矩阵与常微分方程
求解二阶线性常微分方程的一个显式差分格式
求解二阶线性常微分方程的一个显式差分格式杨韧;周钰谦【摘要】在求解常微分方程的方法中,有限差分法是使用最广泛的方法之一.考虑一个二阶线性常微分方程的边值问题,利用有限差分法,建立了一个具有二阶精度的显式差分格式.首先,通过讨论该显式差分格式的系数矩阵,证明了该显式差分格式解的存在性.然后,通过定义的3种不同范数之间的关系,证明了显式差分格式解的收敛性和稳定性.最后,通过计算机编程对实例的计算,验证了该显式差分格式的数值结果具有二阶精度,并且该显式格式数值结果绘制的图形稳定、光滑,与解析结果吻合较好.【期刊名称】《成都信息工程学院学报》【年(卷),期】2010(025)003【总页数】5页(P328-332)【关键词】计算数学;微分方程数值解法;差分格式;稳定性;收敛性【作者】杨韧;周钰谦【作者单位】成都信息工程学院数学学院,四川,成都,610225;成都信息工程学院数学学院,四川,成都,610225【正文语种】中文【中图分类】O241.81 引言在自然界与工程技术中的很多现象,其数学描述都可以归结为微分方程定解问题,很多近似自然科学的基本方程本身就是微分方程。
一般而言,绝大多数微分方程定解问题的解难以用解析形式来表示。
采用有限差分法研究二阶线性常微分方程两点边值问题,建立一个求解二阶线性常微分方程的差分格式,用离散的只含有限多个未知量的差分方程组去近似代替连续变量的微分方程和定解条件,讨论了差分格式解的存在性、稳定性和收敛性,并用实例验证了数值方法的可行性。
2 差分格式的建立二阶线性常微分方程两点边值问题其中p(x)≤M0,q(x)≥0,f(x)∈C[a,b]。
考虑y(x)在区间[x0-h,x0+h]上具有连续导数,x0处的Taylor展式整理可得其中εi∈(x0-h,x0+h), i=0,1,2,3。
将求解区间[a,b]N等分,步长h=(b-a)/N,节点设y={yi|0≤i≤N}为Ωh上的函数,记xi处的一阶中心差商二阶中心差商在节点上考虑定解问题式(1),则有定义函数于是边值问题式(1)的解y(x)在节点 xi处满足用yi代替Yi,舍去余项,得微分方程的算子差分格式局部截断误差为3 差分格式解的存在性、收敛性和稳定性3.1 差分格式解的存在性[1]定理1 差分格式(8)是唯一可解的。
求常系数线性微分方程解的矩阵方法
求常系数线性微分方程解的矩阵方法赵晓苏;钱椿林【摘要】考虑求常系数线性微分方程解的矩阵方法。
首先,将常系数线性微分方程化为一阶线性微分方程组,且用矩阵表示;然后,求其矩阵的特征值和特征向量,把矩阵对角化或化简;最后,利用矩阵乘法求得常系数线性微分方程的通解或特解。
其计算方法简单、方便,在实际中很有用。
%The paper addresses matrix method for the linear differential equation with constant coefficients. First of all,the system of the first order linear differential is the linear differential equation with constant coefficients transformed into the first order linear differential group,and presented by matrix,and then eigenvalue and eigenvector of the matrix,is obtained while the matrix is transformed into simplified matrix. Finally,the solution of the linear differential equation is achieved using the matrix multiplication. It is found that this method provides an easier and more useful solution to the linear differential equation with constant coefficients.【期刊名称】《苏州市职业大学学报》【年(卷),期】2015(000)001【总页数】6页(P44-49)【关键词】常系数线性微分方程;矩阵;特征值;特征向量;通解;特解【作者】赵晓苏;钱椿林【作者单位】苏州市职业大学数理部,江苏苏州 215104;苏州市职业大学数理部,江苏苏州 215104【正文语种】中文【中图分类】O151.26在科学研究和生产实践中往往会碰到某些量之间存在着某种微分关系,其数学表达式为微分方程,例如式中:f(x)为已知函数;pi(i=0,1,2,…,n-1)为已知常数;y=y(x)为未知函数.称式(1)为n阶常系数线性微分方程.如果f(x)≠0,称式(1)为n阶非齐次常系数线性微分方程;如果f(x)=0,称式(1) 为n阶齐次常系数线性微分方程,即对于n阶非齐次常系数线性微分方程(1)的求解,通常的做法是:讨论非齐次项f(x)的各种类型,利用待定系数法求得一个特解[2-5].对于非齐次项f(x)是一般的情形,用待定系数法显得无能为力.对于一般的非齐次项f(x),利用矩阵方法[1],可以求得其微分方程的一个特解或通解.其计算方法简单、方便,在实际中很有用.本文主要讨论二阶常系数线性微分方程求解的矩阵方法,其方法可以在求任意阶常系数线性微分方程的解中使用.1) 指数矩阵的定义.设A为n阶方阵,则,其中E为单位矩阵.2) 指数矩阵具有如下性质:(a)对于任意成立.(b)可逆,且(c) 设P为n阶可逆方阵,若求常系数线性微分方程解的矩阵方法的具体步骤如下:第1步,将常系数线性微分方程(1)化为一阶线性微分方程组,且用矩阵表示.式中y=y1.令,且矩阵则式(3)可记作第2步,求A的n个特征值和特征向量.作线性变换Y=PU,其中,P是由A的n 个线性无关特征向量组成的n阶可逆方阵,代入式(4),且设D=P-1AP,得当n=2时,D可以是下列两种简单情形:当λ1≠λ2时第3步求得一阶线性微分方程组(5)的特解或通解为第4步利用矩阵乘法和式(6)求Y(=PU),取Y的第1行第1列的元素,得到y=y1.通过具体例子说明用矩阵方法求解常系数线性微分方程的详细计算过程,主要讨论二阶常系数线性微分方程的解的情况.例1 求微分方程的一个通解.解第1步,将微分方程化为一阶线性微分方程组,即式中第2步,求式(7)中A的2个特征值和特征向量,,作线性变换Y=PU,其中,得第3步,求得一阶线性微分方程组(8)的通解为第4步,利用矩阵乘法和式(9)得到取Y的第1行第1列的元素,得到通解为例2 求微分方程y′ + y =sec3x的通解.解第1步,将微分方程化为一阶线性微分方程组,即式中第2步,求出式(10)中A的2个特征值和特征向量,,作线性变换Y=PU,其中,得第3步,求得一阶线性微分方程组(11)的通解为第4步,利用矩阵乘法和式(12)有取Y的第1行第1列的元素,得到通解为例3 求微分方程的一个特解.解将微分方程化为复数的形式,即只要考虑微分方程(13)的一个特解的虚部即可第1步,将微分方程化为一阶线性微分方程组,即式中第2步,求出式(14)中A的2个特征值和特征向量作线性变换Y=PU,其中,得第3步,求得一阶线性微分方程组(15)的特解为第4步,利用矩阵乘法和式(16)得取Y的第1行第1列的元素,得到特解为取其解的虚部,得到一个特解为例4 求微分方程的通解.解第1步,将微分方程化为一阶线性微分方程组,即式中第2步,求出式(17)中A的2个特征值和特征向量,作线性变换Y=PU,其中,得第3步,求得一阶线性微分方程组(18)的通解为第4步,利用矩阵乘法和式(19)有取Y的第1行第1列的元素,得到通解为例5 求微分方程的通解.解第1步,将微分方程化为一阶线性微分方程组,即式中第2步,求出式(20)中A的3个特征值和特征向量,作线性变换Y=PU,其中,得第3步,求得一阶线性微分方程组(21)的特解为第4步,利用矩阵乘法和式(22),得取Y的第1行第1列的元素,得到一个特解为所以通解为从上面5个例子可以看到,例1、例3和例5是常见非齐次项的微分方程的两种类型,如果利用待定系数法求解,计算量比较大,例2和例4不是常见非齐次项的微分方程的类型,利用待定系数法无法求解,利用矩阵方法计算比较方便.矩阵方法对于一般的非齐次项的常系数线性微分方程都能得到求解,同时给出了一般的非齐次项的常系数线性微分方程求通解的一个公式,即公式(6),因此在实际中很有用.【相关文献】[1] 钱椿林. 线性代数[M]. 3版.北京:高等教育出版社,2010.[2] 钱椿林. 高等数学[M]. 3版.北京:电子工业出版社,2010.[3] 同济大学应用数学系. 高等数学[M]. 5版.北京:高等教育出版社,2004.[4] 《现代应用数学手册》编委会. 现代应用分析卷[M]. 北京:清华大学出版社,1998.[5] 《数学手册》编写组. 数学手册[M]. 北京:高等教育出版社,1984.。
矩阵的jordan分解 算法
矩阵的jordan分解算法矩阵的Jordan分解是一种重要的矩阵分解方法,它将原始矩阵分解成若干个Jordan块的形式,可用来求解线性常微分方程、矩阵特征值和特征向量等问题。
本文将对Jordan分解算法进行详细介绍,涵盖其基本概念、计算方法及其应用。
一、基本概念1. 矩阵的Jordan块一个矩阵A是Jordan块,如果其形式为:$$A=\begin{pmatrix}\lambda & 1 &0 &\cdots &0\\0 &\lambda &1 &\cdots &0\\\vdots &\vdots &\ddots &\ddots &\vdots \\\vdots &\vdots & &\ddots &1\\0 &0 &\cdots &0 & \lambda\end{pmatrix}$$其中$\lambda$是矩阵A的特征值,且矩阵A中只有两种取值:$\lambda$和1。
对于一个$n\times n$的Jordan块,其特征值为$\lambda$,其代数重数为n。
