、正切的定义的对边与邻边的比便随之确定,这个比叫做∠A 的正切,记作例1 如图,△ABC 是等腰直角三角形,求tanC.例2 如图, 已知在Rt △ABC 中,∠C=90°,CD ⊥AB ,AD=8,BD=4,求tanA 的值。
C B A有什么发现?请加以证明。
3、三角函数的定义(重点)能判断谁的木棒更陡吗?说明理由。
同步练习:1、∠C=90°,点D 在BC 上,BD=6,AD=BC ,cos ∠ADC=53,求CD 的长。
2、P 是a 的边OA 上一点,且P 点的坐标为(3,4),求sina 、tana 的值。
3、在△ABC 中,D 是AB 的中点,DC ⊥AC ,且tan ∠BCD=31,求tanA 的值。
4、在Rt △ABC 中,∠C=90°,tanA=125,周长为30,求△ABC 的面积。
5、(2008·浙江中考)在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD=2,AC=3,则sinB 的值是多少?知识点二 30°,45°,60°角的三角函数值例 求下列各式的值。
(1)︒︒-︒60tan 30sin 60sin ;(2)︒-+︒-︒45sin 22460tan 460tan 2。
同步练习:1、 求下列各式的值。
(1)︒+︒+︒45tan 30tan 330sin 2; (2)︒⋅︒+︒30cos 60tan 45cos 2。
(3) 6tan 2 30°-3sin 60°+2tan45°(4)022)30tan 45(sin )60cos (160sin 260sin 60tan 245tan o o o o o oo-+-++----2、 已知a 为锐角,且tana=5,求aa aa sin cos 2cos 3sin +-的值。
第6讲 四年级 下册数学 三角形 讲义
![第6讲 四年级 下册数学 三角形 讲义](https://img.taocdn.com/s3/m/b7c4a65fd1f34693dbef3e1a.png)
知识点一:三角形的特性1、三角形的定义:由 围成的图形(每相邻两条线段的端点 ),叫三角形。
2、从三角形的 ,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。
三角形只有 条高。
重点:三角形高的画法:一落二移三画四标3、三角形具有 。
如:自行车的三角架,电线杆上的三角架。
学生/课程年级 四年级 学科 数学 授课教师日期 时段 核心内容 三角形(第6讲)教学目标 1、认识三角形的特性,掌握三角形任意两边之和大于第三边以及三角形的内角和是180°2、认识三角形的分类,了解这些三角形的特点并能够辨认和区别它们3、培养应用数学知识解决实际问题的能力4、三角形三边的关系:三角形任意两边之和第三边。
三角形任意两边之差第三边。
两边第三边〈两边。
判断三条线段能不能组成三角形,只要看两条边的和是不是大于。
5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
知识点二:三角形的分类1、按照角大小来分:三角形,三角形,三角形。
2、按照边长短来分:三边不等的△,三边相等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。
3、等边△的三边,每个角是度。
(顶角、底角、腰、底的概念)4、三个角都是的三角形叫做锐角三角形。
5、有一个角是的三角形叫做直角三角形。
6、有一个角是的三角形叫做钝角三角形。
7、每个三角形都至少有两个;每个三角形都至多有1个;每个三角形都至多有1个。
8、两条边的三角形叫做等腰三角形。
9、三条边都的三角形叫等边三角形,也叫正三角形。
10、等边三角形是三角形知识点三:三角形的内角和1、三角形的内角和是。
四边形的内角和是。
一个三角形中至少有两个,每个三角形都至多有一个;每个三角形都至多有一个。
可以根据最大的角判断三角形的类型。
最大的角是哪类角,就属于那类三角形。
最大的角是直角,就是直角三角形。
最大的角是钝角,就是钝角三角形。
2、图形的拼组:(1)当两个三角形有一条边长度相等时,就可以拼成。
初中数学直角三角形边角关系讲义初稿
![初中数学直角三角形边角关系讲义初稿](https://img.taocdn.com/s3/m/665702d60722192e4436f637.png)
直角三角形边角关系讲义(初稿)一、 概念部份 一、大体概念 正弦:在Rt ∆ABC (如图),锐角A 的对边与斜边的比叫做A ∠的正弦,记为A sin ,caA A =∠=斜边的对边sin 。
余弦:在Rt ∆ABC (如图),锐角A的余弦,记为A cos ,cbA A =∠=斜边的邻边cos 。
正切:在Rt ∆ABC (如图),锐角A 的对边与邻边的比叫做A ∠的正切,记为A tan ,baA A A =∠∠=的邻边的对边tan 。
余切:在Rt ∆ABC (如图),锐角A 的邻边与对边的比叫做A ∠的余切,记为A cot ,abA A A =∠∠=的对边的邻边cot 。
二、巧记概念:按正弦、余弦、正切、余切的顺序记八个字:对斜邻斜对邻邻对。
3、依照正弦、余弦、正切、余切的概念,在Rt ∆ABC 中, 90=∠C ,有sinA=cosB ,sinB=cosA ,tanA=cotB ,tanB=cotA 。
4、正弦、余弦、正切的值与梯子倾斜程度之间的关系:sinA 的值越大,梯子越陡; cosA 的值越小,梯子越陡; tanA 的值越大,梯子越陡。
五、在Rt ∆ABC 中,︒=∠90C ,a 、b 、c 别离是A ∠、B ∠、C ∠的对边,那么caA =sin , c b A =cos , b a A =tan , abA =cot 能够变形为A c a sin •=,A c b cos •=,A b a tan •=或A a c sin =,Abc cos =等等,在解题中能够依照条件正确选用。
六、注意:①、在初中,正弦、余弦、正切、余切的概念都是在直角三角形中给出的,不能在任意三角形中套用概念。
②、sinA 、cosA 、tanA 、cotA 别离表示正弦、余弦、正切、余切的数学表达符号,是一个整体,不能明白得为sin 与A 、cos 与A 、tan 与A 、cot 与A 的乘积。
③sinA 、cosA 、tanA 、cotA 是一个完整的符号,它表示A ∠的正弦、余弦、正切、余切,记号里适应省去角的符号“∠”,但当角用三个大写字母或数字表示时,角的符号“∠”不能省略。
()七年级数学下册第四章三角形1认识三角形三角形认识讲义(无答案)(新版)北师大版
![()七年级数学下册第四章三角形1认识三角形三角形认识讲义(无答案)(新版)北师大版](https://img.taocdn.com/s3/m/710f0c299ec3d5bbfd0a74ff.png)
三角形的认识段【根底知识】从三角形的一个顶知识点1三角形的定义点向它的对边所在1.由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三角形的高线的直线作垂线,顶点表示:三角形可用符号“△〞表示,如右图和垂足之间的线段三角形记作:△ABC b CAc a三角形中,连结一个B 顶点和它对边中点2.一个三角形有三条边,三个角、三个顶点三角形的中线的线段如图三角形中三边可表示为AB,BC,AC,顶点A所对的边BC也可表示为a,顶点B所对的边AC表示为b,顶点C所对的边AB表示为c 三角形一个内角的知识点2三角形的性质平分线与它的对边1.三角形三边关系:三角形任意两边之和大于第三边;三角形任意两边之差小于三角形的角平分相交,这个角顶点与第三边。
线交点之间的线段3.4.三角形的内角关系:三角形内角和为1805.三角形的分类:三角形按内角的大小可以分为锐角三角形、直角三角形、钝角结论总结:三角形。
其中直角三角形的两个锐角互余知识点3三角形的中线、角平分线和高线三角形的重要线概念图形表示法AE是△ABC的AB上的高线.CE⊥AB∠AEC=∠BEC=90°.AD是△ABC的BC上的中线.BD=CD=?BC.AE是△ABC的∠ABC的平分线1∴∠1=∠2=2ABC-1-/12【典例剖析】例1.有两根长度分别为5cm和8cm的木棒,再取一根长度为2cm的木棒,它们能摆成三角形吗?为什么?如果取一根长度为13cm的木棒呢?聪明的你能取一根木棒,与原来的两根木棒摆成三角形吗?(4)要选取的第三根木棒的长度x要满足什么条件呢?例2.假设△ABC的三边长a,b,c都是正整数,且满足a.bc,如果b=4,问这样的三角形有几个?例3.一个三角形有两边相等,并且周长为56cm,两不等边之比为3︰2,求这个三角形各边的长。
锐角三角形直角三角形钝角三角形角平分线〔有几中线条,是否相交,交高线点在那〕例4.判断满足以下条件的VABC是锐角三角形、直角三角形还是钝角三角形;〔1〕A80o,B25o〔2〕A B30o,BC36oA11CB6〔3〕2例5.三角形ABC的一个内角度数为40o,且A B,求C的外角的度数。
数学-七年级-第10讲-三角形的内角和学生版
![数学-七年级-第10讲-三角形的内角和学生版](https://img.taocdn.com/s3/m/6996574aa88271fe910ef12d2af90242a895abee.png)
学科教育辅导讲义现有两根小棒,一根长3厘米,一根长6厘米,再配一根多长的小棒,就能围成一个三角形?有两根长度分别为5cm和8cm的小棒如果要摆成一个三角形,第三条边选用小棒的长度范围应是什么?【知识梳理】1. 三角形的主要性质:(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边;(2)三角形的内角之和等于180°;(3)三角形的一个外角等于和它不相邻的两个内角和;三角形的一个外角大于任何一个和它不相邻的内角。
3.已知ABC △的三边长a ,b ,c ,化简c -a -b -c -b a +的结果是( )A. B.C. D.题型二:三角形的内外角的计算例4:如图,∠1、∠2是∠ABC 的外角,已知∠1+∠2=260°,求∠A 的度数.例5:已知:∆ABC 中,BAC BCA a ∠=∠=,D 点在BC 的延长线上,B D ∠=∠,CAD b ∠=,求a b 、间的关系。
试一试:1. 如图,将一块含有30°角的三角板∠ABC 绕着点A 顺时针旋转90°后得到∠AB’C’,则∠CC’B’的度数为_____度 .2. 如图,求∠A +∠B +∠C +∠D +∠E +∠F 的大小2a 2b -22a b +22b c -12CB AbaC DABACBC’ B’2.在,则此三角形是,中,已知︒=∠︒=∠∆5535C B ABC 三角形。
1.下列长度的三根木棒,不能构成三角形框架的是( )(A )5cm 、7cm 、10cm ; (B )5cm 、7cm 、13cm ; (C )7cm 、10cm 、13cm ; (D )5cm 、10cm 、13cm .2.不等边三角形的最长边为9,最短边为4,则第三边长为整数的值有 个.3.已知三角形两边长分别为4和9,则此三角形的周长L 的取值范围是( ) A .5<L <13 B .4<L <9 C .18<L <26 D .14<L <224.在∠ABC 中,AB =6,AC =10,那么BC 边的取值范围是____,周长的取值范围是____.5.等腰三角形的三边长分别为:9,32,1++x x ,则=x __________。
三角形讲义
![三角形讲义](https://img.taocdn.com/s3/m/af4704c1da38376baf1fae30.png)
第十一章 三角形一.基础知识1、三角形的定义:不在 上的三条线段 连接而成的平面图形。
其表示方法是符号“△”后接着三个顶点字母。
三角形是边数最少的多边形。
2、三角形的有关重要线段:⑴三角形的三边:三角形的两边之和 第三边;两边之差 第三边;△ABC 的三边a 、b 、c 中,已知a 、b ,求c 的取值范围是: <c < ;⑵三角形的高线、中线、角平分线:①三线都经过顶点;②都是 ;③除直角三角形的两条高线在三角形的两条 边上,钝角三角形的两条高线在三角形 ,其他各线均在形内;④三中线、三角平分线、三高线均交于一点:锐角三角形的高交于三角形 一点,直角三角形的高交于三角形的 点,钝角三角形的高的延长线交于三角形 一点。
⑤三角形的一条中线把三角形分成两个 相等的小三角形; ⑥三角形的角平分线所分得的两个角 。
⑦有高就有 度的角,三角形的各边与这边上的高的乘积相等,据此可以建立方程解题:如图4中有:AB ·CF=BC · = · ;3、三角形的稳定性的应用举例: ,四边形的不稳定性的应用举例: 。
4、三角形有关的角:⑴内角和等于 ;⑵外角:是三角形的一边与另一边的 的夹角,外角和等于 ;⑶内外角关系:三角形的一个外角等于 ,三角形的外角与之相邻的内角互为 ; 5、多边形:⑴定义:是 的几条线段 连接而成的平面图形;其表示方法为:多边形ABCDE ……应该按图形中的排列顺序书写字母。
叫正多边形;⑵对角线:多边形中不相邻的两个顶点之间的连线。
n 边形从一个顶点出发有 对角线,这些对角线把n 边形分成了 三角形,n 边形共有 条对角线;⑶n 边形的内角和等于 ,正n 边形的内角和还可以用 × 求得;所以可以据此建立方程求边数;⑷多边形的外角和都等于 ,正n 边形的每个内角度数为n︒-︒360180。
二.基本题型例1. a 、b 、c 为三角形的三边长,化简c b a c b a c b a c b a -+-+-----++例2.若a 、b 、c 是△ABC 的三边,化简c -b -a +b -c a ++b -a -c =________________。
小学四年级 三角形: 三角形的内角和 讲义
![小学四年级 三角形: 三角形的内角和 讲义](https://img.taocdn.com/s3/m/9a6847fd71fe910ef12df885.png)
三角形第3节三角形的内角和【知识梳理】1.三角形的内角和外角三条线段首尾顺次相接组成的图形是三角形,这三条线段就是三角形的三条边,在三角形内部三角形的两条边所成的角是三角形的内角,三角形一边的延长线与另一边所成的角是三角形的外角,三角形有三个内角三个外角。
2.三角形内角和三角形内角和180°。
得到这个结论可以用两种方法(1)方法一:量一量用量角器测量三个内角并求和,重复多次即可发现三角形的内角和180°,测量时有时候会出现误差,不能肯定三角形的内角和就是180°,因此还需要用实验的方法来加以验证。
(2)方法二:剪一剪将三角形的三个内角剪下来拼一拼,若能够拼成一个平角,则证明三角形的内角和为180°,在运用拼剪法时,原三角形中的每个内角一定要标上记号,以防拼时用错角。
通过拼剪可以发现三角形的三个内角之和正好是一个平角,因为平角是180°,进而验证了三角形内角和为180°。
3.三角形内角的范围三角形有三个内角,因为三角形的内角和为180°,所以三角形的内角的范围在0°到180°之间,即大于0°小于180°。
三角按角分类可分为锐角三角形、直角三角形、钝角三角形,其中,锐角三角形的三个内角都是锐角,直角三角形有一个直角两个锐角,钝角三角形有一个钝角,两个锐角。
因此,三角形中至多有一个直角或一个钝角,至少有两个锐角。
【诊断自测】一、选择题1.一个三角形的两个内角和小于第三个内角,这个三角形是()三角形.A.锐角B.钝角C.直角D.等腰2.三角形的三个内角()A.至少有两个锐角 B.至少有一个直角 C.至多有两个钝角 D.至少有一个钝角3.一个三角形的一个内角等于另外两个内角的和,这个三角形是()A.直角三角形 B.锐角三角形C.钝角三角形 D.何类三角形不能确定二、填空题1.三角形一个内角的度数是108°,这个三角形是()三角形2.一个三角形三条边的长度分别为7厘米,8厘米,7厘米,这个三角形是()三角形。