2. Jordan分解一个$n\times n$矩阵A可以分解成如下形式:$$A=PJP^{-1}$$其中P是$n\times n$可逆矩阵,J是如下形式的矩阵:$$J=\begin{pmatrix}J_1 & 0 &\cdots &0\\0 &J_2 &\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0 &0 &\cdots & J_k\end{pmatrix}$$其中$J_1,J_2,\cdots ,J_k$是各自是Jordan块,且$J_1+J_2+\cdots +J_k=A$。
常系数线性方程组基解矩阵的计算
常系数线性方程组基解矩阵的计算董治军(巢湖学院 数学系,安徽 巢湖 238000)摘 要:微分方程组在工程技术中的应用时非常广泛的,很多问题都归结于它的求解问题,基解矩阵的存在和具体寻求是分歧的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过 方法求出基解矩阵,这时可利用矩阵指数exp A t ,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法. 关键词;常系数奇次线性微分方程组;基解矩阵;矩阵指数Calculation of Basic solution Matrix of Linear Homogeneous System with Constant CoefficientsZhijun Dong(Department of Mathematics,Chaohu CollegeAnhui,Chaohu)Abstract:Differential equations application in engineering technology is very extensive, when many problems are attributable to its solving problem, base solution matrix existence and specific seek is different things, general homogeneous linear differential equations is not the base solution matrix by integral get, but when coefficient matrix is constant matrix, can pass out the base solution matrix method, then are available matrix exponential t, the general form base solution matrix, the paper discusses the most widely used differential equations with constant coefficients, combined with differential equations, linear algebra, discuss knowledge of homogeneous linear differential equation with constant coefficients of base solution matrix several general calculation method.Keyword:linear homogeneous system with constant coefficients; matrix of basic solutions; matrix exponent引言:线性微分方程组的求解历来是常微分方程的重点,根据线性微分方程组的解的结构理论,求解线性微分方程组的关键在于求出对应齐次线性微分方程组的基解矩阵,本文主要讨论齐次线性微分方程组 X’=AX ★的基解矩阵的计算问题,这里A 是n n ⨯常数矩阵.一.矩阵指数exp A 的定义和性质: 1.矩阵范数的定义和性质 定义:对于n n ⨯矩阵A =ij a ⎡⎤⎣⎦n×n 和n 维向量X =()1,...,Tn X X 定义A 的范数为A =,1niji j a=∑ ,X =1nii x=∑设A ,B 是n×n 矩阵,x ,y 是n 维向量,易得下面两个性质: (1)AB ≤A B ,AX ≤A X ; (2)A B +≤A +B ,X Y +≤X +Y .2.矩阵指数exp A 的定义和性质:(!)定义:如果A 是一个n×n 常数矩阵,我们定义矩阵指数exp A 为下面的矩阵级数的和:exp A =!kA k k ∞=∑=E+A+22!A +…+!m A m +… (1.0)其中E 为n 阶单位矩阵,m A 是A 的m 次幂,这里我们规定0A =E ,0!=1 这个级数对于所有的A 都是收敛的.因次exp A 是一个确定的非负矩阵,特此外,对所有元均为0的零矩阵0,有exp0=E.事实上,由上面范数的性质(1),易知对于一切正整数k ,有!kA k ≤!k Ak ,又因对于任一矩阵A ,A 是一个确定的实数,所以数值级数E +A +22!A +…+!mA m +… 是收敛的.进一步指出,级数exp A t=!0kkA k k t ∞=∑在t 的任何有限区间上是一致收敛的. 事实上,对于一切正整数k ,当t ≤c (c是某一整数)时,有!k k A k t ≤!k kA k t ≤!k A k k c ,而数值级数()!kA c k k ∞=∑是收敛的,因而exp A t=!k kA k k t ∞=∑是一致收敛的.(2)矩阵指数exp A 的性质:①若矩阵A ,B 是可交换的,即AB=BA ,则exp A (A+B )=exp A exp B ;②对于任何矩阵A ,()1exp A -存在,且()1exp A -=exp (-A ); ③如果T 是非奇异矩阵,则 exp (1T -AT )=1T -(exp A )T . 3.有关常系数奇次线性微分方程组★的基本问题 定理1:矩阵Φ(t )=exp A t (1.1) 是★的基解矩阵,且Φ(0)=E.证明:由定义易知Φ(0)=E ,将(1.1)对t 求导,得'Φ(t )=()'exp At =A+21!A t+322!A t +…+1(1)!kk A k t --+… =A exp A t = A Φ(t ) 这就标明,Φ(t )是★的解矩阵,又det Φ(0)=det E =1 因此φ(t )是★的解矩阵. 证毕.注1:由定理1,我们可以利用这个基解矩阵推知★的任一解ϕ(t )=(exp A t )C 这里C 打、是一个常数向量.例1:如果A 是一个对角矩阵A=12n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(其中未写出的元均为零) 试找出x '=Ax 的基解矩阵.解:由( 1.0)可得exp A t=E+12n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1!t +221222!2t n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦+12!k kk t k k n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦+…=12n a t a ta t e e e ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦根据定理1,这就是一个基解矩阵. 例2:试求x '=2102⎡⎤⎢⎥⎣⎦x 的基解矩阵. 解:因为A=2102⎡⎤⎢⎥⎣⎦=2002⎡⎤⎢⎥⎣⎦+0100⎡⎤⎢⎥⎣⎦而且后面的两个矩阵是可交换的,得到 exp A =exp 2002⎡⎤⎢⎥⎣⎦t ⋅exp 0100⎡⎤⎢⎥⎣⎦t=2200tt e e ⎡⎤⎢⎥⎣⎦222!01010000t E t ⎧⎫⎡⎤⎡⎤⎪⎪+++⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎪⎪⎩⎭但是20100⎡⎤⎢⎥⎣⎦=0000⎡⎤⎢⎥⎣⎦所以 级数只要两项,因此 基解矩阵是exp A t= 2101t t e ⎡⎤⎢⎥⎣⎦. 二.基解矩阵的计算1.基于特征值和特征向量型计算基解矩阵类似于一阶齐次线性微分方程,希望方程组★有形如()t t e C λϕ=的解,其中λ为待定的参数,C 为待定的n 维非零向量,将之代入方程组,得到 tte C Ae C λλλ=,即有 ()0E A C λ-= (1.2)要使齐次线性代数方程组(1.2)有非零解向量,应有det()0E A λ-= (1.3)称式(1.3)为方程组★的特征方程,称λ为A 的特征值.称非零向量C 为A 的对应于特征值λ的特征向量.于是有如下结论:()t t e C λϕ=为方程组★的充分需要条件是λ为A 的特征值,且C 为对应于λ的特征向量.这样就提供了用代数方法求解的平台.(1)设A 具有n 个线性无关的特征向量12,,n v v v ,它们对应的特征向量分别为12,n λλλ(不必各不相同)易知矩阵1212()(,,)nt t t n t e v e v e v λλλΦ=t R ∀∈是常系数齐次线性微分方程组★的一个基解矩阵.事实上,由上面讨论知道向量函数i ti e v λ(1≤i ≤n ) 都是方程组★的一个解,因此()t Φ是方程★的解矩阵.计算12det (0)det(,,)0n v v v Φ=≠ 于是()t Φ是方程组★的基解矩阵.注2:当A 是n 个分歧的特征值时,就满足上述性质.注3:此处()t Φ纷歧定是尺度基解矩阵exp A t ,但由线性微分方程组的一般理论知:存在一个n 个非奇异矩阵C ,有exp A =()t C Φ⋅ 令t=0,得C=1(0)-Φ 即exp A t=1()(0)t -Φ⋅Φ于是当A 是实矩阵时,则exp A t 为实的,这样上式就给出了一个构造实基解矩阵的方法.例3:利用特征值与特征向量求基解矩阵的方法,求解例1中的一个基解矩阵.解:显然A 是对角矩阵,它有n 个特征值(1)i i a i n λ=≤≤对于每个特征值i λ易知其对应的特征向量为(0,1,0)T i C =即有()0i i E A C λ-=而这些特征向量12,n C C C 线性无关,由注2,于是方程组有基解矩阵()121212(),,n n a ta ta ta t a tna t e e t e C e C e C e ⎡⎤⎢⎥⎢⎥Φ==⎢⎥⎢⎥⎣⎦这与例1 的计算结论一样.