三角形讲义(一)
![三角形讲义(一)](https://img.taocdn.com/s3/m/7965baf7f18583d04864593d.png)
三角形讲义(一)知识讲解三角形:由不在同一条直线上的线段首尾顺次连接组成的图形叫三角形。
三角形的三要素:⎪⎩⎪⎨⎧在三角形内部的角内角:相邻两边组成的端点顶点:相邻两边的公共线段边:组成三角形的三条三角形的表示方法:如果三角形的三个顶点为A 、B 、C ,三角形可表示为ABC ∆三角形三边的表示法:三角形的三边都是线段,可用表示线段的办法表示边。
用表示端点的两个大写字母或一个小写字母表示。
三角形的周长:用代数式表示为c b a C ++=。
三角形的面积:用代数式表示为Cab ah S ∠==sin 2121 三角形的稳定性:如果三角形的三边固定,那么三角形的形状和大小就固定了。
三角形的分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧钝角三角形锐角三角形斜角三角形直角三角形按角分类等边三角形腰、底不相等等腰三角形不等边三角形按边分类三角形 三角形的三线和五心三线⎪⎩⎪⎨⎧高线中线角平分线角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和对边交点之间的线段。
定理:三角形的三条角平分线交于一点。
已知:AD,BD 分别平分ABC ∆的内角B A ∠∠,,求证:CD 平分C ∠证明:过点D 作AC DF BC DE ⊥⊥,,AB DG ⊥CCD DFDE DEDG BCDE AB DG B DFDG ACDF AB DG A ∠∴=∴=∴⊥⊥∠=∴⊥⊥∠平分平分平分,,BD ,,AD注意:角的平分线是一条射线,而三角形的角平分线是一条线段。
三角形的中线:连接三角形一个顶点和它对边的中点的线段。
定理:三角形的三条中线交于一点。
已知:AF,BD 分别是ABC ∆的中线,CE 过AF,BD 的交点,求证:CE 是ABC ∆的中线。
证明:连接DF,与CE 交于点G 。
,,11//,,221212D E AC BC DF DH DF AB DG AE AB DB DG DH EB DB DG EB AE EB CE ABC ∴===∴==∴=∴=∴∆分别是的中点是的中线三角形的高线:从三角形的顶点向对边做垂涎,顶点与垂足之间的线段。
八年级数学上册《与三角形有关的角》讲义
![八年级数学上册《与三角形有关的角》讲义](https://img.taocdn.com/s3/m/c4550efb227916888586d76a.png)
与三角形有关的角【要点梳理】知识点一、三角形的内角1. 三角形内角和定理:三角形的内角和为180°.2. 直角三角形:如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,有两个角互余的三角形是直角三角形.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.【典型例题】类型一、三角形的内角和1.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A= .举一反三:【变式1】如图所示,α∠的度数是()A.10︒B.20︒C.30︒D.40︒【变式2】三角形中至少有一个角不小于________度.类型二、三角形的外角2.如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)举一反三:【变式】将一副直角三角板如图放置,使两直角边重合,则α∠的度数为()A.75︒B.105︒C.135︒D.165︒类型三、三角形有关角的实际应用3.星期天,小明见爸爸愁眉苦脸在看一张图纸,他便悄悄地来到爸爸身边,想看爸爸为什么犯愁.爸爸见到他,高兴地对他说:“来帮我一个忙,你看这是一个四边形零件的平面图,它要求BDCB∠=︒,∠=︒,19A∠等于140︒才算合格,小明通过测量得90∠=︒后就下结论说此零件不合格,于是爸爸让小明解释这是为什么,小明很轻松地40C说出了原因,并用如下的三种方法解出此题.请你代小明分别说出不合格的理由.(1)如图1,连接AD并延长.(2)如图2,延长CD交AB于E.(3)如图3,连接BC.举一反三:【变式】探究与发现:有一块直角三角板DEF放置在ABC∆上,三角板DEF的两条直角边DE、DF恰好分别经过点B、C.请写出BDC∠+∠+∠之间的数量关∠与A ABD ACD 系,并说明理由.应用:某零件如图所示,图纸要求90∠=︒,21∠=︒,当检验员量得CBA∠=︒,32∠=︒,就断定这个零件不合格,你能说出其中的道理吗?145BDC【复习巩固】1.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是()A.45°B.50°C.55°D.80°2.如图,将一块直角三角板DEF放置在锐角三角形ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=45°,则∠ABD+∠ACD的值为()A.40°B.45°C.50°D.55°3.如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,如果∠BDC=140°,∠BGC=110°,则∠A=.4.如图,将△ABC纸片沿DE折叠,点A的对应点为A′,∠B=60°,∠C=80°,则∠1+∠2等于.5.如图,把△ABC纸片沿DE折叠,当点C落在四边形ABDE的外部时,此时测得∠1=108°,∠C=35°,则∠2=.6.如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C=26°,则∠DAE的度数为.7.如图,△ABC中,∠B=38°,∠C=74°,AD是BC边上的高,D为垂足,AE平分∠BAC,交BC于点E,DF⊥AE,求∠ADF的度数.8.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)若∠B=30°,∠ACB=40°,求∠E的度数;(2)求证:∠BAC=∠B+2∠E.9.如图,已知在△ABC中,CE是外角∠ACD的平分线,BE是∠ABC的平分线.(1)求证:∠A=2∠E;(2)若∠A=∠ABC,求证:AB∥CE.。
八年级数学直角三角形(教师讲义带答案)
![八年级数学直角三角形(教师讲义带答案)](https://img.taocdn.com/s3/m/133fa73f647d27284b7351c9.png)
直角三角形一、直角三角形的性质重点:直角三角形的性质定理及其推论:①直角三角形的性质,在直角三角形中,斜边上的中线等于斜边的一半;②推论:(1)在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半;(2)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°.难点:1.性质定理的证明方法.2.性质定理及其推论在解题中的应用.二、直角三角形全等的判断重点:掌握直角三角形全等的判定定理:斜边、直角边公理:斜边和一条直角边对应相等的两个直角三角形全等(HL)难点:创建全等条件与三角形中各定理联系解综合问题。
三、角平分线的性质定理1.角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图4,∵ OE是∠AOB的平分线,F是OE上一点,且CF⊥OA于点C,DF⊥OB于点D,∴ CF=DF.定理的作用:①证明两条线段相等;②用于几何作图问题;角是一个轴对称图形,它的对称轴是角平分线所在的直线.2.关于三角形三条角平分线的定理:(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的数学表示:如图6,如果AP、BQ、CR分别是△ABC的内角∠BAC、∠ ABC、∠ACB的平分线,那么:① AP、BQ、CR相交于一点I;②若ID、IE、IF分别垂直于BC、CA、AB于点D、E、F,则DI=EI=FI.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.这个交点叫做三角形的内心(即内切圆的圆心).3.关于线段的垂直平分线和角平分线的作图:(1)会作已知线段的垂直平分线;(2)会作已知角的角平分线;(3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.图4四、勾股定理的证明及应用1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b,a ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:cbaHG F EDCBAbacbac cabcab a bcc baE D CBA221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
三角形的外角 (讲义及答案)
![三角形的外角 (讲义及答案)](https://img.taocdn.com/s3/m/a1a3e31aaa00b52acec7ca4f.png)
三角形的外角(讲义)➢ 课前预习1. 如图,在△ABC 中,∠A =80°,∠B =40°,则∠A +∠B =______,∠ACD =________,由此你得到∠A +∠B _______∠ACD (填“>”、“<”或“=”).AD CB➢ 知识点睛1. 三角形的__________________组成的角,叫做三角形的外角.2. 三角形外角定理:三角形的外角等于_________________________________________.已知:如图,∠1是△ABC 的一个外角. 求证:∠1=∠A +∠B .ABCD 12证明:如图,∵∠A +∠B +∠2=180° (___________________________) ∠1+∠2=180°(___________________________)∴∠1=∠A +∠B (___________________________)➢ 精讲精练1. 如图,D 是△ABC 的边BC 上一点,∠B =70°,∠BAD =60°,则∠ADC =_______.CB D AFEC DBA第1题图 第2题图2. 如图,D 是AB 上一点,E 是AC 上一点,BE ,CD 相交于点F ,∠A =60°,∠ACD =35°,∠ABE =20°,则∠BDC =______,∠BEC =_______.3. 如图,D 是△ABC 的边AC 上一点,∠C =67°,∠CBD =33°,DE 平分∠ADB ,交AB 于点E ,则∠ADE =_______.EABDCE D CBA第3题图 第4题图4. 如图,AC ∥ED ,∠C =25°,∠B =35°,则∠E=_______.5. 将一副直角三角板如图放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则α=______.α6. 如图,在△ABC 中,DE ∥BC ,F 是AB 上一点,FE 的延长线交BC 的延长线于点G .若∠A =45°,∠ADE =60°,∠CEG =40°,则∠EGH =______.A F DBCEGH第6题图OFE D C BA第6题图 第7题图7. 如图,在△ABC 中,AD ⊥BC ,垂足为D ,AE 平分∠BAC 交BC 于点E ,BF平分∠ABC 交AC 于点F ,AE ,BF 相交于点O .若∠BAC =50°,∠C =70°,则∠DAC =_____,∠AED =_____,∠BOE =_________.8. 如图,在△ABE 中,D 是BE 上一点,C 是AE 延长线上一点,连接CD .若∠A =80°,∠B =35°,∠BDC =140°,求∠C 的度数.解:如图,∵∠BEC 是△ABE 的一个外角(外角的定义)∴_____=_____+_____(______________________________) ∵∠A =80°,∠B =35°(已知) ∴∠BEC =_____+______ =______(等量代换)∵__________________________(外角的定义)∴∠BDC =_____+_____(______________________________) ∵∠BDC =140°(已知) ∴∠C =______-______ =______-______=______(___________________)9. 如图,在△ABC 中,∠B =∠C ,点E 在BA 的延长线上,AD 平分∠EAC .求证:AD ∥BC .A B CD EE DA10.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.求证:∠BAC=∠B+2∠E.EAB C D11.如图,BE是∠ABC的平分线,AB∥CE,∠A=50°,∠E=30°,求△ABC的外角∠ACD的度数.AEB C D【参考答案】➢课前预习1.120°,120°,=➢知识点睛1.一边与另一边的延长线2.和它不相邻的两个内角的和三角形的内角和等于180°平角的定义等式的性质➢精讲精练1.130°2.50°3.95°,80°4.60°5.75°6.145°7.20°,85°,55°8.解:如图,∵∠BEC是△ABE的一个外角(外角的定义)∴∠BEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∵∠A=80°,∠B=35°(已知)∴∠BEC=80°+35°=115°(等量代换)∵∠BDC是△CDE的一个外角(外角的定义)∴∠BDC=∠BEC+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵∠BDC=140°(已知)∴∠C=∠BDC-∠BEC=140°-115°=25°(等式的性质)9.证明:如图,∵∠EAC为△ABC的一个外角(外角的定义)∴∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵∠B=∠C(已知)∴∠EAC=∠C+∠C=2∠C(等量代换)∵AD平分∠EAC(已知)∴∠EAC =2∠DAC (角平分线的定义) ∴∠C =∠DAC (等量代换)∴AD ∥BC (内错角相等,两直线平行) 10. 证明:如图,21EDBA∵∠BAC 为△ACE 的一个外角(外角的定义)∴∠BAC =∠1+∠E (三角形的一个外角等于和它不相邻的两 个内角的和)∵∠2为△BCE 的一个外角(外角的定义)∴∠2=∠B +∠E (三角形的一个外角等于和它不相邻的两个 内角的和)∵CE 是△ABC 的外角∠ACD 的平分线(已知) ∴∠1=∠2(角平分线的定义) ∴∠1=∠B +∠E (等量代换) ∴∠BAC =∠B +∠E +∠E=∠B +2∠E (等量代换)11. 解:如图,∵AB ∥CE (已知)∴∠ABE =∠E (两直线平行,内错角相等) ∵∠E =30°(已知) ∴∠ABE =30°(等量代换) ∵BE 是∠ABC 的平分线(已知) ∴∠ABC =2∠ABE=2×30°=60°(角平分线的定义)∵∠ACD 是△ABC 的一个外角(外角的定义)∴∠ACD =∠A +∠ABC (三角形的一个外角等于和它不相邻 的两个内角的和) ∵∠A =50°(已知) ∴∠ACD =50°+60°=110°(等量代换)。
《直角三角形》 讲义
![《直角三角形》 讲义](https://img.taocdn.com/s3/m/e7299bc00129bd64783e0912a216147916117e0f.png)
《直角三角形》讲义一、直角三角形的定义在平面几何中,如果一个三角形中有一个角是直角(90 度),那么这个三角形就被称为直角三角形。
直角所对的边称为斜边,其余的两条边称为直角边。
直角三角形是一种非常特殊且重要的三角形类型,在数学和实际生活中都有广泛的应用。
二、直角三角形的性质1、角的性质直角三角形的两个锐角之和为 90 度。
这是因为三角形的内角和为180 度,减去直角的 90 度,剩下的两个角之和必然是 90 度。
2、边的性质(1)勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方。
即 a²+ b²= c²,其中 a、b 为直角边,c 为斜边。
这是直角三角形最著名的性质之一,也是解决许多与直角三角形相关问题的关键。
(2)斜边最长:在直角三角形中,斜边总是比任意一条直角边长。
3、特殊的直角三角形(1)等腰直角三角形:两条直角边长度相等的直角三角形称为等腰直角三角形。
其两个锐角都是 45 度,斜边长度是直角边长度的√2 倍。
(2)30°-60°-90°直角三角形:如果一个直角三角形的一个锐角是 30 度,另一个锐角是 60 度,那么其边长关系为:短直角边是斜边的一半,长直角边是短直角边的√3 倍。
三、直角三角形的判定1、一个角为 90 度的三角形是直角三角形。
2、若一个三角形中,两条边的平方和等于第三边的平方,则这个三角形是直角三角形。
四、直角三角形中的三角函数在直角三角形中,我们引入了三角函数来描述边与角之间的关系。
1、正弦(sin)正弦函数定义为对边与斜边的比值。
对于角 A ,sin A =对边/斜边。
2、余弦(cos)余弦函数定义为邻边与斜边的比值。
对于角 A ,cos A =邻边/斜边。
3、正切(tan)正切函数定义为对边与邻边的比值。
对于角 A ,tan A =对边/邻边。
通过这些三角函数,我们可以在已知直角三角形的某些边和角的情况下,求出其他的边和角。
第三章 三角函数、解三角形 复习讲义
![第三章 三角函数、解三角形 复习讲义](https://img.taocdn.com/s3/m/1ee96bd09ec3d5bbfc0a7406.png)
第1节 任意角和弧度制及任意角的三角函数◆考纲·了然于胸◆ 1.了解任意角的概念.2.了解弧度制的概念,能进行弧度与角度的互化. 3.理解任意角的三角函数(正弦、余弦、正切)的定义.[要点梳理]1.角的概念(1)角的分类(按旋转的方向):角⎩⎪⎨⎪⎧正角:按照逆时针方向旋转而成的角。
负角:按照顺时针方向旋转而成的角。
零角:射线没有旋转.(2)象限角与轴线角:(3)终边相同的角所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为S ={β|β=α+k·360°,k ∈Z }. 质疑探究1:(1)第二象限角一定是钝角吗?(2)终边相同的角一定相等吗?提示:(1)钝角是第二象限角,但第二象限角不一定是钝角;(2)终边相同的角不一定相等. 2.弧度制(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角.弧度记作rad. (2)公式(3)规定:正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx(x ≠0).三个三角函数的初步性质如下表:如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .质疑探究[小题查验]1.-870°角的终边在第几象限( )A .一B .二C .三D .四2.(2016·龙岩质检)已知α为第二象限角,sin α=45,则tan α的值为( )A.34 B .-34 C.43 D .-433.(2016·洛阳一模)已知△ABC 为锐角三角形,且A 为最小角,则点P (sin A -cos B,3cos A -1)位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是________. 5.给出下列命题:①三角形的内角必是第一、二象限角.②第一象限角必是锐角.③不相等的角终边一定不相同.④若β=α+k ·720°(k ∈Z ),则α和β终边相同.⑤点P (tan α,cos α)在第三象限,则角α的终边在第二象限. 其中正确的是________.(写出所有正确命题的序号)考点一 象限角及终边相同的角(基础型考点——自主练透)[方法链接]1.利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角. 2.表示区间角的三个步骤:(1)先按逆时针方向找到区域的起始和终止边界.(2)按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间. (3)起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.3.已知角α终边所在的象限,求2α、α2、π-α等角的终边所在象限问题,可由条件先写出α的范围,解不等式得出角2α、α2、π-α等的范围,再根据范围确定象限.[题组集训]1.若角θ的终边与6π7角的终边相同,则在[0,2π)内终边与θ3角的终边相同的角为________.2.终边在直线y =3x 上的角的集合为________. 3.已知角α的终边落在阴影所表示的范围内(包括边界),则角α的集合为______________________.4.如果α是第三象限的角,则角-α的终边所在位置是____________,角2α的终边所在位置是________,角α3终边所在的位置是________.考点二 三角函数的定义(深化型考点——引申发散)[一题多变]【例1】 设角α终边上一点P (-4a,3a )(a <0),求sin α的值. [发散1] 若本例中“a <0”,改为“a ≠0”,求sin α的值.[发散2] 若本例中条件变为:已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值. 活学活用 若本例中条件变为:已知角α的终边上一点P (-3,m )(m ≠0), 且sin α=2m4,求cos α,tan α的值. [类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.考点三 三角函数线、三角函数值的符号(重点型考点——师生共研) 【例2】 (1)若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 (2)已知cos α≤-12,则角α的集合为________.【名师说“法”】(1)熟练掌握三角函数在各象限的符号.(2)利用单位圆解三角不等式(组)的一般步骤:①用边界值定出角的终边位置;②根据不等式(组)定出角的范围;③求交集,找单位圆中公共的部分;④写出角的表达式.跟踪训练(1)y=sin x-32的定义域为____________.(2)已知sin 2θ<0,且|cos θ|=-cos θ,则点P(tan θ,cos θ)在第________象限.考点四扇形的弧长、面积公式的应用(深化型考点——引申发散)【例3】已知扇形周长为10,面积是4,求扇形的圆心角.[发散1]去掉本例条件“面积是4”,问当它的半径和圆心角取何值时,才使扇形面积最大?[发散2]若本例中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.[发散3]若本例条件变为:扇形的圆心角是α=120°,弦长AB=12 cm,求弧长l.[类题通法]应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.易错警示3错用三角函数的定义(2016·天津模拟)已知角θ的终边上一点P(3a,4a)(a≠0),则sin θ=________.成功破障已知角α的终边经过点P(-3,m),且sin α=34m(m≠0),则tan α的值为________.[课堂小结]【方法与技巧】1.在利用三角函数定义时,点P可取终边上任一点,如有可能则取终边与单位圆的交点.|OP|=r一定是正值.2.三角函数符号是重点,也是难点,在理解的基础上可借助口诀:一全正,二正弦,三正切,四余弦.3.在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.【失误与防范】1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.课时活页作业(十七)[基础训练组]1.(2016·南平质检)喜洋洋从家步行到学校,一般需要10分钟,则10分钟时间钟表的分针走过的角度是() A.30°B.-30°C.60°D-60°2.(2014·新课标全国卷Ⅰ)若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>03.(2016·乌鲁木齐模拟)设函数f (x )满足f (sin α+cos α)=sin α cos α,则f (0)=( )A .-12B .0 C.12 D .14.(2016·潍坊模拟)如图,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( ) A .(cos θ,sin θ) B .(-cos θ,sin θ) C .(sin θ,cos θ) D .(-sin θ,cos θ) 5.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-32,-12C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,126.在与2010°终边相同的角中,绝对值最小的角的弧度数为________. 7.已知角β的终边在直线y =3x 上,则sin β=________.8.(2016·玉溪模拟)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=________.9.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ+cos θ的值. 10.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB .[能力提升组]11.(2016·海淀模拟)若α=k ·360°+θ,β=m ·360°-θ(k ,m ∈Z ),则角α与β的终边的位置关系是( )A .重合B .关于原点对称C .关于x 轴对称D .关于y 轴对称12.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-313.(2016·太原模拟)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 14.(2016·合肥调研)函数y =lg(3-4sin 2x )的定义域为________. 15.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限;(3)试判断tan α2 sin α2 cos α2的符号.第2节 同角三角函数基本关系及诱导公式◆考纲·了然于胸◆1.理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α.2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.[要点梳理]1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2.下列各角的终边与角α的终边的关系31.给出下列命题:①sin 2θ+cos 2φ=1.②同角三角函数的基本关系式中角α可以是任意角.③六组诱导公式中的角α可以是任意角. ④诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”与α的大小无关. ⑤若sin(k π-α)=13(k ∈Z ),则sin α=13.其中正确的是( )A .①③B .④C .②⑤D .④⑤2.(2015·高考福建卷)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-512 3.sin 585°的值为( )A .-22 B.22 C .-32 D.324.若cos α=-35,且α∈(π,3π2),则tan α=________.5.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2 α的值是________.考点一 同角三角函数关系式的应用(深化型考点——引申发散)[一题多变]【例1】 已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值;(2)把1cos 2α-sin 2α用tan α表示出来,并求其值.[发散1] 若本例中的条件和结论互换:已知α是三角形的内角,且tan α=-13,求sin α+cos α的值.[发散2] 保持本例条件不变,求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值.[发散3] 若本例条件变为:sin α+3cos α3cos α-sin α=5,求tan α的值.[类题通法]1.利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.3.注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α. 考点二 三角函数的诱导公式的应用(基础型考点——自主练透)[方法链接](1)给角求值的原则和步骤①原则:负化正、大化小、化到锐角为终了.②步骤:利用诱导公式可以把任意角的三角函数转化为0~π4之间角的三角函数,然后求值,其步骤为:(2)给值求值的原则:寻求所求角与已知角之间的联系,通过相加或相减建立联系,若出现π2的倍数,则通过诱导公式建立两者之间的联系,然后求解.常见的互余与互补关系①常见的互余关系有:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等.②常见的互补关系有:π3+θ与2π3-θ;π4+θ与3π4-θ等.遇到此类问题,不妨考虑两个角的和,要善于利用角的变换的思想方法解决问题.[题组集训]1.sin(-1 200°)·cos 1 290°+cos (-1 020°)·sin(-1 050°)+tan 945°=________. 2.已知cos(π6-α)=23,则sin(α-2π3)=________.3.设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos (3π2+α)-sin 2(π2+α)(1+2sin α≠0),则f (-23π6)=________.4.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin (-α-32π)cos (32π-α)cos (π2-α)sin (π2+α)·tan 2(π-α)=________.考点三 同角关系式、诱导公式在三角形中的应用(重点型考点——师生共研)【例2】 在△ABC 中,若sin(3π-A )=2sin(π-B ),cos(3π2-A )=2cos(π-B ).试判断三角形的形状.【名师说“法”】(1)在△ABC 中常用到以下结论:sin(A +B )=sin(π-C )=sin C ,cos(A +B )=cos(π-C )=-cos C ,tan(A +B )=tan(π-C )=-tan C , sin(A 2+B 2)=sin(π2-C 2)=cos C 2,cos(A 2+B 2)=cos(π2-C 2)=sin C 2.