例4:试求方程组x Ax '=,其中3553A ⎡⎤=⎢⎥-⎣⎦的一个基解矩阵. 解:A 的特征值就是特征方程235det()634053E A λλλλλ---==-+=-的根,解之得1,235i λ=± 对应与特征值135i λ=+的特征向量,计算齐次线性代数方程11255()055u i E A u u i λ-⎡⎤⎡⎤-==⎢⎥⎢⎥⎣⎦⎣⎦ 因此1u i α⎡⎤=⎢⎥⎣⎦是对应于1λ的特征向量,类似的,可以求得对应于2λ的特征向量1i v β⎡⎤=⎢⎥⎣⎦ 其中,0αβ≠为任意常数,而121,1i v v i ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦是对应于12,λλ的两个线性无关的特征向量.根据注2,于是矩阵()()()()()123535123535(),i ti tt ti t i te ie t e v e v ie e λλ+-+-⎡⎤Φ==⎢⎥⎢⎥⎣⎦就是方程组的一个基解矩阵. 再由注3,实基解矩阵为()()()()()()()()13535353513123535353511cos5sin 5exp ()(0)11sin 5cos5i ti ti ti tt i ti ti t i te ie i e ie i t t At t e i i t t iee iee -+-+--+-+-⎡⎤⎡⎤-⎡⎤⎡⎤⎡⎤=ΦΦ===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦(2)设A 有k 个分歧的特征值12,k λλλ它们的重数分别为12,,k n n n 其中12k n n n n +++=那么如何计算exp At ?回忆高等代数理论,对应于j n 重特征值j λ的如下线性代数方程组()0j nj E A u λ-= (1.4)的解全体构成n 维欧几里得空间的一个j n 维子空间()j U i j k ≤≤而且n 维欧几里得空间可暗示成12,k U U U 的直和,由此对于n 维欧几里得空间的每一个向量u ,存在唯一组向量12,ku u u 其中(1)j j u U j k ∈≤≤使得分解式为12k u u u u =+++(1.5)因此,一方面 对于★的初始值0(0)x x =,应用式(1.5)知存在j j v U ∈有012kx v v v =+++注意到空间j U 的构造,即知j v 是式(1.4)的解,即有()0j nj j E A v λ-=因而有()0l j j E A v λ-=,1j l n j k ≥≤≤ (1.6)另一方面,j E λ-为对角矩阵,因此由例1知exp()j j j ttj t e eEt e λλλλ---⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎣⎦故有()j t j e Et E λλ-= 计算(exp )(exp )j j At v At Ev =(exp )exp()j tj jAt e Et v λλ=-=(exp())j tj je A E t v λλ-=(()j tj e E t A E λλ+-+12122!(1)!()())n jj j n t t j j j n A E A E v λλ----++-所以方程组★满足初始条件()00x x =的解()t ϕ为()()()()012exp exp k t At x At v v v ϕ==+++=()()1!110exp i i j in kkttj j j i j j i At v e A E v λλ-===⎛⎫=- ⎪ ⎪⎝⎭∑∑∑ (1.7) 同时注意到()()()()()()12exp exp exp ,exp ,exp nAt At E At e At e At e ==其中[][][]121,0,0,0,1,00,0,1TTTn e e e ===即在上面初始条件中分别令01020,,n x e x e x e ===应用式(1.7)求得n 个解,然后以这n 个解作为列即得exp At .注4:当A 只有一个特征值时,即λ为n 重的,因此nv R ∀∈都有()0E A v λ-=这标明()nE A λ-为零矩阵.则()()exp exp exp exp tAt AtE At e Et λλ⎡⎤==-=⎣⎦()()1!0exp in itt i i e A E t A E λλλ-=-=-∑(1.8)注5:式(1.7)标明方程组的任一解都可以经过有限次代数运算求出.例5:若A 是例2中的矩阵,求初值问题()0,0x Ax x x '==的解和exp At . 解:本题用两种方法计算exp At 和()t ϕ方法一:易知1,22λ=是A 的二重特征值,此时,A 只有一个特征值,根据式(1.8)计算有exp At =()()()1222!12201i itttt i i t eA E e E t A E e =⎡⎤-=+-=⎢⎥⎣⎦∑和特解()t ϕ=(exp At )0x .方法二:1,22λ=是A 的二重特征值,这时212,n R =只有一个子空间1U ,0x =12x x ⎡⎤⎢⎥⎣⎦不需要分解,根据式(1.7)有()t ϕ=()1222022t tx tx e E t A E x e x +⎡⎤+-=⎡⎤⎢⎥⎣⎦⎣⎦. 分别取010210,01x e x e ⎡⎤⎡⎤====⎢⎥⎢⎥⎣⎦⎣⎦代入上式中的()t ϕ中,则()()22121,01tt t t e t e ϕϕ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦所以()()()2121exp ,01t t At t t e ϕϕ⎡⎤==⎢⎥⎣⎦和特解()t ϕ=()0exp At x . 例6:考虑方程组x Ax '=,其中311201112A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦试求满足初始条件()[]01230Tx x x x x ==的解,并求exp At .解:A 的特征方程为()()()2311det 21120112E A λλλλλλ--⎡⎤⎢⎥-=--=--=⎢⎥⎢⎥--⎣⎦121,2λλ==分别为121,2n n ==重特征根,为了确定3R 的子空间12,U U 由式(1.4) 首先考虑齐次线性代数方程组()1232112110111u A E u u u λ-⎡⎤⎡⎤⎢⎥⎢⎥-=-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦解得[]1011T u α=,其中α为任意常数. 因此1U 是由1u 构成的一维子空间,其次考虑齐次线性方程组()122300021100110u A E u u u ⎡⎤⎡⎤⎢⎥⎢⎥-=-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦解得2101001u βγ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中,βγ为任意常数.因此2U 是由2u 构成的二维子空间.下面对初值()00x x =进行分解,有012x u u =+ 即123010110101x x x αβγ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦于是112121213210,x v x x v x x x x x x ⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦根据式( 1.7) 有()()2122t t t e Ev e E t A E v ϕ=++-⎡⎤⎣⎦=()()13212211321213210t t x t x x x e x x e x t x x x x x x x x +-+⎡⎤⎡⎤⎢⎥⎢⎥-++-+⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦最后为了得到exp At ,依次分别令0001000,1,0001x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦代入上式得到3个线性无关解()()()123,,t t t ϕϕϕ 于是()()()()()2222221232221exp 1tt t t tt t t t t t tt t e te te At t t t e t ee te te e e e e e ϕϕϕ⎡⎤+-⎢⎥==-++-⎡⎤⎣⎦⎢⎥⎢⎥-+-⎣⎦2:“哈密顿-凯莱”法:设A 是方程组★的n n ⨯实系数矩阵,()p λ是A 的特征多项式,()()111det n n n n p A E a a a λλλλλ--=-=++++特征方程为A 的()111nn n n p a a a λλλλ--=++++=0 (1.9)方程( 1.9)的根12,n λλλ是矩阵A 的特征多项式,且有()()()()11n n p λλλλλλλ-=---哈密顿-凯莱定理:设()p λ是矩阵A 的特征多项式,则()1110n n n n p A A a A a A a E --=++++=亦即()()()()110n n p A A E A E A E λλλ-=---=定理:设12,n λλλ是矩阵A 的n 个特征值(它们纷歧定不相等)则()()110exp n i i i At r t p -+==∑(2.0)其中()()()011,i i i p E p A E A E A E λλλ-==---()1,2,i n =并有()()()12,n r t r t r t 是初值问题()()1111101,00j j j j j r r r r r r r λλ-⎧'=⎪⎪'=+⎨⎪==⎪⎩()2,3j n = (2.1)的解.推论:若A 只有一个特征值λ,则()1!exp exp in it i i At tA E λλ-==-∑上述定理将计算exp At 的问题转化为求方程组(2.1)满足初始条件的解的问题,由于方程组(2.1)是一个特殊的一阶常系数齐次线性方程组,容易直接求解.因而由公式(2.0)就可以直接求出方程组★的基解矩阵exp At .