(2)求角时,一般先求出该角的某一个三角函数值,如正弦值,余弦值或正切值,再确定该角的范围,最后求角. 跟踪训练在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos (π-B ),求△ABC 的三个内角.思想方法11 分类讨论思想在三角函数化简中的应用 典例 化简:sin(4n -14π-α)+cos(4n +14π-α)(n ∈Z ).即时突破 已知A =sin (kπ+α)sin α+cos (kπ+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}[课堂小结]【方法与技巧】同角三角恒等变形是三角恒等变形的基础,主要是变名、变式.1.同角关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围,判断符号后,正确取舍.2.三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x =sin xcos x化成正弦、余弦函数;(2)和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化;(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ(1+1tan 2θ)=tan π4=….【失误与防范】利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.课时活页作业(十八)[基础训练组]1.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( )A .-32 B.32 C .-12 D.122.(2016·济南质检)α∈(-π2,π2),sin α=-35,则cos(-α)的值为( )A .-45 B.45 C.35 D .-353.已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f (-25π3)的值为( )A.12 B .-12 C.32 D .-324.(2016·皖北模拟)若sin(π6+α)=35,则cos(π3-α)=( )A .-35 B.35 C.45 D .-455.(2016·石家庄模拟)已知α为锐角,且2tan(π-α)-3cos(π2+β)+5=0,tan(π+α)+6sin(π+β)=1,则sin α的值是( )A.355 B.377 C.31010 D.136.(2016·成都一模)已知sin(π-α)=log 814 ,且α∈(-π2,0),则tan(2π-α)的值为________.7.(2015·辽宁五校第二次联考)已知sin x =m -3m +5,cos x =4-2m m +5,且x ∈(3π2,2π),则tan x =________.8.已知cos(π6-θ)=a (|a |≤1),则cos(5π6+θ)+sin(2π3-θ)的值是________.9.已知sin(3π+α)=2sin(3π2+α),求下列各式的值:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+sin 2α.10.设0≤θ≤π,P =sin 2θ+sin θ-cos θ.(1)若t =sin θ-cos θ,用含t 的式子表示P ; (2)确定t 的取值范围,并求出P 的最大值和最小值.[能力提升组]11.(2016·厦门模拟)已知cos 31°=a ,则sin 239°·tan 149°的值是( )A.1-a 2aB.1-a 2C.a 2-1aD .-1-a 212.(2016·太原二模)已知sin α+cos α=2,α∈(-π2,π2),则tan α=( )A .-1B .-22 C.22D .1 13.(2016·海淀模拟)已知sin 2θ+4cos θ+1=2,那么(cos θ+3)(sin θ+1)的值为( )A .6B .4C .2D .014.(2016·新疆阿勒泰二模)已知α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α=________. 15.已知A 、B 、C 是三角形的内角,3sin A ,-cos A 是方程x 2-x +2a =0的两根.(1)求角A ;(2)若1+2sin B cos Bcos 2B -sin 2B=-3,求tanB.第3节 三角函数的图象与性质◆考纲·了然于胸◆1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值,图象与x 轴的交点等),理解正切函数在区间(-π2,π2)内的单调性.[要点梳理]1.用五点法作正弦函数和余弦函数的简图:正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象和性质1.下列说法正确的是( )A .函数y =cos x 在第一象限内是减函数B .函数y =tan x 在定义域内是增函数C .函数y =sin x cos x 是R 上的奇函数D .所有周期函数都有最小正周期2.(2015·新课标卷Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A .(k π-14,k π+34),k ∈ZB .(k -14,k +34),k ∈ZC .(2k π-14,2k π+34),k ∈ZD .(2k -14,2k +34),k ∈Z3.(2016·三明模拟)已知函数f (x )=2sin(ωx +φ)对任意x 都有f (π6+x )=f (π6-x ),则f (π6)等于( )A .2或0B .-2或2C .0D .-2或0 4.函数y =tan (2x +π4)的图象与x 轴交点的坐标是________.5.(2015·江苏高考)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是__.考点一 三角函数的定义域、值域问题(基础型考点——自主练透)[方法链接](1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型的题目:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域); ②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).[题组集训]1.函数y =sin x -cos x 的定义域为________.2.函数f (x )=3sin(2x -π6)在区间[0,π2]上的值域为________.3.当x ∈[π6,7π6]时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.考点二 三角函数的单调性(重点型考点——师生共研) 【例】 (1) y =sin(π3-2x )的单调递减区间为________.(2)(2016·洛阳模拟)若f (x )=2sin ωx +1(ω>0)在区间[-π2,2π3] 上是增函数,则ω的取值范围是________.互动探究 在本例(1)中函数不变,求函数在[-π,0]上的单调递减区间. 【名师说“法”】求三角函数单调区间的两种方法](1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间.(2)图象法:函数的单调性表现在图象上是:从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.提醒:]求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域. 跟踪训练(1)y =tan(2x -π3)的单调递增区间为________.(2)已知函数f (x )=sin x +3cos x ,设a =f (π7),b =f (π6),c =f (π3),则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a 考点三 三角函数的奇偶性、周期性和对称性(高频型考点——全面发掘)[考情聚焦]正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有:(1)三角函数的周期;(2)求三角函数的对称轴或对称中心;(3)三角函数对称性的应用. 角度一 三角函数的周期1.函数y =-2cos 2(π4+x )+1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的非奇非偶函数2.(2016·长沙一模)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________.角度二 求三角函数的对称轴或对称中心3.(2016·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f (3π4-x )( )A .是奇函数且图象关于点(π2,0)对称 B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称 D .是偶函数且图象关于直线x =π对称角度三 三角函数对称性的应用 4.(2016·辽宁五校联考)设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为( )A .-34 B .-14 C .-12 D.345.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________.[通关锦囊](1)求三角函数周期的方法: ①利用周期函数的定义;②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|;③利用图象:对含绝对值的三角函数的周期问题,通常要画出图象,结合图象进行判断. (2)三角函数的对称性、奇偶性①正弦、余弦函数的图象既是中心对称图形,又是轴对称图形,正切函数图象只是中心对称图形,应熟记它们的对称轴和对称中心.②若f (x )=A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z );若f (x )=A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ).③若求f (x )=A sin(ωx +φ)的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x ;若求f (x )=A sin(ωx +φ)的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.[题组集训]1.(2016·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( )A.π6B.π3 C .-π6 D .-π32.(2016·湖南六校联考)若函数f (x )=a sin ωx +b cos ωx (0<ω<5,ab ≠0)的图象的一条对称轴方程是x =π4ω,函数f ′(x )的图象的一个对称中心是(π8,0),则f (x )的最小正周期是________.易错警示4 三角函数单调性忽视x 的系数致错 典例 求函数y =12sin(π4-2x3)的单调区间为________.提醒:](1)对于其它形式的三角函数,首先要变换到y =A sin(ωx +φ)或y =A cos(ωx +φ),y =A tan(ωx +φ)(ω>0)才可.(2)求单调区间要注意定义域.即时突破 函数y =cos(2x +π6)的单调递增区间为________.[课堂小结]【方法与技巧】1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质. 【失误与防范】1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响. 2.要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,尽量化成ω>0时情况.课时活页作业(十九)[基础训练组]1.函数y =cos x -32的定义域为( ) A .[-π6,π6] B .[k π-π6,k π+π6],k ∈Z C .[2k π-π6,2k π+π6],k ∈Z D .R2.(2016·南昌联考)已知函数f (x )=sin (ωx +π6)-1(ω>0)的最小正周期为2π3,则f (x )的图象的一条对称轴方程( )A .x =π9B .x =π6C .x =π3D .x =π23.(2016·广州测试)若函数y =cos(ωx +π6)(ω∈N *)的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8 4.(2016·九江模拟)下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11° 5.将函数f (x )=3sin 2x -cos 2x 的图象向左平移|m |个单位,若所得的图象关于直线x =π6对称,则|m |的最小值为( )A.π3 B.π6 C .0 D.π126.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的________条件.7.(2016·大庆模拟)若f (x )=2sin ωx (0<ω<1)在区间[0,π3]上的最大值是2,则ω=________.8.(2016·荆州质检)函数y =sin(ωx +φ)(ω>0,0<φ<π)的最小正周期为π,且函数图象关于点(-3π8,0)对称,则函数的解析式为________.9.设函数f (x )=cos ⎝⎛⎭⎫2x -π3+2sin 2⎝⎛⎭⎫x +π2.(1)求f (x )的最小正周期和对称轴方程;(2)当x ∈⎣⎡⎦⎤-π3,π4时,求f (x )的值域. 10.设函数f (x )=sin(πx 3-π6)-2cos 2πx6.(1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.[能力提升组]11.(2014·课标全国Ⅰ)在函数①y =cos |2x |,②y =|cos x |,③y =cos(2x +π6),④y =tan(2x -π4)中,最小正周期为π的所有函数为( )A .②④ B .①③④ C .①②③ D .①③12.(2016·济南调研)已知f (x )=sin 2 x +sin x cos x ,则f (x )的最小正周期和一个单调增区间分别为( )A .π,[0,π]B .2π,[π4,3π4]C .π,[-π8,3π8]D .2π,[-π4,π4]13.(2016·豫北六校联考)若函数f (x )=cos(2x +φ)的图象关于点(4π3,0)成中心对称,且-π2<φ<π2,则函数y =f (x +π3)为( )A .奇函数且在(0,π4)上单调递增B .偶函数且在(0,π2)上单调递增C .偶函数且在(0,π2)上单调递减D .奇函数且在(0,π4)上单调递减14.(2015·安阳模拟)已知函数y =A cos(π2x +φ)(A >0)在一个周期内的图象如图所示,其中P ,Q 分别是这段图象的最高点和最低点,M ,N 是图象与x 轴的交点,且∠PMQ =90°,则A 的值为________. 15.(2016·荆门调研)已知函数f (x )=a (2cos 2x 2+sin x )+b .(1)若a =-1,求函数f (x )的单调增区间;(2)若x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值.