例7:求常系数齐次线性方程组x Ax '=,其中233453442A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦的解. 解:A 的特征方程为()()()()233det 453122442A E λλλλλλλ--⎡⎤⎢⎥-=--=-++-⎢⎥⎢⎥--⎣⎦=0 解得特征值为1231,2,2λλλ=-=-=求解初值问题:()()()112123231232201,00,00r r r r r r r r r r r ⎧'=-⎪⎪'=-⎪⎨'⎪=+⎪===⎪⎩ 得()()()2221111233412,,t t t t tr t e r t e e t r t e e e-----==-=-++又因()()11212333121212443,121212443121212p A E p A E A E λλλ--⎡⎤⎡⎤⎢⎥⎢⎥=-=-=--=-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦则由公式:得()2222222221022222exp tt t t t t tt t tt t i i i t t t tt e e e e e At r t p e e e e e e e e e e e e -----+=--⎡⎤--+⎢⎥==-++--+⎢⎥⎢⎥---⎣⎦∑. 3:算子构造法: 其构造步调是:① 利用已引入的微分算子dD dx=写出★的微分算子暗示; ② 用算子法求解★的微分算子暗示的方程组得其通解:()()()()11221212,,,,,n n n n y x c c c y x c c c y x y x c c c ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦; ③ 依次令12100010,,001n c c c ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 代入上述通解,则得★得n 个线性无关的特解()()()12,,n y x y x y x ;④ 以()()()12,,n y x y x y x 为列作成的矩阵()()()()12n Y x y x y x y x =⎡⎤⎣⎦就是★的基解矩阵,且★夫人矩阵指数函数形式的基解矩阵为:()()10Axe Y x Y -=.例8:试求方程组1211,13y y y y y -⎡⎤⎡⎤'==⎢⎥⎢⎥⎣⎦⎣⎦(2.2) 的基解矩阵,并求11.13Ax e A ⎛-⎫⎡⎤= ⎪⎢⎥⎣⎦⎝⎭. 解:①(2.2)的算子暗示就是()()12121030D y y y D y -+=⎧⎪⎨-+-=⎪⎩ (2.3)②求解(2.3)111013D y D -⎡⎤=⎢⎥--⎣⎦即()2120D y -= (2.4) 于是(2.4)的通解为()2112xy C C x e=+12,C C 为任意常数 (2.5)(2.5)代入(2.3)的第一个方程得()()2221111221xx y D y Dy y C C x eC xe =--=-+=-+-故(2.3)的通解为()()2112222122x x xy C C x e y C C e C xe ⎧=+⎪⎨=-+-⎪⎩12(,C C 为任意常数) ③依次令1210,01C C ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得( 2.3)的两个线性无关解()()()221222,1x x x x xe e y x y x x e e ⎡⎤⎡⎤==⎢⎥⎢⎥-+-⎣⎦⎣⎦; ④ 以12,y y 作列而成的矩阵:()[]()()2221221111xx x x x e xe Y x y y e x ex e ⎡⎤⎡⎤===⎢⎥⎢⎥--+--+⎣⎦⎣⎦ 就是(2.2)的一个基解矩阵. ⑤求(2.2)的基解矩阵Axe 因()10011Y ⎡⎤=⎢⎥--⎣⎦,故()110011Y -⎡⎤=⎢⎥--⎣⎦于是Axe =()22110111111xx x x x e x x x e --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--+--+⎣⎦⎣⎦⎣⎦. 结束语:关于基解矩阵exp At 的计算,还可以利用矩阵的约当尺度型等有关线性代数知识进行计算,在此不作详述. 参考文献:[]1王高雄,周之铭,朱思铭,王寿松 常微分方程 高等教育出版社; []2西南师范大学数学与财经学院 常微分方程 西南师范大学出版社; []3肖箭,盛立人,宋国强 常微分方程简明教程 科学出版社; []4王翊,陶怡 常系数齐次线性微分方程组的解法 牡丹江大学学报.。
李金城 25 数学08-1 常系数线性微分方程组的矩阵解法
摘要在常微分方程中,介绍了解常系数线性微分方程组的消元法,它是解常系数线性微分方程组的最初等的方法,适用于知函数较少的小型微分方程组。
对于未知函数较多时,用消元法则会非常不便,为此应寻求更为有效的方法。
在掌握线性代数的知识后,用矩阵法解常系数线性齐次微分方程组较为方便。
关键词:基解矩阵特征方程特征值特征向量AbstractIn the ordinary differential equation, introduced that understood often the coefficient linear simultaneous differential equation's elimination, it is the solution often the coefficient linear simultaneous differential equation's most primary method, is suitable in knows the function few small simultaneous differential equation. Are many when regarding the unknown function, will be inconvenient with the elimination, for this reason should seek a more effective method. After grasping the linear algebra the knowledge, the coefficient linearity homogeneous simultaneous differential equation is often more convenient with the matrix technique solution.Keywords: basic solution of matrix characteristic equation eigenvalue Characteristic vector第一章:矩阵指数A引言已知常系数线性微分方程组:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++=+++=+++=n nn n n n nn n n xa x a x a dtdx x a x a x a dtdx x a x a x a dt dx (22112222121212121111)(1) 的求解方法,通常可以用消元法将方程组化为一元的高阶微分方程:0 (111)111=+++--x b dtx d b dt x d n n n nn 来求解。
《常微分方程》课程大纲
《常微分方程》课程大纲一、课程简介课程名称:常微分方程学时/学分:3/54先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。
面向对象:本科二年级或以上学生教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。
二、教学内容和要求常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。
(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数)第一章基本概念(2,0)(一)本章教学目的与要求:要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方向场),定解问题等基本概念。
本章教学重点解释常微分方程解的几何意义。
(二)教学内容:1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。
2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。
3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。
4.常微分方程所讨论的基本问题。
第二章初等积分法(4,2)(一)本章教学目的与要求:要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。
本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。
并通过习题课进行初步解题训练,提高解题技巧。
(二)教学内容:1. 恰当方程(积分因子法); 2. 分离变量法3. 一阶线性微分方程(常数变易法)4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)5.应用举例第三章常微分方程基本定理(10,2)(一)本章教学目的与要求:要求学生正确掌握存在和唯一性定理及解的延伸的含义,熟记初值问题的解存在唯一性条件,正确理解解对初值和参数的连续依赖性和可微性的几何含意。
常系数线性方程组基解矩阵的计算解析
董治军
(巢湖学院 数学系,安徽 巢湖 238000)
摘 要:微分方程组在工程技术中的应用时非常广泛的,不少问题都归结于它的求解问题,基解矩阵的存在和具体寻求是不同的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过 方法求出基解矩阵,这时可利用矩阵指数 t,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法.
注1:由定理1,我们可以利用这个基解矩阵推知★的任一解
(t)=( t)C 这里C打、是一个常数向量.
例1:如果A是一个对角矩阵A= (其中未写出的元均为零)
试找出 =Ax的基解矩阵.
解:由(1.0)可得 t=E+ + + +…=
根据定理1,这就是一个基解矩阵.
例2:试求 = x的基解矩阵.
解:因为A= = + 而且后面的两个矩阵是可交换的,得到
3.有关常系数奇次线性微分方程组★的基本问题
定1:矩阵 (t)= t (1.1)
是★的基解矩阵,且 (0)=E.
证明:由定义易知 (0)=E,将(1.1)对t求导,得 (t)= =A+ t+ +…+ +…=A t = A (t)
这就表明, (t)是★的解矩阵,又 (0)= =1 因此 (t)是★的解矩阵.证毕.
=exp t exp t=
但是 =
所以 级数只要两项,因此 基解矩阵是 t= .
二.基解矩阵的计算
1.基于特征值和特征向量型计算基解矩阵
类似于一阶齐次线性微分方程,希望方程组★有形如 的解,其中 为待定的参数,C为待定的n维非零向量,将之代入方程组,得到 ,即有 (1.2)
(整理)考研《数学二》大纲:各部分考试内容及要求.
2014考研《数学二》大纲:各部分考试内容及要求考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约78%线性代数约22%四、试卷题型结构单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等)。
大学高数大一上册知识点
大学高数大一上册知识点【前言】大学高数作为大一学生的必修课程之一,是一门基础性很强、内容较多的数学课程。
大学高数的学习需要掌握一定的数学基础,旨在培养学生的数学思维能力和解决实际问题的能力。
本文将为大家梳理大学高数大一上册的知识点,希望能够帮助大家系统地掌握和理解这门课程。
【知识点一:函数与极限】1. 函数的概念和性质在大学高数中,函数是一个非常重要的概念。
函数的定义是由一个或多个变量决定的一个数值的集合,常用符号表示为f(x)。
函数的性质包括定义域、值域、单调性、奇偶性等。
2. 极限的概念和计算方法极限是函数中的一个重要概念,表示函数在某一点上的趋势或接近程度。
可以通过直接计算、夹逼定理、函数性质等方法来求解极限。
【知识点二:导数与微分】1. 导数的定义与计算法则导数是函数在某一点上的切线斜率,也表示函数的变化率。
导数的计算可以通过定义法、基本导数法则和导数的四则运算法则进行。
2. 微分与微分中值定理微分是导数的几何解释,表示函数在某一点上的变化量。
微分中值定理是导数在某一区间内取到特定值的重要定理。
【知识点三:高等代数】1. 行列式的概念与性质行列式是矩阵的一种特殊形式,具有一些重要的性质和计算方法。
行列式的计算可以通过代数余子式和拉普拉斯展开等方法进行。
2. 矩阵的基本概念与运算矩阵是一种特殊的数表,具有加法、数乘、乘法等基本运算。
矩阵的计算需要掌握矩阵的性质和运算法则。
【知识点四:一元函数的定积分】1. 定积分的概念和性质定积分是函数在一定区间上的面积,可以理解为累加的结果。
定积分的性质包括可加性、线性、区间可加等。
2. 定积分的计算方法定积分的计算可以通过牛顿-莱布尼茨公式、换元积分法、分部积分法等方法进行。
【知识点五:常微分方程】1. 常微分方程的基本概念常微分方程是描述一元函数变化规律的方程,包括一阶和高阶常微分方程。
常微分方程的解表示函数的解析解或近似解。
2. 常微分方程的求解方法常微分方程的求解可以通过分离变量、齐次方程、一阶线性方程等方法进行。
矩阵常微分方程求解
矩阵常微分方程求解矩阵常微分方程是指形式为$\frac{{dX}}{{dt}}=AX$的方程,其中$X$是一个$n\times 1$的矩阵,$A$是一个$n\times n$的常数矩阵。
要求解矩阵常微分方程,可以使用矩阵的特征值和特征向量来求解。
首先,求解特征值问题$AX=\lambda X$,其中$\lambda$是特征值,$X$是特征向量。
求解得到的特征值为$\lambda_1, \lambda_2, ..., \lambda_n$,对应的特征向量为$X_1, X_2, ..., X_n$。
然后,构造$n\times n$的矩阵$P$,其中每列是一个特征向量$X_i$,使得$P=[X_1, X_2, ...,X_n]$。
接下来,构造$n\times n$的对角矩阵$\Lambda$,其中对角线上的元素是特征值$\lambda_1,\lambda_2, ..., \lambda_n$。
最后,可以得到方程的通解$X(t)=P\Lambda e^{At}P^{-1}$,其中$e^{At}$是矩阵$A$的指数函数,$P^{-1}$是矩阵$P$的逆矩阵。
需要注意的是,指数函数$e^{At}$的计算需要使用矩阵的幂级数展开,即$e^{At}=\sum_{k=0}^{\infty} \frac{1}{k!}(At)^k$,其中$(At)^k$代表矩阵$At$的$k$次幂。
在实际求解时,可以利用计算工具如MATLAB或Python的NumPy库中的函数来求解矩阵常微分方程。
例如,在Python中可以使用scipy库中的`scipy.linalg.expm`函数来计算矩阵的指数函数,使用NumPy库中的`numpy.linalg.eig`函数来求解特征值和特征向量,使用NumPy库中的`numpy.linalg.inv`函数来计算矩阵的逆矩阵。
常微分方程系数矩阵
常微分方程系数矩阵
常微分方程是一种重要的数学形式,它可以用来描述物理系统中变量之间的变化。
它以方程组形式存在,可以用来模拟和研究物理系统的运行情况。
常微分方程的系数矩阵是一个重要的概念,它可以用来更好地理解常微分方程的形式及其对物理系统的影响。
常微分方程的系数矩阵是一个m×n的数学矩阵,其中m
代表系统中变量的数量,n代表常微分方程的阶数。
这个矩阵
包含了常微分方程系统中参与运算的所有变量的系数。
比如,如果一个常微分方程是 dy/dx=2x+3y,那么这个系统的系数矩
阵将是一个2×2矩阵,其中第一行分别是2和3,代表x和y
的系数分别是2和3,第二行是1和0,代表dy/dx的系数是1。
系数矩阵的意义在于,它可以帮助我们更好地理解常微分方程的形式,从而帮助我们更好地分析物理系统的行为。
它还可以用来解决常微分方程系统的方程,例如使用矩阵的乘法和除法来求解系统的求解方法。
系数矩阵也可以用来研究常微分方程系统的稳定性,从而帮助我们更好地理解和设计物理系统。
总之,系数矩阵是常微分方程中重要的概念,它能够帮助我们更好地理解常微分方程的结构,并用来解决常微分方程系统的方程,从而帮助我们更好地理解物理系统的行为。
它也可以帮助我们研究系统的稳定性,从而设计更加可靠的物理系统。
《常微分方程》知识点整理
《常微分方程》复习资料1.(变量分离方程)形如()()dyf x y dxϕ=(1.1)的方程,称为变量分离方程,这里(),()f x y ϕ分别是,x y 的连续函数. 解法:(1)分离变量,当()0y ϕ≠时,将(1.1)写成()()dyf x dx y ϕ=,这样变量就“分离”了; (2)两边积分得()()dyf x dx c y ϕ=⎰⎰+(1.2),由(1.2)所确定的函数(,)y x c ϕ=就为(1.1)的解. 注:若存在0y ,使0()0y ϕ=,则0y y =也是(1.1)的解,可能它不包含在方程(1.2)的通解中,必须予以补上. 2.(齐次方程)形如(dy yg dx x=的方程称为齐次方程,这里是u 的连续函数. ()g u 解法:(1)作变量代换(引入新变量)y u x =,方程化为()du g u u dx x -=,(这里由于dy dux u dx dx=+);(2)解以上的分离变量方程;(3)变量还原.3.(一阶线性微分方程与常数变异法)一阶线性微分方程()()()0dya xb x yc x dx++=在的区间上可写成()0a x ≠()()dyP x y Q x dx =+(3.1),这里假设在考虑的区间上是(),()P x Q x x 的连续函数.若,则(3.1)变为()0Q x =()dyP x y dx=(3.2),(3.2)称为一阶齐次线性方程.若()0Q x ≠,则(3.1)称为一阶非齐次线性方程. 解法:(1)解对应的齐次方程()dyP x y dx=,得对应齐次方程解()p x y ce dx ⎰=,为任意常数;c (2)常数变异法求解(将常数变为c x 的待定函数,使它为(3.1)的解):令为(3.1)的解,则()c x ()()p x dxy c x e ⎰=()()()()()p ⎰⎰p x dx p x dy dc x e c x x e dx dx =+dx ,代入(3.1)得()()()p x dx dc dxx Q x e -⎰=),积分得;()p x dx c ⎰=+ ()()c x Q x e -⎰(3)故(3.1)的通解为()()(()p x dxp x dxy e Q x e dx -⎰⎰c=+⎰ . 4.(伯努利方程)形如()()n dyP x y Q x y dx=+的方程,称为伯努利方程,这里为(),()P x Q x x 的连续函数. 解法:(1)引入变量变换,方程变为1nz y -=(1)()(1)()dz n P x z n Q x dx=-+-;(2)求以上线性方程的通解; (3)变量还原.5.(可解出的方程)形如y (,)dyy f x dx=(5.1)的方程,这里假设(,)f x y '有连续的偏导数. 解法:(1)引进参数dyp dx=,则方程(5.1)变为(,)y f x p =(5.2); (2)将(5.2)两边对x 求导,并以dy p dx =代入,得f f pp x p x∂∂∂=+∂∂∂(5.3),这是关于变量,x p 的一阶微分方程;(3)(i )若求得(5.3)的通解形式为(,)p x c ϕ=,将它代入(5.2),即得原方程(5.1)的通解(,(,))y f x x c ϕ=,为任意常数;c(ii )若求得(5.3)的通解形式为(,)x p c ψ=,则得(5.1)的参数形式的通解为(,)((,),)x p c y f p c p ψψ=⎧⎨=⎩,其中p 是参数,是任意常数;c (iii )若求得(5.3)的通解形式为,则得(5.1)的参数形式的通解为(,,)0x p c Φ=(,,)0(,)x p c y f x p Φ=⎧⎨=⎩,其中p 是参数,是任意常数.c 6.