第4节 函数y =A sin(ωx +φ)的图象及应用◆考纲·了然于胸◆1.了解函数y =A sin(ωx +φ)的物理意义,能画出函数y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单的实际问题.[要点梳理]1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点.如下表所示.2.函数y3.图象的对称性:函数y =A sin(ωx +φ) (A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中ωx k +φ=k π+π2,k ∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形.[小题查验]1.函数y =sin(2x -π3)在区间[-π2,π]上的简图是( )2.(2015·高考山东卷)要得到函数y =sin(4x -π3)的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位3.函数y =tan(π4x -π2)的部分图象如图所示,则(OB →-OA →)·OB →=( )A .-4B .2C .-2D .44.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.5.把函数y =sin(5x -π2)的图象向右平移π4个单位,再把所得函数图象上各点的横坐标缩短为原来的12,所得的函数解析式为________.考点一 求函数y =A sin(ωx +φ)的解析式(基础型考点——自主练透)确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法(1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT ;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.[题组集训]1.(2016·山西四校联考)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则y =f (x +π6)取得最小值时x 的集合为( )A .{x |x =k π-π6,k ∈Z }B .{x |x =k π-π3,k ∈Z }C .{x |x =2k π-π6,k ∈Z }D .{x |x =2k π-π3,k ∈Z }2.(2016·东北三校联考)已知函数y =A sin(ωx +φ)+b (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( ) A .y =4sin(4x +π6) B .y =2sin(2x +π3)+2 C .y =2sin(4x +π3)+2 D .y =2sin(4x +π6)+23.已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)等于( )A .2+3 B.3 C.33D .2- 3 考点二 函数y =A sin(ωx +φ)的图象(题点多变型考点——全面发掘)【例1】 (2014·重庆高考)将函数f (x )=sin(ωx +φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f (π6)=________.[发散1] 将本例变为:由函数y =sin x 的图象作怎样的变换可得到y =2sin(2x -π3)的图象?[发散2] 将本例中函数f (x )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值为. [发散3] 将本例变为:若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为________.[类题通法]函数y =A sin(ωx +φ)(A >0,ω>0)的图象的两种作法(1)五点法:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,3π2,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换法:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”.[提醒] ]平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 考点三 三角函数模型的应用(重点型考点——师生共研)【例2】 (2014·湖北高考)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cosπ12t -sin π12t ,t ∈[0,24). (1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温? 【名师说“法”】本题属三角函数模型的应用,通常的解决方法:转化为y =sin x ,y =cos x 等函数解决图象、最值、单调性等问题,体现了化归的思想方法;用三角函数模型解决实际问题主要有两种:一种是用已知的模型去分析解决实际问题,另一种是需要建立精确的或者数据拟合的模型去解决问题,尤其是利用数据建立拟合函数解决实际问题,充分体现了新课标中“数学建模”的本质. 跟踪训练如图所示,某地夏天从8~14时用电量变化曲线近似满足函数y =A sin(ωx +φ)+b ,φ∈(0,π).(1)求这一天的最大用电量及最小用电量;(2)写出这段曲线的函数解析式.规范答题3 三角函数图象与性质的综合问题典例 (本小题满分12分)已知函数f (x )=23sin(x 2+π4)·cos (x 2+π4)-sin(x +π).(1)求f (x )的最小正周期.(2)若将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.即时突破 (2016·湖北八校联考)已知函数f (x )=2cos 2x +23sin x cos x ,x ∈R .(1)求函数f (x )的最小正周期;(2)求函数f (x )在区间[-π6,π4]上的值域.[课堂小结]【方法与技巧】1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化. 2.由图象确定函数解析式由函数y =A sin(ωx +φ)的图象确定A 、ω、φ的题型,常常以“五点法”中的第一个零点(-φω,0)作为突破口,要从图象的升降情况找准第一个零点的位置.要善于抓住特殊量和特殊点. 3.对称问题函数y =A sin(ωx +φ)的图象与x 轴的每一个交点均为其对称中心,经过该图象上坐标为(x ,±A )的点与x 轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻平衡点间的距离) 【失误与防范】1.由函数y =sin x 的图象经过变换得到y =A sin(ωx +φ)的图象,如先伸缩,则平移时要把x 前面的系数提出来. 2.复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看做一个整体.若ω<0,要先根据诱导公式进行转化.课时活页作业(二十)[基础训练组]1.(2016·深圳二模)如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期为T ,且当x =2时,f (x )取得最大值,那么( )A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=πD .T =1,θ=π22.已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是( )A .[12,54]B .[12,34]C .(0,12] D .(0,2]3.(2016·长沙一模)定义⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3,若函数f (x )=⎪⎪⎪⎪⎪⎪sin2x cos 2x 1 3,则将f (x )的图象向右平移π3个单位所得曲线的一条对称轴的方程是( )A .x =π6B .x =π4C .x =π2D .x =π4.(2016·长春模拟)函数f (x )=sin(2x +φ)(|φ|<π2)向左平移π6个单位后是奇函数,则函数f (x )在[0,π2]上的最小值为( )A .-32 B .-12 C.12 D.32。
《三角形全等的判定-角边角角角边》说课稿ppt
![《三角形全等的判定-角边角角角边》说课稿ppt](https://img.taocdn.com/s3/m/07a1025e91c69ec3d5bbfd0a79563c1ec5dad729.png)
(1)分组实验,前后桌4位同学为一组,共同完成实验。 实验步骤:①任意画一个三角形△ABC; ②前桌两位同学均各自再画△A′B′C′,使A′B′=AB,∠A′= ∠A,∠B′= ∠B,后桌两位同学各自再画△A〞B〞C〞,使B〞C〞=BC,∠B〞=∠B, ∠C〞=∠C (即:使三角形中的两组角及它们的夹边对应相等)。 ③把画好的△A′B′C′(或△A〞B〞C〞)剪下,放到△ABC上,看看发现了什么? (2)得到实验结论: 所画的三角形均能相互重合。
一、教材分析 二、教学目标 三、重点难点 四、教学流程
(二)合作交流、解读探究
1、实验验证(探究5),探索新知(角边角)
一、教材分析 二、教学目标 三、重点难点 四、教学流程
(3)提出问题:你能根据作图要求具体说说所画的是什么样的两个三角形吗? (4)归纳: 三角形全等的判定(三):两角和它们的夹边对应相等的两个三角形全等。(可以简写成“角边角”或者“ASA”) (5)符号语言:在△ABC和△DEF中, ∠A=∠B AB=DE ∠B=∠E ∴ △ABC≌△DEF (ASA)
四、教学流程
(一)创设情境,孕育新知
1、生活情境设疑,激发学生兴趣
一、教材分析 二、教学目标 三、重点难点 四、教学流程
一、教材分析 二、教学目标 三、重点难点 四、教学流程
2、学术情境分类,明确探究任务
满足全等三角形的六组条件中的三组
(1)三边(SSS) (2)两边一角 两边、一夹角(SAS) 两边、一对角(不一定) (3)两角一边 (4)三角
证明:在△ABC中, ∠A+∠B+∠C=180° ∴∠C=180-∠A-∠B 同理∠F=180°-∠D-∠E 又∠A=∠D , ∠B=∠E ∴∠C=∠F 在△ABC和△DEF 中 ∠B=∠E BC=EF ∠C=∠F ∴ △ABC≌△DEF (ASA)
北师大版七年级下册第三章三角形讲义
![北师大版七年级下册第三章三角形讲义](https://img.taocdn.com/s3/m/418557f20740be1e640e9a71.png)
三角形 1.认识三角形1、它的三个顶点分别是 ,三条边分别是 ,三个内角分别是 。
2、分别量出这三角形三边的长度,并计算任意两边之和以及任意两边之差。
你发现了什么?结论:三角形任意两边之和大于第三边三角形任意两边之差小于第三边例:有两根长度分别为5cm 和8cm 的木棒,用长度为2cm 的木棒与它们能摆成三角形吗?为什么?长度为13cm 的木棒呢?长度为7cm 的木棒呢? 二、稳固练习:1、以下每组数分别是三根小木棒的长度,用它们能摆成三角形吗?为什么?〔单位:cm 〕 〔1〕 1, 3, 3 〔2〕 3, 4, 7 〔3〕 5, 9, 13 〔4〕 11, 12, 22 〔5〕 14, 15, 302、已知一个三角形的两边长分别是3cm 和4cm ,则第三边长X 的取值范围是 。
假设X 是奇数,则X 的值是 。
这样的三角形有 个;假设X 是偶数,则X 的值是 , 这样的三角形又有 个3、一个等腰三角形的一边是2cm ,另一边是9cm ,则这个三角形的周长是 cm夯实基础1、填空:〔1〕当0°<α<90°时,α是 角; 〔2〕当α= °时,α是直角;〔3〕当90°<α<180°时,α是 角; 〔4〕当α= °时,α是平角。
2、如右图,∵AB ∥CE ,〔已知〕 ∴∠A = ,〔 〕∴∠B = ,〔 〕 〔第2题〕 二、探索练习:根据知道三角形的三个内角和等于180°,那么是否对其他的三角形也有这样的一个结论呢?〔提出问题,激发学生的兴趣〕结论:三角形三个内角和等于180°〔几何表示〕 练习1: 1、判断:〔1〕一个三角形的三个内角可以都小于60°; 〔 〕 〔2〕一个三角形最多只能有一个内角是钝角或直角; 〔 〕 2、在△ABC 中,A BC a bcABCDE123〔1〕∠C=70°,∠A=50°,则∠B= 度; 〔2〕∠B=100°,∠A=∠C ,则∠C= 度; 〔3〕2∠A=∠B+∠C ,则∠A= 度。
[初二数学 第2讲 与三角形有关的角]讲义教师版
![[初二数学 第2讲 与三角形有关的角]讲义教师版](https://img.taocdn.com/s3/m/9659cb810912a216147929f9.png)
与三角形有关的角1.掌握三角形的内角及内角和、外角及外角和的性质,并能够进行相关的计算;2.掌握直角三角形的各个角的特点,并能够进行相关的角度计算;3.掌握折叠的规律,并能够在几何计算中熟练应用;4.会根据角的特点判断三角形的形状.1.三角形中,角的度数的综合计算问题;2.三角形形状的判断;3.几何找规律问题的理解.三角形的内角及其内角和1、三角形内角的概念三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.2、三角形内角和定理:三角形内角和是180°.3、三角形内角和定理的证明证明方法不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中一般需要借助平行线.4、三角形内角和定理的应用:主要用在求三角形中角的度数.(1)直接根据两已知角求第三个角;(2)依据三角形中角的关系,用代数方法求三个角.例1.如图,△ABC中,△A=60°,△B=40°,则△C等于()A.100°B.80°C.60°D.40°【答案】B【解析】解:由三角形内角和定理得,△C=180°﹣△A﹣△B=80°,故选:B.练习1.已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B=____,∠C=____.【答案】90°;50°【解析】解:由∠B-∠C=40°得∠B=40°+∠C.根据三角形内角和是180°,列出等式∠A+∠B+∠C=∠A+40°+∠C+∠C=180°,把∠A=40°代入,求得∠C=50°,进而求得∠B=90°.练习2.在△ABC中,△A+△B=134°,△B+△C=136°,则△ABC的形状是()【答案】B【解析】解:△在△ABC中,△A+△B=134°,△B+△C=136°,△△A+△B+△B+△C=134°+136°=270°△,△△A+△B+△C=180° △,△﹣△得,△B=90°,△△ABC的形状是直角三角形,故选:B.已知一个三角形其中某两个角或者某一个角及其另外两个角的关系即可利用三角形内角和等于180°求解各个角的具体度数,其核心思想是三角形内角和等于180°为求解角度提供了一个等量关系.例2.一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【答案】B【解析】解:设三角形的三个内角的度数之比为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则3x=90°,△这个三角形一定是直角三角形,故选:B.练习1.在△ABC中,△A,△B,△C的度数之比为2:3:4,则△B的度数为()A.120°B.80°C.60°D.40°【答案】C【解析】解:△△A:△B:△C=2:3:4,△设△A=2x,△B=3x,△C=4x,△△A+△B+△C=180°,△2x+3x+4x=180°,解得:x=20°,△△B的度数为:60°.故选C.练习2.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形【答案】A【解析】解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选A.已知三角形三个内角之间的比例关系,即可设出三个内角的度数(用未知数表示),体现了“见比设参”的思想,再利用三角形内角和等于180°,即可解出相应的未知数,从而求出各个内角的具体度数.例3.下列说法正确的是()A.三角形的内角中最多有一个锐角B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角D.三角形的内角都大于60°【答案】C【解析】解:A、直角三角形中有两个锐角,故本选项错误;B、等边三角形的三个角都是锐角,故本选项错误;C、三角形的内角中最多有一个直角,故本选项正确;D、若三角形的内角都大于60°,则三个内角的和大于180°,这样的三角形不存在,故本选项错误.故选C.练习1.任何一个三角形的三个内角中至少有()A.一个角大于60°B.两个锐角C.一个钝角D.一个直角【答案】B【解析】解:根据三角形的内角和是180°,知:三个内角可以都是60°,排除A;三个内角可以都是锐角,排除C和D;三角形的三个内角中至少有两个锐角,不可能有两个钝角或两个直角.故选B.考查三角形各个内角的特点及限定,需要根据三角形内角和对三个内角之间的影响进行分析推理,重点考查分析推理能力.三角形的外角及其外角和1、三角形外角的定义三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.在计算三角形外角和时,只计算其中的三个,即每个顶点取一个.2、三角形的外角性质(1)三角形的外角和为360°.(2)三角形的一个外角等于和它不相邻的两个内角的和.(3)三角形的一个外角大于和它不相邻的任何一个内角.3、若研究的角比较多,要设法利用三角形的外角性质(2)将它们转化到一个三角形中去.4、探究角度之间的不等关系,多用外角的性质(3),先从最大角开始,观察它是哪个三角形的外角.例1.如图所示,在△ABC中,下列说法正确的是()A.△ADB>△ADE B.△ADB>△1+△2+△3C.△ADB>△1+△2D.以上都对【答案】C【解析】解:A错误,△ADB+△ADE=180°,无法判断其大小关系;B错误,△ADB=△1+△2+△3;C正确,△△ADB=△1+△2+△3,△ADB>△1+△2;D错误.故选C.练习1.下列图形中一定能说明△1>△2的是()A.B.C.D.【答案】C【解析】解:A中△1=△2,故错误;B中△1和△2的关系不能确定,故错误;C中△1>△2,故正确;D中△1和△2的关系不能确定,故错误;故选:C.练习2.已知△2是△ABC的一个外角,那么△2与△B+△1的大小关系是()A.△2>△B+△1B.△2=△B+△1C.△2<△B+△1D.无法确定【答案】A【解析】解:△△2>△ADC,△ADC=△B+△1,△△2>△B+△1,故选A.在判断角的不等关系时,常会用到“三角形的外角大于任意一个与它不相邻的内角”这一性质.例2.知,如图,△ABC中,△B=△DAC,则△BAC和△ADC的关系是()A.△BAC<△ADC B.△BAC=△ADC C.△BAC>△ADC D.不能确定【答案】B【解析】解:由三角形的外角性质,△ADC=△B+△BAD,△△BAC=△BAD+△DAC,△B=△DAC,△△BAC=△ADC.故选B.练习1.如图,在△ABC中△A=80°.点D是BC延长线上一点,△ACD=150°,则△B=()A.60°B.50°C.70°D.165°【答案】C【解析】解:由三角形的外角的性质可知,△B=△ACD﹣△A=70°,故选:C.练习2.如图,在△ABC中,AB=AC,△A=140°,延长BC至点D,则△ACD等于()A.130°B.140°C.150°D.160°【答案】D【解析】解:△AB=AC,△A=140°,△△B=△ACB=(180°﹣140°)=20°,△△ACD=180°﹣△ACB=180°﹣20°=160°.故选D.在三角形中“三角形的外角等于与它不相邻的两个内角之和”这一性质是计算角的度数中比较常用的一个典型知识,只要三角形中有外角出现,都有可能会用到这一性质.例3.如果三角形三个外角度数之比是3:4:5,则此三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】B【解析】解:△三角形三个外角度数之比是3:4:5,设三个外角分别是α,β,γ,则α=360°×=90°,△此三角形一定是直角三角形.故选:B.练习1.如果一个三角形的三个外角的度数之比是2:3:4,那么与之对应的三个内角的度数之比是()A.1:3:5B.2:3:4 C.4:3:2D.5:3:1【答案】D【解析】解:设三个外角的度数分别是2x°,3x°,4x°,由题意得:2x+3x+4x=360,解得:x=40,则2x=80,3x=120,4x=160,故三个内角分别为:100°,60°,20°,而100°:60°:20°=5:3:1,故选:D.练习2.如图所示:△1=110°,△2=125°,那么△3=()A.55°B.65°C.75°D.85°【答案】A【解析】解:根据三角形的外角和可得,∠3的邻补角等于125°,所以∠3=55°,故选A.在三角形的角度计算中,如果涉及到的外角比较多时,常会考虑用“三角形的外角和等于360°”这一性质.直角三角形的性质1、有一个角为90°的三角形,叫做直角三角形.2、在直角三角形中,两个锐角互余.注:在进行角度的计算时,直角三角形锐角互余的性质也是一个常用的倒角方法.反之,我们也常用“两锐角互余”的性质来判定一个三角形是否是直角三角形.3、目前通用的三角板是最典型的直角三角形,同时两个三角板的四个锐角的度数是固定的,分别为:45°、45°、30°、60°,在三角板中的角度计算类问题中要将以上度数当成已知度数来使用.例1.在Rt△ABC中,△C=90°,△A﹣△B=70°,则△A的度数为()A.80°B.70°C.60°D.50°【答案】A【解析】解:△△C=90°,△△A+△B=90°,又△A﹣△B=70°,△△A=(90°+70°)=80°.故选A.练习1.AD、BE为△ABC的高,AD、BE相交于H点,△C=50°,求△BHD.【答案】解:△AD是△ABC的高,△△BHD+△HBD=90°,△BE是△ABC的高,△△HBD+△C=90°,△△BHD=△C,△△C=50°,△△BHD=50°.练习2.如图,在△ABC中,△BAC=90°,AC≠AB,AD是斜边BC上的高,DE△AC,DF△AB,垂足分别为E、F,则图中与△C(△C除外)相等的角的个数是()A.3个B.4个C.5个D.6个【答案】A【解析】解:△AD是斜边BC上的高,DE△AC,DF△AB,△△C+△B=90°,△BDF+△B=90°,△BAD+△B=90°,△△C=△BDF=△BAD,△△DAC+△C=90°,△DAC+△ADE=90°,△△C=△ADE,△图中与△C(除之C外)相等的角的个数是3,故选:A.在进行角度的计算时,直角三角形锐角互余的性质也是一个常用的倒角方法.例2.在下列条件中,△△A+△B=△C;△△A:△B:△C=1:2:3;△△A=△B=△C;△△A=△B=2△C;△△A=2△B=3△C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个【答案】B【解析】解:△、△△A+△B=△C=90°,△△ABC是直角三角形,故小题正确;△、△△A:△B:△C=1:2:3,△△A=30°,△B=60°,△C=90°,△ABC是直角三角形,故本小题正确;△、设△A=x,△B=2x,△C=3x,则x+2x+3x=180°,解得x=30°,故3x=90°,△ABC是直角三角形,故本小题正确;△△设△C=x,则△A=△B=2x,△2x+2x+x=180°,解得x=36°,△2x=72°,故本小题错误;△△A=2△B=3△C,△△A+△B+△C=△A+△A+A=180°,△△A=°,故本小题错误.综上所述,是直角三角形的是△△△共3个.故选B.练习1.给定下列条件,不能判定△ABC是直角三角形的是()A.△A=△B=2△C B.△A+△B=△CC.△A:△B:△C=1:4:5D.△A=37°,△B=53°【答案】A【解析】解:A、△△A=△B=2△C,△A+△B+△C=180°,△△A=△B=72°,△C=36°,△此时△ABC为锐角三角形;B、△△A+△B=△C,△A+△B+△C=180°,△△C=90°,△此时△ABC为直角三角形;C、△△A:△B:△C=1:4:5,△A+△B+△C=180°,△△A=18°,△B=72°,△C=90°,△此时△ABC为直角三角形;D、△△A=37°,△B=53°,△A+△B+△C=180°,△△C=90°,△此时△ABC为直角三角形.故选A.判断一个三角形是不是直角三角形的方法很多,就现学的知识而言,主要有:(1)两个内角之和为90°;(2)其中两个内角的和等于第三个内角;(3)其中某一个角等于90°;(4)三个内角的比例关系中,两个内角比例之和等于第三个内角所占的比例等.例3.将一副三角尺按如图所示的方式叠放(两条直角边重合),则△α的度数是.【答案】75°【解析】解:△△DAC+△ACB=180°,△AD△BC,△△B=△DAE=30°,△△DEB=△D+△DAE=45°+30°=75°,即△α的度数是75°.故答案为:75°.练习1.一副三角板有两个直角三角形,如图叠放在一起,则△α的度数是()A.165°B.120°C.150°D.135°【答案】A【解析】解:给图中标上△1、△2,如图所示.△△1+45°+90°=180°,△△1=45°,△△1=△2+30°,△△2=15°.又△△2+△α=180°,△△α=165°.故选A.练习2.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则△1的度数为()A.60°B.75°C.65°D.70°【答案】B【解析】解:△△2=90°﹣45°=45°(直角三角形两锐角互余),△△3=△2=45°,△△1=△3+30°=45°+30°=75°.故选B.目前通用的三角板是最典型的直角三角形,同时两个三角板的四个锐角的度数是固定的,分别为:45°、45°、30°、60°,在三角板中的角度计算类问题中要将以上度数当成已知度数来使用.三角形倒角计算综合在三角形中计算角的度数是非常重要的一种题型,其中涉及到的知识点主要包括:角平分线的性质、两直线平行的性质、对顶角的性质、邻补角的性质、三角形的外角及其外角和、三角形的内角和等一系列倒角相关的知识,在分析此类几何题时,要首先从这些知识入手.通过倒角,可以计算角的度数,从而判断三角形的形状.折叠问题,也是倒角中常会考到的一个典型知识,其本质特征是:折叠前后的边和角的大小是完全相同的.例1.已知△ABC中,△A=20°,△B=△C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形【答案】A【解析】解:△△A=20°,△△B=△C=(180°﹣20°)=80°,△三角形△ABC是锐角三角形.故选A.练习1.若一个三角形三个内角度数的比为2:7:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【答案】C【解析】解:依题意,设三角形的三个内角分别为:2x,7x,4x,△2x+7x+4x=180°,△7x≈97°,x=13.85°,7x=97°,△这个三角形是钝角三角形.故选:C.练习2.三角形的外角大于和它相邻的这个内角,这个三角形为()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定【答案】D【解析】解:△三角形的一个内角和相邻的外角互补,三角形的外角大于和它相邻的这个内角,△这个三角形是锐角三角形,但是无法确定其他内角大小,故此三角形形状无法确定.故选:D.按照角度的大小来分类,三角形分为:锐角三角形、直角三角形和钝角三角形三种类型.要判断三角形的具体形状,只需要找到三角形中最大的角是哪种类型的角(锐角、直角、钝角)即可.例2.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则△A与△1+△2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.△A=△1+△2B.2△A=△1+△2C.3△A=2△1+△2D.3△A=2(△1+△2)【答案】B【解析】解:2△A=△1+△2,理由:△在四边形ADA′E中,△A+△A′+△ADA′+△AEA′=360°,则2△A+180°﹣△2+180°﹣△1=360°,△可得2△A=△1+△2.故选:B.练习1.如图,在△ACB中,△ACB=100°,△A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则△ADB′等于()A.25°B.30°C.35°D.40°【答案】D【解析】解:△△ACB=100°,△A=20°,△△B=60°,由折叠的性质可知,△ACD=△BCD=50°,△△B′DC=△BDC=70°,△△ADB′=180°﹣70°﹣70°=40°,故选:D.练习2.如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分△ABC,A'C平分△ACB,若△BA'C=110°,则△1+△2的度数为()A.80°B.90°C.100°D.110°【答案】A【解析】解:连接AA′.△A'B平分△ABC,A'C平分△ACB,△BA'C=110°,△△A′BC+△A′CB=70°,△△ABC+△ACB=140°,△△BAC=180°﹣140°=40°,△△1=△DAA′+△DA′A,△2=△EAA′+△EA′A,△△DAA′=△DA′A,△EAA′=△EA′A,△△1+△2=2(△DAA′+△EAA′)=2△BAC=80°,故选A.折叠问题是初中几何中最典型的一种几何变换类型,折叠问题的典型特点是折叠前后的边和角的大小是完全相同的,而本节中只涉及到“折叠前后角的大小相同”这一性质的应用.例3.如图,在△ABC中,△BAC=56°,△ABC=74°,BP、CP分别平分△ABC和△ACB,则△BPC=()A.102°B.112°C.115°D.118°【答案】D【解析】解:△在△ABC中,△BAC=56°,△ABC=74°,△△ACB=180°﹣△BAC﹣△ABC=50°,△BP、CP分别平分△ABC和△ACB,△△PBC=37°,△PCB=25°,△△BCP中,△P=180°﹣△PBC﹣△PCB=118°,故选:D.练习1.在△ABC中,△B,△C的平分线相交于点P,设△A=x°,用x的代数式表示△BPC的度数,正确的是()A.B.C.90+2x D.90+x【答案】A【解析】解:△△A=x°,△△ABC+△ACB=180°﹣x°,△△B,△C的平分线相交于点P,△△PBC+△PCB=(180°﹣x°),△△BPC=180°﹣(180°﹣x°)=90°+x°,故选A.练习2.如图,在△ABC中,△A=40°,△B=60°,CD△AB于点D,CE平分△ACD,DF△CE 于点F,则△CDF的度数为()A.70°B.80°C.85°D.78°【答案】B【解析】解:△△A=40°,△B=60°,△△ACB=180°﹣△A﹣△B=80°,△CE平分△ACB,△△ACE=△ACB=40°,△CD△AB于D,△△CDA=90°,△ACD=180°﹣△A﹣△CDA=50°,△△ECD=△ACD﹣△ACE=10°,△DF△CE,△△CFD=90°,△△CDF=180°﹣△CFD﹣△DCE=80°.