(可解出x 的方程)形如(,)dyx f y dx=(6.1)的方程,这里假设(,)f y y '有连续的偏导数. 解法:(1)引进参数dyp dx=,则方程(6.1)变为(,)x f y p =(6.2); (2)将(6.2)两边对y 求导,并以1dx dy p=代入,得1f f pp y p y ∂∂∂=+∂∂∂(6.3),这是关于变量,y p 的一阶微分方程;(3)若求得(6.3)的通解形式为,则得(6.1)的参数形式的通解为(,,)0y p c Φ=(,)(,,)0x f y p y p c =⎧⎨Φ=⎩,其中p 是参数,是任意常数.c 7.(不显含的方程)形如y (,)0dyF x dx=的方程,这里假设(,)F x y '有连续的偏导数. 解法:(1)设dyp dx=,则方程变为; (,)0F x p =(2)引入参数,将用参数曲线表示出来,即t (,)0F x p =()()x t p t ϕψ=⎧⎨=⎩,(关键一步也是最困难一步); (3)把()x t ϕ=,()p t ψ=代入dy ,并两边积分得pdx =()()y t t dt ψϕ'c =+⎰;(4)通解为()()()x t y t t dt ϕψϕ=⎧⎪⎨'=+⎪⎩⎰c .8.(不显含x 的方程)形如(,)0dyF y dx=的方程,这里假设(,)F y y '有连续的偏导数.解法:(1)设dyp dx=,则方程变为;(,)0F y p =(2)引入参数,将用参数曲线表示出来,即t (,)0F y p =()()y t p t ϕψ=⎧⎨=⎩,(关键一步也是最困难一步);(3)把()y t ϕ=,()p t ψ=代入dy dx p =,并两边积分得()()t x dt c t ϕψ'=+⎰; (4)通解为()()()t x dt c t y t ϕψϕ'⎧=+⎪⎨⎪=⎩⎰. 9.(型可降阶高阶方程)特点:不显含未知函数()(1)(,,,,)0(1)k n n F x y y y k -=≥ y 及.(1),,k y y -' 解法:令()()k yz x =,则(1)k y z +'=,.代入原方程,得.若能求得,()()n n y z -=k ()(,(),(),,())0n k F x z x z x z x -'= ()z x将()()k yz x =()yf =连续积分次,可得通解.k , 10.(型可降阶高阶方程)特点:右端不显含自变量()(1)(,,)n k y y y -n x .解法:设,则()y 222,(dp dy dP d p dP y P y P P dy dx dy dy dy'''''===+ y p '=2,) ,代入原方程得到新函数的()P y (1n -阶方程,求得其解为1()(,,,)n 1P y y C C ϕ-== dy dx,原方程通解为11(,,,)n n dyx C y C C ϕ-=+⎰ .11.(恰当导数方程)特点:左端恰为某一函数对(1)(,,,,)n x y y y -'Φ x 的导数,即(1)(,,,,)0n dx y y y dx-'Φ= . 解法:类似于全微分方程可降低一阶(1)(,,,,)n x y y y C -'Φ =',再设法求解这个方程.12.(齐次方程)特点:(k 次齐次函数).()()(,,,,)(,,,,)n k n x ty ty ty t F x y y y '= F zdx解法:可通过变换y e =⎰将其降阶,得新未知函数.因为()z x 2()(1),(),,(,,,)zdxzdxzdxn n y ze y z z e yz z z e -⎰⎰⎰'''''==+=Φ (1)(,,,,)0n f x z z z -',代入原方程并消去,得新函数的阶方程k z e ⎰dx ()z x (n -1)= .13.(存在唯一性定理)考虑初值问题00(,)()dyf x y dxy x y ⎧=⎪⎨⎪=⎩(13.1),其中(,)f x y 在矩形区域00:,R x x a y y b -≤-≤上连续,并且对满足Lipschitz 条件:即存在,使对所有(,y 0L >12(,)),x y x y R ∈常成立121(,)(,)2f x y f x y L y y -≤-,则初值问题(13.1)在区间0x x -≤h 上的解存在且唯一,这里(,)min(,h a =(,)x y R M Max f x y ∈=bM.初值问题(13.1)等价于积分方程00(,)xx y y f t y =+⎰dt ,构造Picard 逐步逼近函数列}{00001()()()(,())xn nn x x y x x y f ϕϕϕξϕ-=⎧⎪⎨=+⎪⎩⎰dx ξ 00x x x ≤≤+h ,n .1,= 2,14.(包络的求法)曲线族(14.1)的包络包含在下列两方程(,,)0x y c Φ=(,,)0(,,)0c x y c x y c Φ=⎧⎨'Φ=⎩消去参数而得到的曲线之中.曲线c (,)0F x y =(,)0F x y =称为(14.1)的c -判别曲线.15.(奇解的直接计算法)方程(,,)0dyF 15.1)的奇解包含在由方程组⎨去参数x y dx =(消(,,)0(,,)0c F x y p F x y p =⎧'=⎩p 而之得到的曲线(,Φ=中,此曲线称为(15.1)的)0x y p -别曲线,这里(,F 判,)x y p 0=是,,x y p 的连续可微函数. 注:p -判别曲线是否为方程的奇解,尚需进一步讨论. 16.(克莱罗方程)形如dy dy y xf dxdx ⎛⎫=+ ⎝⎭⎪(16.1)的方程,称为克莱罗方程,这里. ()0f p ''≠解法:令dy p dx =,得.两边对()y xp f p =+x 求导,并以dyp dx=代入,即得()dp dp p x p f p dx dx '=++,经化简,得[()]0.dpx f p dx '+= 如果0dp dx=,则得到p c =.于是,方程(16.1)的通解为:()y cx f c =+.如果,它与等式()0x f p '+=()y xp f p =+联立,则得到方程(16.1)的以p 为参数的解:()0()x f p y xp f p '+=⎧⎨=+⎩或()0()x f c y xc f c '+==+⎧⎨⎩其中为参数.消去参数c p 便得方程的一个解. 17.(函数向量组线性相关与无关)设12(),(),,()m x t x t x t a t b ≤≤是一组定义在区间[,上的函数列向量,如果存在一组不全为0的常数,使得对所有,有恒等式]a b c 12,,m c c c 1122()()()0m m c x t c x t x t +++ =, 则称12(),(),,()m x t x t x t 在区间[,上线性相关;否则就称这组向量函数在区间[,上线性无关.]a b ]a b 18.(Wronsky 行列式)设有n 个定义在a t 上的向量函数b ≤≤nn 11121212221212()()()()()()(),(),,()()()()n n n n n x t x t x t x t x t x x t x t x t t x t x t x t ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢===⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣ ⎦ ,由这n 个向量函数所构成的行列式111212122212[(),(12()()()()()()),()()()()()n n n n n nn x t x t x t x t x t x t W x x t W t t x t x t x t x t ≡称为这个向量函数所构成的Wronsky 行列式.n 如果向量函数12(),(),,()n x t x t x t 在a t 上线性相关,则它们的Wronsky 行列式. b ≤≤()0,t W t a b ≡≤≤19.(基解矩阵的计算公式)(1)如果矩阵具有个线性无关的特征向量,它们相应的特征值为A n 12,,,n v v v 12,,,n λλ λ(不必互不相同),那么矩阵是常系数线性微分方程组12tte λλ12(),,,],n tn v v e v λΦ=-∞<< [t e x +∞x Ax '=的一个基解矩阵; (2)矩阵的特征值、特征根出现复根时(略); A (3)矩阵的特征根有重根时(略).A 20.(常系数齐线性方程)考虑方程111[]0n n n n n d x d xL x a a x dt dt--=+++= (20.1),其中为常数,称(20.1)为阶常系数齐线性方程.12,,n a a a n 解法:(1)求(20.1)特征方程的特征根12,,,k λλλ ;(2)计算方程(20.1)相应的解:(i )对每一个实单根k λ,方程有解k teλ;(ii )对每一个重实根1m >k λ,方程有个解:m 21,,,,k k k tttm e te t e te k tλλλ- λ;(iii )对每一个重数是1的共轭复数i αβ±,方程有两个解:cos ,sin tte t e ααt ββ; (iv )对每一个重数是的共轭复数1m >i αβ±,方程有个解:2m 11cos ,cos ,,cos ;sin ,sin ,,sin t t m t ttm te t te t t e t e t te t te tααααααββββββ-- ;(3)根据(2)中的(i )、(ii )、(iii )、(iv )情形,写出方程(20.1)的基本解组及通解.21.(常系数非齐次线性方程)()y py qy f x '''++=二阶常系数非齐次线性方程对应齐次方程,通解结构0y py qy '''++=y Y y =+.设非齐次方程特解()x y Q x e λ=代入原方程 2()(2)()()()()m Q x p Q x p q Q x P x λλλ'''+++++=(1)若λ不是特征方程的根,,可设20p q λλ++≠()()m Q x Q x =,()xm y Q x e λ=;(2)若λ是特征方程的单根,,2020p q λλ++=p λ+≠,可设()()m Q x xQ x =,()xm y xQ x e λ=; (3)若λ是特征方程的重根,,2020p q λλ++=p λ+=,可设,2()()m Q x x Q x =2()xm y x Q x e λ=. ()k x综上讨论,设y m x e Q x λ=,. 012k λλλ⎧⎪=⎨⎪⎩不是根是单根是重根。
线性常系数微分方程
线性常系数微分方程线性常系数微分方程(LinearConstant-CoefficientDifferentialEquation,简称LCCDE)是一类特殊的常系数微分方程,是研究微积分学中最重要的一类方程。
它们被广泛应用于自动控制、电路分析、数字图像处理、生物科学等方面。
绝大多数的非线性常系数微分方程都可以用线性常系数微分方程来近似描述,所以研究线性常系数微分方程可以帮助我们更好地理解各种复杂的非线性问题。
线性常系数微分方程的基本性质可以用标准形式表示:$$y^(n)+a_1y^{(n-1)}+a_2y^{(n-2)}+...+a_ny=0,n≥1,a_1,a_2,...a_n 为常数.$$这里,$y^{(n)}$表示$y$的$n$次导数,$a_1,a_2,...a_n$是系数。
在研究线性常系数微分方程时,我们会用到几个重要的概念:**一、阶**一个线性常系数微分方程的阶数是指其最高次导数的阶。
**二、全纳算子(annihilator)**全纳算子(annihilator)是指字母P(也可以是其他字母)。
当全纳算子P(s)应用于方程的特征方程,使其解得为零时。
我们称P(s)为线性常系数微分方程的全纳算子,符号p表示它的阶数,也就是次系数合为零的最高次导数的阶数。
**三、特征方程与特征根**特征方程一般表示为P(s)=0,其中P(s)叫做全纳算子,s代表的是复变函数的变量s的变量。
特征方程的根叫做特征根。
**四、解的通式**解的通式可以表示为:$$y=c_1e^{lambda_11t}+c_2e^{lambda_22t}+...+c_ne^{lambda_nn t}$$其中$λ_1,λ_2,...λ_n$是特征根,$c_1,c_2,...c_n$为常数,可以由初值条件确定。
结合上述概念,可以简单介绍一下线性常系数微分方程的解法。
**解法1:特征根法(Characteristic Root Method)** 特征根法是最常用的线性常系数微分方程求解方法,其策略是:先求出特征方程的特征根,然后根据特征根构造特征根的行列式,由初值条件确定其解的形式,最后求出具体的数值解。
医用高等数学第三版教材
医用高等数学第三版教材医用高等数学是医学生必须学习的一门重要课程,旨在帮助医学生掌握数学在医学领域中的应用。
本教材旨在全面系统地介绍医用高等数学的基本内容,并以临床医学实例和案例分析为基础,帮助学生深入理解数学原理与医学实践之间的联系。
一、导论医用高等数学课程的导论部分为学生提供了对课程目标和结构的整体认识,以及相关数学概念的介绍。
在导论的框架下,本教材将包含以下内容:1. 高等数学在医学中的应用意义- 数学在医学研究和临床实践中的重要性- 数学思维对医学问题分析的帮助- 数学工具在医学模型和计算中的应用2. 医用高等数学的学习方法- 如何有效学习高等数学知识- 如何将数学知识与医学实践相结合- 如何应用数学思维解决医学问题二、微积分微积分是医学生学习医用数学的基础,本教材将深入讲解微积分在医学中的应用,包括以下内容:1. 极限与连续- 极限的概念与计算方法- 函数的连续性与可导性2. 导数与微分- 导数的定义与计算- 函数的微分与应用- 医学曲线的切线与切面3. 积分与定积分- 不定积分与积分公式- 定积分与曲线下面积计算- 函数积分与医学领域中的应用三、线性代数线性代数在医学影像处理、遗传学等领域中有着广泛的应用。
本教材将讲解线性代数的基本概念和相关应用,包括以下内容:1. 矩阵与向量- 矩阵的基本概念与运算- 向量的定义与计算- 矩阵与向量在医学中的应用2. 线性方程组- 线性方程组的解法与解集- 方程组的几何解释- 方程组在医学中的应用四、概率论与数理统计概率论与数理统计在医学研究中具有重要意义,能够帮助医学生进行临床试验的设计与分析。
本教材将详细讲解以下内容:1. 随机变量与概率分布- 随机变量的概念与分类- 常见概率分布的特点与密度函数2. 统计推断- 参数估计与假设检验- 统计推断的基本原理与方法- 实验设计与数据处理的统计分析五、常微分方程常微分方程在生物医学工程、生物动力学领域中有广泛的应用。
基于Matlab常系数线性微分方程组的求解
基于Matlab常系数线性微分方程组的求解严水仙【摘要】在常微分方程课程教学中,常系数线性微分方程组可以通过线性代数的理论、矩阵指数、拉普拉斯变换等方法进行求解.本文主要叙述利用Matlab数学软件在求解常系数线性微分方程组中的应用.【期刊名称】《赣南师范学院学报》【年(卷),期】2018(039)003【总页数】5页(P10-14)【关键词】常系数线性微分方程;Matlab;矩阵指数【作者】严水仙【作者单位】赣南师范大学数学与计算机科学学院,江西赣州341000【正文语种】中文【中图分类】O175微分方程课程是高校不少理工科专业(如数学、力学、控制等) 的重要基础理论课程.常微分方程是描述自然科学、工程技术和社会科学中的运动、演化和变化规律的重要连续型模型. 物理、化学、材料、医学、经济学等领域中的许多原理和规律都可以描述成相应的微分方程, 如生物种群中的生态平衡、流行病存在的阈值定理、化学反应中的稳定性、遗传基因变异、股票的涨幅趋势、利率的浮动、市场均衡价格的变化等.描述、认识和分析其中的规律可以通过研究相应的微分方程数学模型来实现.[1]在微分方程的理论中,线性微分方程组是非常值得重视的一部分内容,它是了解并掌握非线性微分方程、非线性动力系统、非线性控制等课程的基础. 常系数线性微分方程组的求解是线性微分方程组理论中最简单、最直观的部分,熟悉并掌握常系数线性微分方程的求解将有利于更好的理解线性系统的基本理论.Matlab是由美国的Cleve Moler博士等[2-3]于1980年提出的以矩阵运算为基础,把计算、程序设计等融合到了一个简单易用的交互式工作环境中.可实现工程计算、算法研究、符号运算、建模和仿真、原型开发、数据分析及可视化、科学和工程绘图、应用程序设计等功能.Matlab强大的运算功能和图形使其成为目前世界上应用最为广泛的科学计算软件之一, 在教学中能快速的计算方程的解并描绘直观的几何图形.[4-6]鉴于此,本文主要介绍借助于Matlab来求解常系数线性微分方程组,通过利用Matlab命令,计算系数矩阵的特征值、特征向量、矩阵指数求解线性微分方程组.1 常系数线性微分方程的基本理论[1]定理1[1] 如果A(t)是n×n阶矩阵函数,f(t)是n维列向量函数.它们都在区间a≤t≤b上连续,则对区间a≤t≤b上的任意t0∈[a,b]及任一常数n维列向量η,方程组x′=A(t)x+f(t)(1)存在唯一解φ(t),定义于整个区间a≤t≤b上,且满足初值条件φ(t0)=η.定理2[1] 齐次线性微分方程组x′=A(t)x一定存在n个线性无关的解x1(t),x2(t),…,xn(t).定理 3[1] 齐次线性微分方程组x′=A(t)x一定存在一个基解矩阵Φ(t).如果ψ(t)是方程组的任意解,那么ψ(t)=Φ(t)c,(2)这里c是确定的n维常数列向量.定理4[1] 如果Φ(t),ψ(t)在区间a≤t≤b上是x′=A(t)x的两个基解矩阵,那么,存在一个非奇异n×n常数矩阵C,使得在a≤t≤b区间上ψ(t)=Φ(t)C.定理5[1] 设Φ(t)是齐次线性微分方程组x′=A(t)x的基解矩阵,是非齐次线性微分方程组x′=A(t)x+f(t)的某一个解,则方程组x′=A(t)x+f(t)的任一解φ(t)都可表示为(3)这里c是确定的n维常数列向量.矩阵指数exp A的定义和性质:如果A是一个n×n常数矩阵,则定义为矩阵指数,其中E为n阶单位矩阵,且规定A0=E,0!=1,对于所有元均为0的矩阵,易知expO=E.根据矩阵指数的定义及级数的收敛性,易知对一切矩阵A都是绝对收敛,在t的任何有限区间上是一致收敛.矩阵指数expA有如下性质:(Ⅰ)如果矩阵A,B是可交换的矩阵,即AB=BA,则exp(A+B)=exp A exp B. (Ⅱ)对于任何矩阵A,(exp A)-1存在,且(exp A)-1=exp(-A).(Ⅲ)如果T是非奇异矩阵(可逆矩阵),则exp(T-1AT)=T-1(exp A)T.设常系数线性微分方程组为x′=Ax(4)其中A是n×n阶常数矩阵,x=(x1,x2,…,xn)T.定理6 矩阵Φ(t)=exp At(5)为方程组(4)的基解矩阵,且Φ(0)=E.证明由矩阵指数的定义易得Φ(0)=E.(1.5)式对t求导,我们得到Φ′=(exp A t) exp At=AΦ(t),所以Φ(t)=exp At是方程(4)的解矩阵.又因为det Φ(0)=det E=1,因此Φ(t)是(4)的基解矩阵.定理6已经给出了常系数线性微分方程组(4)的基解矩阵,但是exp At是由At的矩阵级数定义的,矩阵中的每个元是什么没有具体给出,下面我们讨论exp At的计算方法.2 常系数线性微分方程组基解矩阵的求解定理7 如果矩阵A具有n个线性无关的特征向量v1,v2,…,vn,它们对应的特征值分别为λ1,λ2,…,λn(不必各不相同),那么矩阵ψ(t)=[eλ1tv1,eλ2tv2,…,eλntvn],(-∞≤t≤+∞)是常系数线性微分方程组(4)的一个基解矩阵.证明因为λ1,λ2,…,λn为矩阵A的特征值,对应的特征向量为v1,v2,…,vn,有det(λiE-A)=0,且(λiE-A)vi=0,i=1,2,…,n.又因为eλit≠0,则λieλitvi=Aeλitvi,即φi(t)=eλitvi是方程组(4)的一个解.因此,矩阵ψ(t)=[eλ1tv1,eλ2tv2,…,eλntvn]是(4)的一个解矩阵.v1,v2,…,vn是矩阵A线性无关的特征向量组,所以det ψ(0)=det[v1,v2,…,vn]≠0,因此可知,ψ(t)=[eλ1tv1,eλ2tv2,…,eλntvn]是(4)的一个基解矩阵.由此可知,Φ(t)=exp At和ψ(t)=[eλ1tv1,eλ2tv2,…,eλntvn]均为方程组(4)的基解矩阵,根据定理4的结论可知,存在一个非奇异的常数矩阵C,使得Φ(t)=expAt=ψ(t)C.令t=0,我们得到C=ψ-1(0),因此exp At=ψ(t)ψ-1(0).