故选B.练习3.如图,△ABC=△ACB,AD、BD、CD分别平分△ABC的外角△EAC、内角△ABC、外角△ACF.以下结论:△AD△BC;△△ACB=2△ADB;△△ADC=90°﹣△ABD;△△BDC=△BAC.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】解:△△AD平分△ABC的外角△EAC,△△EAD=△DAC,△△EAC=△ACB+△ABC,且△ABC=△ACB,△△EAD=△ABC,△AD△BC,故△正确.△由(1)可知AD△BC,△△ADB=△DBC,△BD平分△ABC,△△ABD=△DBC,△△ABC=2△ADB,△△ABC=△ACB,△△ACB=2△ADB,故△正确.△在△ADC中,△ADC+△CAD+△ACD=180°,△CD平分△ABC的外角△ACF,△△ACD=△DCF,△AD△BC,△△ADC=△DCF,△ADB=△DBC,△CAD=△ACB,△△ACD=△ADC,△CAD=△ACB=△ABC=2△ABD,△△ADC+△CAD+△ACD=△ADC+2△ABD+△ADC=2△ADC+2△ABD=180°,△△ADC+△ABD=90°,△△ADC=90°﹣△ABD,故△正确;△△△BAC+△ABC=△ACF,△△BAC+△ABC=△ACF,△△BDC+△DBC=△ACF,△△BAC+△ABC=△BDC+△DBC,△△DBC=△ABC,△△BAC=△BDC,即△BDC=△BAC.故△错误.故选C.三角形中角的度数的计算是本节中的一个重要题型,其中涉及到角的大小的计算问题常会用到的知识有:角平分线的性质、两直线平行的性质、三角形内角和、三角形的外角的性质、三角形的外角和、互余与互补、对顶角的性质等与角的大小相关的性质及定理.较难的题型会涉及到多个知识的结合考查,需要在平时的练习中逐步建立几何分析能力.例4.如图,在△ABC中,△A=m°,△ABC和△ACD的平分线交于点A1,得△A1;△A1BC 和△A1CD的平分线交于点A2,得△A2;…△A2016BC和△A20l6CD的平分线交于点A2017,则△A2017=°.【答案】【解析】解:△A1B平分△ABC,A1C平分△ACD,△△A1BC=△ABC,△A1CA=△ACD,△△A1CD=△A1+△A1BC,即△ACD=△A1+△ABC,△△A1=(△ACD﹣△ABC),△△A+△ABC=△ACD,△△A=△ACD﹣△ABC,△△A1=△A,△A2=△A1=△A,…,以此类推可知△A2017=△A=()°,故答案为:.练习1.(1)如图1,在△ABC中,点O是△ABC和△ACB平分线的交点,若△A=α,则△BOC=90°+;如图2,△CBO=△ABC,△BCO=△ACB,△A=α,则△BOC=(用α表示)(2)如图3,△CBO=△DBC,△BCO=△ECB,△A=α,请猜想△BOC=(用α表示).【答案】120°+α 120°﹣α【解析】解:(1)如图2,在△OBC中,△BOC=180°﹣(△OBC+△OCB)=180°﹣(△ABC+△ACB)=180°﹣(180°﹣△A)=120°+△A=120°+α;(2)如图△,在△OBC中,△BOC=180°﹣(△OBC+△OCB)=180°﹣(△DBC+△ECB)=180°﹣(△A+△ACB+△A+ABC)=180°﹣(△A+180°)=120°﹣α;故答案为:120°+α;120°﹣α.练习2.如图,在△ABC中,△A=64°,△ABC与△ACD的平分线交于点A1,则△A1=;△A1BC与△A1CD的平分线相交于点A2,得△A2;…;△A n﹣1BC与△A n﹣1CD的平分线相交于点A n,要使△A n的度数为整数,则n的值最大为.【答案】32°6【解析】解:由三角形的外角性质得,△ACD=△A+△ABC,△A1CD=△A1+△A1BC,△△ABC的平分线与△ACD的平分线交于点A1,△△A1BC=△ABC,△A1CD=△ACD,△△A1+△A1BC=(△A+△ABC)=△A+△A1BC,△△A1=△A=64°=32°;△A1B、A1C分别平分△ABC和△ACD,△△ACD=2△A1CD,△ABC=2△A1BC,而△A1CD=△A1+△A1BC,△ACD=△ABC+△A,△△A=2△A1,△△A1=△A,同理可得△A1=2△A2,△△A2=△A,△△A=2n△A n,△△A n=()n△A=,△△A n的度数为整数,△n=6.故答案为:32°,6.几何找规律问题,除了要从代数的角度理解数列的变化规律、找到通项公式,还需要能够从几何的角度发现几何图形的变化特点,找到几何变化规律,所以几何规律问题是初中找规律问题的重点,也是难点问题.本节主要的考查重点是与三角形相关的角度计算,其中倒角的常用方法是重中之重,倒角的技巧贯穿在整个初中的几何证明及计算中,是非常重要的几何知识.。
2023年九年级中考数学复习讲义 三角形及其全等
![2023年九年级中考数学复习讲义 三角形及其全等](https://img.taocdn.com/s3/m/643dda5ea517866fb84ae45c3b3567ec102ddc6d.png)
2023年中考数学复习讲义三角形及其全等第一部分:知识点精准记忆一、三角形的基础知识1.三角形的概念:由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边一半.二、全等三角形1.三角形全等的判定定理:(1)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(2)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(3)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(4)角角边定理:有两角和它们所对的任意一边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”);(5)对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;(3)全等三角形对应的中线、高线、角平分线、中位线都相等.三、线段垂直平分线与角平分线1.线段的轴对称性:线段是轴对称图形,垂直并且平分线段的直线是它的一条对称轴.2.定义:垂直于一条线段,并且平分这条线段的直线,叫做这条线段的垂直平分线.注:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.性质:线段垂直平分线上的点到这条线段两个端点的距离相等.注:对于含有垂直平分线的题目,首先考虑将垂直平分线上的点与线段两端点连接起来.4.角是轴对称图形,角平分线所在的直线是它的对称轴.5.性质:角的平分线上的点到这个角的两边的距离相等.第二部分:考点典例剖析考点一: 三角形的三边关系【例1-1】(2021·广西柳州市·中考真题)若长度分别为3,4,a 的三条线段能组成一个三角形,则整数a 的值可以是________.(写出一个即可)【例1-2】(2021·江苏淮安·中考真题)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是___.考点二: 三角形的内角和外角【例2-1】(2021·河北中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.【例2-2】(2021·江苏宿迁市·中考真题)如图,在△ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∥AB ,交BC 于点E ,则∠BDE 的度数是( )A .30°B .40°C .50°D .60°【例2-3】(2021·浙江绍兴市·中考真题)如图,在中,,点D ,E 分別在边AB ,AC 上,,连结CD ,BE .(1)若,求,的度数.(2)写出与之间的关系,并说明理由.考点三:三角形中的重要线段【例3-1】(2022•大庆)下列说法不正确的是( )A .有两个角是锐角的三角形是直角或钝角三角形B .有两条边上的高相等的三角形是等腰三角形C .有两个角互余的三角形是直角三角形D .底和腰相等的等腰三角形是等边三角形ABC 40A ∠=︒BD BC CE ==80ABC ∠=︒BDC ∠ABE ∠BEC ∠BDC∠【例3-2】(2021·江苏泰州市·中考模拟)如图所示的网格由边长相同的小正方形组成,点、、、、、、在小正方形的顶点上,则的重心是( )A .点B .点C .点D .点【例3-3】如图,在ABC 中,以A 为圆心,任意长为半径画弧,分别交AB 、AC 于点M 、N ;再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ;连结AP 并延长交BC 于点D .则下列说法正确的是( )A .AD BD AB +<B .AD 一定经过ABC 的重心 C .BAD CAD ∠=∠D .AD 一定经过ABC 的外心考点四: 垂直平分线与角平分线的性质 【例4-1】(2021·青海中考真题)如图,在四边形ABCD 中,∠A=90°,AD=3,BC=5,对角线BD 平分∠ABC ,则△BCD 的面积为( )A .7.5B .8C .15D .无法确定【例4-2】在△ABC 中,∠BAC =115°,DE 、FG 分别为AB 、AC 的垂直平分线,则∠EAG 的度数为 A B C D E F G ABC∆D E FGA .50°B .40°C .30°D .25°【例4-3】如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC 交AC 于D 点,AB =4,BD =5,点P 是线段BC 上的一动点,则PD 的最小值是__________.考点五: 全等三角形的性质与判定【例5-1】2020·湖北省直辖县级行政单位·中考真题)如图,已知和都是等腰三角形,,交于点F ,连接,下列结论:①;②;③平分;④.其中正确结论的个数有( )A .1个B .2个C .3个D .4个【例5-2】(2021·陕西中考真题)如图,,,点在上,且.求证:.【例5-3】(2021·广东广州·中考真题)如图,点E 、F 在线段BC 上,,,ABC ADE 90BAC DAE ∠=∠=︒,BD CE AF BD CE =BF CF ⊥AF CAD ∠45AFE ∠=︒//BD AC BD BC =E BC BE AC =D ABC ∠=∠//AB CD A D ∠=∠,证明:.【例5-4】(2021·江苏淮安·中考真题)(知识再现)学完《全等三角形》一章后,我们知道“斜边和一条直角边分别相等的两个直角三角形全等(简称HL 定理)”是判定直角三角形全等的特有方法.(简单应用)如图(1),在△ABC 中,∠BAC =90°,AB =AC ,点D 、E 分别在边AC 、AB 上.若CE =BD ,则线段AE 和线段AD 的数量关系是 .(拓展延伸)在△ABC 中,∠BAC =(90°<<180°),AB =AC =m ,点D 在边AC 上. (1)若点E 在边AB 上,且CE =BD ,如图(2)所示,则线段AE 与线段AD 相等吗?如果相等,请给出证明;如果不相等,请说明理由.(2)若点E 在BA 的延长线上,且CE =BD .试探究线段AE 与线段AD 的数量关系(用含有a 、m 的式子表示),并说明理由.【例5-5】(2020·山东烟台市·中考真题)如图,在等边三角形ABC 中,点E 是边AC 上一定点,点D 是直线BC 上一动点,以DE 为一边作等边三角形DEF ,连接CF .(问题解决)(1)如图1,若点D 在边BC 上,求证:CE+CF =CD ;(类比探究)(2)如图2,若点D 在边BC 的延长线上,请探究线段CE ,CF 与CD 之间存在怎样的数量关系?并说明理由.考点六: 三角形全等综合【例6-1】(2022·北京)在ABC 中,90ACB ∠=,D 为ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得.CE DC = BE CF =AE DF=αα(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF ,若AF EF ⊥,求证:BD AF ⊥; (2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.【例6-2】(2022·山东泰安·中考真题)正方形ABCD 中,P 为AB 边上任一点,AE DP ⊥于E ,点F 在DP 的延长线上,且DE EF =,连接AF BF 、,BAF ∠的平分线交DF 于G ,连接GC .(1)求证:AEG △是等腰直角三角形;(2)求证:2AG CG DG +=;(3)若2AB =,P 为AB 的中点,求BF 的长.第三部分:中考真题一.选择题1.(2022•鄂尔多斯)如图,15AOE ∠=︒,OE 平分AOB ∠,//DE OB 交OA 于点D ,EC OB ⊥,垂足为C .若2EC =,则OD 的长为( )A .2B .23C .4D .43+2.(2022•荆门)数学兴趣小组为测量学校A 与河对岸的科技馆B 之间的距离,在A 的同岸选取点C ,测得30AC =,45A ∠=︒,90C ∠=︒,如图,据此可求得A ,B 之间的距离为( )A .203B .60C .302D .303.(2022•湘西州)如图,在Rt ABC ∆中,90A ∠=︒,M 为BC 的中点,H 为AB 上一点,过点C 作//CG AB ,交HM 的延长线于点G ,若8AC =,6AB =,则四边形ACGH 周长的最小值是( )A .24B .22C .20D .184.(2022•西宁)若长度是4,6,a 的三条线段能组成一个三角形,则a 的值可以是( )A .2B .5C .10D .117.(2022•西宁)如图,60MON ∠=︒,以点O 为圆心,适当长为半径画弧,交OM 于点A ,交ON 于点B ;分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧在MON ∠的内部相交于点P ,画射线OP ;连接AB ,AP ,BP ,过点P 作PE OM ⊥于点E ,PF ON ⊥于点F .则以下结论错误的是( )A .AOB ∆是等边三角形B .PE PF =C .PAE PBF ∆≅∆D .四边形OAPB 是菱形5.(2022•西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是()A.5-B.4C.7D.86.(2022•大连)如图,在ABC∆中,90ACB∠=︒.分别以点A和点C为圆心,大于12 AC的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若3AB=,则CD的长是()A.6B.3C.1.5D.1 7.(2022•青海)如图,在Rt ABC∆中,90ACB∠=︒,D是AB的中点,延长CB至点E,使BE BC=,连接DE,F为DE中点,连接BF.若16AC=,12BC=,则BF的长为( )A.5B.4C.6D.88.(2022•张家界)如图,点O是等边三角形ABC内一点,2OA=,1OB=,3OC=,则AOB∆与BOC∆的面积之和为()A 3B3C33D39.(2022•长沙)如图,在ABC∆中,按以下步骤作图:①分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若22AB=AM的长为()A.4B.2C3D2 10.(2022•海南)如图,直线//m n,ABC∆是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若1140∠=︒,则2∠的度数是()A.80︒B.100︒C.120︒D.140︒11.(2022•黑龙江)如图,ABC∆中,AB AC=,AD平分BAC∠与BC相交于点D,点E 是AB的中点,点F是DC的中点,连接EF交AD于点P.若ABC∆的面积是24, 1.5PD=,则PE的长是()A .90ADC ∠=︒B .DE DF =C .AD BC = D .BD CD =12.(2022•广东)下列图形中有稳定性的是( )A .三角形B .平行四边形C .长方形D .正方形13.(2022•贺州)如图,在Rt ABC ∆中,90C ∠=︒,56B ∠=︒,则A ∠的度数为( )A .34︒B .44︒C .124︒D .134︒14.(2022•永州)如图,在Rt ABC ∆中,90ABC ∠=︒,60C ∠=︒,点D 为边AC 的中点,2BD =,则BC 的长为( )A 3B .23C .2D .415.(2022•荆州)如图,直线12//l l ,AB AC =,40BAC ∠=︒,则12∠+∠的度数是( )A .60︒B .70︒C .80︒D .90︒16.(2022•宜昌)如图,在ABC ∆中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD ∆的周长为( )A .25B .22C .19D .1817.(2022•岳阳)如图,已知//l AB ,CD l ⊥于点D ,若40C ∠=︒,则1∠的度数是( )A .30︒B .40︒C .50︒D .60︒18.(2022•台湾)如图,ABC ∆中,D 点在AB 上,E 点在BC 上,DE 为AB 的中垂线.若B C ∠=∠,且90EAC ∠>︒,则根据图中标示的角,判断下列叙述何者正确?( )A .12∠=∠,13∠<∠B .12∠=∠,13∠>∠C .12∠≠∠,13∠<∠D .12∠≠∠,13∠>∠19.(2022•宜宾)如图,在ABC ∆中,5AB AC ==,D 是BC 上的点,//DE AB 交AC 于点E ,//DF AC 交AB 于点F ,那么四边形AEDF 的周长是( )A .5B .10C .15D .2020.(2022•广元)如图,在ABC ∆中,6BC =,8AC =,90C ∠=︒,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .2.5B .2C .3.5D .321.(2022•宜宾)如图,ABC ∆和ADE ∆都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC ∆内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则23CE =+.其中含所有正确结论的选项是( )A .①②④B .①②③C .①③④D .①②③④22.(2022•杭州)如图,CD AB ⊥于点D ,已知ABC ∠是钝角,则( )A .线段CD 是ABC ∆的AC 边上的高线B .线段CD 是ABC ∆的AB 边上的高线C .线段AD 是ABC ∆的BC 边上的高线D .线段AD 是ABC ∆的AC 边上的高线二.填空题1.(2020·辽宁铁岭市·中考真题)如图,在ABC 中,5,8,9===AB AC BC ,以A 为圆心,以适当的长为半径作弧,交AB 于点M ,交AC 于点N ,分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠的内部相交于点G ,作射线AG ,交BC 于点D ,点F 在AC 边上,AF AB =,连接DF ,则CDF 的周长为___________.2.(2020·辽宁营口市·中考真题)如图,△ABC 为等边三角形,边长为6,AD ⊥BC ,垂足为点D ,点E 和点F 分别是线段AD 和AB 上的两个动点,连接CE ,EF ,则CE +EF 的最小值为_____.3.(2021·辽宁锦州·中考真题)如图,在△ABC 中,AC =4,∠A =60°,∠B =45°,BC 边的垂直平分线DE 交AB 于点D ,连接CD ,则AB 的长为_________________.4题4.(2021·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点C 的坐标为()1,0-,点A的坐标为()3,3-,将点A 绕点C 顺时针旋转90︒得到点B ,则点B 的坐标为_____________.5.(2020·湖北中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为_____.6.(2021·湖北十堰市·中考真题)如图,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,点P 是平面内一个动点,且3AP =,Q 为BP 的中点,在P 点运动过程中,设线段CQ 的长度为m ,则m 的取值范围是__________.7.如图,是一个3×3的正方形网格,则∠1+∠2+∠3+∠4= .三.解答题1.(2022铜仁)如图,点C 在BD 上,,,,⊥⊥⊥=AB BD ED BD AC CE AB CD .求证:ABC CDE △≌△.2.(2022福建)如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E .求证:∠A =∠D .3.(2022广东)如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.4.(2022大庆)如图,在四边形ABDF 中,点E ,C 为对角线BF 上的两点,,,AB DF AC DE EB CF ===.连接,AE CD .(1)求证:四边形ABDF 是平行四边形;(2)若AE AC =,求证:AB DB =.5.(2022云南)如图,在平行四边形ABCD 中,连接BD ,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,∠BDF =90°(1)求证:四边形ABDF 是矩形;(2)若AD =5,DF =3,求四边形ABCF 的面积S .6.(2022梧州)如图,在ABCD 中,E ,G ,H ,F 分别是,,,AB BC CD DA 上的点,且,BE DH AF CG .求证:EF HG =.7.(2022遵义)将正方形ABCD 和菱形EFGH 按照如图所示摆放,顶点D 与顶点H 重合,菱形EFGH 的对角线HF 经过点B ,点E ,G 分别在AB ,BC 上.(1)求证:ADE CDG ≌;(2)若2AE BE ==,求BF 的长8.(2022贵阳)如图,在正方形ABCD 中,E 为AD 上一点,连接BE ,BE 的垂直平分线交AB 于点M ,交CD 于点N ,垂足为O ,点F 在DC 上,且MF AD ∥.(1)求证:ABE FMN ≌△△;(2)若8AB =,6AE =,求ON 的长.9.(2022安徽)已知四边形ABCD 中,BC =CD .连接BD ,过点C 作BD 的垂线交AB 于点E ,连接DE .(1)如图1,若∥DE BC ,求证:四边形BCDE 是菱形;(2)如图2,连接AC ,设BD ,AC 相交于点F ,DE 垂直平分线段AC .(ⅰ)求∠CED 的大小;(ⅱ)若AF =AE ,求证:BE =CF .10.(2022玉林)问题情境:在数学探究活动中,老师给出了如图的图形及下面三个等式:①AB AC = ②DB DC = ③BAD CAD ∠=∠若以其中两个等式作为已知条件,能否得到余下一个等式成立? 解决方案:探究ABD △与ACD △全等.问题解决:(1)当选择①②作为已知条件时,ABD △与ACD △全等吗?_____________(填“全等”或“不全等”),理由是_____________;(2)当任意选择两个等式作为已知条件时,请用画树状图法或列表法求ABD ACD △≌△的概率.11.(2022北部湾)已知MON α∠=,点A ,B 分别在射线,OM ON 上运动,6AB =.(1)如图①,若90α=︒,取AB 中点D ,点A ,B 运动时,点D 也随之运动,点A ,B ,D 的对应点分别为,,A B D ''',连接,OD OD '.判断OD 与OD '有什么数量关系?证明你的结论:(2)如图②,若60α=︒,以AB 为斜边在其右侧作等腰直角三角形ABC ,求点O 与点C 的最大距离:(3)如图③,若45α=︒,当点A ,B 运动到什么位置时,AOB 的面积最大?请说明理由,并求出AOB 面积的最大值.。
沪教版(五四制)七年级数学下册 第十四章 三角形的边和角讲义(无答案)
![沪教版(五四制)七年级数学下册 第十四章 三角形的边和角讲义(无答案)](https://img.taocdn.com/s3/m/d598f61a5a8102d277a22f22.png)
第1讲 三角形的边和角一、三角形的定义:由不在同一直线上的三条线段首尾顺次联结所组成的图形叫做三角形二、三角形的分类(1)按边分类:(2)按角分类:三、三角形的性质⑴ 边与边的关系:三角形任意两边之和大于第三边(三角形任意两边之差小于第三边)⑵ 角与角的关系:三角形的内角和等于180;180A B C ︒∠+∠+∠=三角形的外角和等于360,360DAE EBF FCA ︒∠+∠+∠=三角形的一个外角等于与它不相邻的两个内角和, =ACD A B ∠∠+∠(推论:三角形的一个外角大于任何与它不相邻的内角), ACD A ∠>∠,ACD B ∠>∠⑶ 边与角的关系:同一个三角形中,大边对大角(小边对小角),大角对大边(小角对小边) ,;b a c B A C >>∠>∠>∠若则反之亦然【例题1】(1)已知三角形的三边长分别为4、5、x,则x不可能是()A.3B.5C.7 D.9(2)如果线段a,b,c能组成一个三角形,那么它们的长度的比可以是()A.1: 1: 2B.-2: 5: 2C.2008: 2009: 2010D.4: 8: 4(3)一个三角形三边长分别为8,10,x,则x的取值范围是.(4)一个三角形三边长分别为6,7,x,则三角形的周长l的范围是.(5)若三角形的三边长为3,4,x,则偶数x的值有.(6)有三条线段,其中两条线段的长为3和5,第三条线段的长为x,若这三条线段不能构成三角形,则x的取值范围是.【例题2】(1)现有长度分别为2cm,3cm,4cm,5cm的木棒,从中任取三根,能组成三角形的个数为.(2)已知有长为1,2,3的线段若干条,任取其中三条构造三角形,则最多能构成形状或大小不同的三角形个数是.【例题3】(1)三角形的三边分别为3、1-2a、8,求a的取值范围。
(2)若一个三角形中两条边的长分别为a、b,且a>b,求这个三角形周长l的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲三角形的角
一、教学内容
1.理解三角形内角、外角的概念;
2.探索并证明三角形的内角和定理;
3.探索并掌握直角三角形的两个锐角互余,掌握有两个角互余的三角形是直角三角形;
4.掌握三角形的一个外角等于与它不相邻的两个内角的和;
5.能够运用三角形内角和定理解决简单问题.
二、思维导图
三、知识重难点
考点:三角形内角、外角的概念.
重难点:能够运用三角形内角和、外角和定理解决简单问题.
易错点:
三角形的外角与相邻的内角互为邻补角,因为每个内角均有两个邻补角,但每个顶点处只算一次,因此三角形共有三个外角.
模块一三角形的内角
一、教学内容
1、三角形的内角
三角形的内角:
2、三角形的内角和
三角形内角和定理.
直角三角形中,.
二、例题精讲
【例1-1】如图,△ABC 中,∠A=60°,∠B=40°,则∠C 等于()A.100°B.80°
C.60°D.40°
【例1-2】△ABC 的三个内角∠A,∠B,∠C 满足∠A:∠B:∠C=2:3:7,则这个三角形是()
A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形
【例1-3】在△ABC 中,∠A=2∠B=80°,则∠C 等于()
A. 45°
B. 60°
C. 75°
D. 90°
练1-1.下列图形中的x=.
练1-2.在△ABC 中,∠A:∠B:∠C=3:4:5,则∠C 等于()
A.45°B.60°C.75°D.90°
练1-3. 在△ABC 中,∠A+∠B=130°,∠A-∠B=30°,则△ABC 中最大角等于()A.50° B. 60° C.70° D. 80°
练1-4. 如图,AC⊥BD,∠1=∠2,∠D=40°,则∠BAD 的度数是()A.85°B.90°
C.95°D.100°
【例2】如图,△ABC 为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2 等于()
A.90°B.135°
C.150°D.270°
练2-1. 如图,将直角三角形沿虚线截去顶角后,则∠1+∠2 的度数为()A.225°B.235°
C.270°D.300°
练2-2. 如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=( )
A.360°
B.250°
C.180°
D.140°
【例3-1】如图,在△ABC 中,∠B、∠C 的角平分线BE,CD 相交于点F,∠ABC=42°,∠A=60°,求∠BFC 的度数
【例3-2】如图,在△ABC 中,∠B=63°,∠C=51°,AD 是BC 边上的高,AE 是∠BAC 的平分线,
(1)求∠DAE 的度数.
(2)试问∠DAE 与∠C、∠B 有怎样的数量关系?说明理由.
练3-1. 如图,在△ABC 中,∠B、∠C 的平分线BE,CD 相交于点F,若∠BFC=116°,则∠A=()
A.51°B.52°
C.53°D.58°
练3-2. 已知:如图,在△ABC 中,AD、AE 分别是△ABC 的高和角平分线,若∠B=30°,∠C=50°,求∠DAE 的度数.
模块二三角形的外角
一、教学内容
1、三角形的外角
三角形的叫做三角形的外角.如图,∠ACD 是△ABC 的一个外角.
2、三角形的外角性质:
1.三角形的一个外角等于.
2.三角形的一个外角大于.
3.三角形的外角和:
.
一、例题精讲
【例4-1】如图,在△ABC 中,∠A=35°,∠C=45°,则与∠ABC 相邻的外角的度数是()A.35°B.45°C.80°D.100°
【例4-2】如图,将一副三角板按如图方式叠放,则角α等于()
A.165°B.135°
C.105°D.75°
练4-1. 如图,∠ACD 是△ABC 的外角,CE 平分∠ACD,若∠A=60°,∠B=40°,则∠ECD 等于()
A.40°B.45°
C.50°D.55°
练4-2.将一副三角尺按如图方式进行摆放,则∠1 的度数为.
练4-3. 如果将一副三角板按如图方式叠放,那么∠1 等于()
A.120°B.105°C.60°D.45°
练4-4. 如图,把三角形纸片ABC 沿DE 折叠,使点A 落在四边形BCED 的内部,已知∠1+∠2=80°,则∠A 的度数为.
【例5】
(1)如图1,∠A=70°,BP、CP 分别平分∠ABC 和∠ACB,则∠P 的度数是;(2)如图2,∠A=70°,BP、CP 分别平分∠EBC 和∠FCB,则∠P 的度数是;(3)如图3,∠A=70°,BP、CP 分别平分∠ABC 和∠ACD,求∠P 的度数.
练5. 如图① ,BD 、CD 是∠ABC 和∠ACB 的角平分线且交于点 D ,∠A=50°,则∠D= ;
(2)如图②,BD、CD 是∠ABC 和∠ACB 外角的平分线且相交于点D,请猜想∠A 与∠D 之间的数量关系:;
(3)如图③,BD 为∠ABC 的角平分线,CD 为∠ACB 的外角的角平分线,它们相交于点D,请猜想∠A 与∠D 之间的数量关系,并说明理由.。