所以,常系数线性微分方程的求解转化为求系数矩阵的特征值和特征向量.例1 求下列方程组的基解矩阵解系数矩阵为的特征方程为系数矩阵的特征值为λ1=1,λ2=2,λ3=3.设λ1=1时对应的特征向量v1=(a,b,c)T,则(λ1E-A)v1=0,解得特征向量为其中c1为参数.设λ2=2时对应的特征向量v2=(a,b,c)T,则(λ2E-A)v2=0,解得其中c2为参数. 设λ3=3时对应的特征向量v3=(a,b,c)T,则(λ3E-A)v3=0,解得其中c3为参数.由定理7知,方程组的基解矩阵为:根据定理3,方程组的通解为φ(t)=ψ(t)C,其中C=(c1,c2,c3)T.常系数线性微分方程的求解实际就是求系数矩阵的特征值和特征向量,或者通过拉普拉斯变换法求解以及直接求解系数矩阵的矩阵指数exp(At). 然而,不管矩阵的的特征值、特征向量、拉普拉斯变换、还是矩阵指数,直接求解均比较复杂,特别是系数矩阵的特征值出现重根、复根等情况时,求解通解就显得更为困难.下面介绍使用Matlab数学软件求解常系数线性方程组.3 Matlab在求解常系数微分方程中的应用根据线性代数、高等代数的理论,矩阵对角化过程是一个复杂的计算过程,特别是系数矩阵的特征值出现重根、复根等情况时,特征向量计算比较麻烦. 学习使用Matlab软件在求解数学问题的原理将能够让学生更好的理解数学思想,减少重复性计算等. 下面将介绍几个利用Matlab计算基解矩阵的例子.例2 求下列线性微分方程组满足初始条件φ(0)=η的解其中解在Matlab软件中直接输入如下命令,>> A=[0 1 0;0 0 1;-6 -11 -6];>> syms t;>> expm(A*t) %运行得线性方程组的基解矩阵exp(At)ans =[3*exp(-t) - 3*exp(-2*t) + exp(-3*t), (5*exp(-t))/2 - 4*exp(-2*t) + (3*exp(-3*t))/2, exp(-t)/2 - exp(-2*t) + exp(-3*t)/2][6*exp(-2*t) - 3*exp(-t) - 3*exp(-3*t), 8*exp(-2*t) - (5*exp(-t))/2 - (9*exp(-3*t))/2, 2*exp(-2*t) - exp(-t)/2 - (3*exp(-3*t))/2][3*exp(-t) - 12*exp(-2*t) + 9*exp(-3*t), (5*exp(-t))/2 - 16*exp(-2*t) +(27*exp(-3*t))/2, exp(-t)/2 - 4*exp(-2*t) + (9*exp(-3*t))/2]即得方程组的基解矩阵所以方程组的通解为φ(t)=exp(At)C,其中C=(c1,c2,c3)T.初始条件φ(0)=η代入φ(t)=exp(At)C,易得C=(1,2,2)T,故满足初始条件的解为例3 求下列线性微分方程组的通解解在Matlab软件中直接输入如下命令,>> A=[3 -1 1;2 0 1;1 -1 2];>> syms t;>> expm(A*t) %运行得线性方程组的基解矩阵exp(At)ans =[exp(2*t) + t*exp(2*t), - exp(2*t) - t*(exp(2*t) - exp(2*t)/t), exp(2*t) +t*(exp(2*t) - exp(2*t)/t)][exp(2*t) - exp(t) + t*exp(2*t), exp(t) - exp(2*t) - t*(exp(2*t) - exp(2*t)/t), exp(2*t) + t*(exp(2*t) - exp(2*t)/t)][exp(2*t) - exp(t), exp(t) - exp(2*t), exp(2*t)].即得方程组的基解矩阵所以方程组的通解为φ(t)=exp(At)C,其中C=(c1,c2,c3)T. 由此可知,通过使用Matlab软件求解常系数线性微分方程组的通解变得简单、直观.在常微分方程的理论和应用上,微分方程组的解在t→∞时解的性态的研究是很重要的内容,其对非线性方程的理论有着非常重要的应用.4 常系数线性方程组的稳定性定理定理8 常系数线性微分方程组(4)的解有下列性质:(Ⅰ)如果系数矩阵A的特征值的实部都是负的,则(4)的任一解当t→∞时都趋于零(稳定);(Ⅱ)如果系数矩阵A的特征值的实部至少有一个是正的,则(4)至少有一个解t→∞时趋于无穷(不稳定);(Ⅲ)如果系数矩阵A的特征值的实部都是非正,但有零根或具有零实部的根,则(4)的解在t→∞时不能判定(不确定).根据定理8,很容易判定常系数线性微分方程组解的性态.当t→∞时,例1、3的解趋于无穷,例2的解趋于零.由Matlab软件也可直接描述出方程组解的变化趋势.下面画出例2的解曲线图.在Matlab中直接输入命令:>> t=0∶200;>>plot(t,8*exp(-1*t)-13*exp(-2*t)+5*exp(-3*t),′o′,t,-8*exp(-1*t)+26*exp(-2*t)-15*exp(-3*t),′*′,t,8*exp(-1*t)-52*exp(-2*t)+45*exp(-3*t),′k′) %运行即得解在t∈[0,200]随t的变化图.5 小结常系数线性微分方程的求解是常微分方程理论中重要的组成部分,但计算比较复杂,对学生的数学基础要求较高,所以学生学起来比较吃力,容易对学习丧失兴趣.所以,在授课过程中,我们不仅要将基本概念和原理给学生讲通讲透,重点介绍数学思维,数学思想,还要利用计算机的表现能力将抽象的问题具体化,复杂的计算简单化.Matlab教学平台的引入,能够化繁为简,化抽象为具体,加深学生对本课程的掌握程度,提高教学效果,并且引导学生将理论应用于实际.【相关文献】[1] 王高雄,朱思铭,等.常微分方程[M].第3版.北京:高等教育出版社,2006.[2] 胡良剑,孙晓君.MATLAB数学实验[M].第2版.北京:高等教育出版社,2014.[3] 朱春蓉,郑群珍.Maple在常微分方程教学中的应用[J].河南教育学院学报:自然科学版,2009,18(3):63-64.[4] 闫金亮.Matlab在常微分方程教学中的应用[J].武夷学院学报,2012,31(2):96-100.[5] 张守贵.一类二阶常系数微分方程特解的教学探讨[J].重庆工商大学学报:自然科学版,2012, 29(12):12-15.[6] 徐定华,葛美宝.论微分方程课程的教学设计[J].大学数学, 2010,26(3):1-5.。
矩阵常微分方程及其解析应用
矩阵常微分方程及其解析应用随着科学技术不断发展,对于复杂系统的研究也越来越深入。
在这个过程中,矩阵常微分方程作为数学工具的应用也越来越广泛。
本文将对矩阵常微分方程及其解析应用做出简要介绍。
一、矩阵常微分方程的概念及意义矩阵常微分方程是指矩阵值函数满足常微分方程的情形,其中常微分方程指的是只依赖自变量的微分方程,而不依赖于另外的变量。
矩阵常微分方程在科学研究中被广泛运用,例如在物理、计算机等领域中,都能看到它的应用。
以物理领域为例,矩阵常微分方程提供了一种描述系统动力学的方法。
对于某一特定的系统,通过对其状态的研究,可以得到该系统中的基本动力学规律。
而矩阵常微分方程可以通过对这些规律加以整合和描述,提供一个更为全面和准确的模型,揭示系统内部的运动机制。
二、矩阵常微分方程的解析应用矩阵常微分方程的应用是十分广泛的,尤其是在控制理论、机器人学、动画制作等方面,得到了广泛的应用。
在控制理论中,矩阵常微分方程可以提供一种更加高效的控制算法。
例如,可以用矩阵常微分方程描述某一系统的状态,利用其模型进行控制,通过对系统内部模型的详细分析,可以设计出最优的控制方法,提高系统性能。
在机器人学中,矩阵常微分方程可以用来描述机器人的运动规律。
例如,对于具有多自由度的机器人,可以用矩阵常微分方程描述各个关节的运动状态,进而分析和优化机器人的动态性能,设计出满足操作要求的机器人运动规律。
在动画制作中,矩阵常微分方程可以应用于人物动作捕捉技术中。
在此过程中,人类动作的运动轨迹可以被表示为矩阵常微分方程的形式,可以利用该方程式来指导人物的运动轨迹,从而生成更加真实、自然的动画效果。
三、矩阵常微分方程求解方法矩阵常微分方程的求解方法有多种。
其中,最为常见的方法是基于矩阵的特征值与特征向量进行求解。
具体来说,可以利用矩阵对角化定理将矩阵常微分方程转化为一组关于矩阵特征值和特征向量的常微分方程组,进而求解出该矩阵常微分方程的解析解。
常微分方程内容方法与技巧
常微分方程内容方法与技巧
一般微分方程的 (ODE) 是指它的变量有一阶或不高于一阶导数的方程,由此可以推知,ODE 主要求解一元或多元函数满足的某种关系性,可以区分为常微分方程和偏微分方程,其中常微分方程是一类常见的微分方程,它们的变量是一阶或不高于一阶的导数。
解决常微分方程的方法有很多,其中最重要的有以下几种:
1. 积分法。
即把常微分方程右侧未知函数的一阶导数或更高阶导数建立一个积分关系,利用积分的方法,求解出未知函数的值。
这种方法适用于非线性方程组,以及方程组中包含复数或离散量的情况。
2. 变分法。
是一种解决微分方程非线性耦合问题的特殊方法,利用变分法可以将原来耦合问题拆解为一组互不影响的线性方程组,从而便于解决。
3. 矩阵迭代法。
该方法通常用来解决线性方程组,这是一种数值计算法,通常涉及到矩阵的迭代求解,从而实现精确的计算效果。
4. 高斯消去法和高斯约当法。
主要用于求解大规模的线性方程组,这两种方法的原理都是用矩阵的特有性质,将原本大量的数组项减少到较少的项,从而大大减少计算量,提高计算的效率。
5. 旋转法。
也称为图像旋转法,是解决高维空间内微分方程的一种方法,它将原本二维或多维空间映射到一维空间内,实现复杂问题对求解的简化。
6. 隐式解法。
主要用于求解多元线性方程组,利用一定的分析技巧,可以直接求解出方程的解析解,从而节省计算的时间。
以上是常微分方程常用的几种数学方法,在解决常微分方程时,不同问题情况,可以采取相应的解决技巧,如减少计算量、节省时间,省去不必要的麻烦和繁琐的运算步骤。
常系数线性微分方程组的基解矩阵的一种新求法
( 3 )
( 4 )
[ 收 稿 日期 ] 2 o 1 2 — 1 l — O 7
[ 基 金 项 目] 国 家 自然 科 学 青 年 基 金 项 目( 1 1 1 0 2 0 7 6 )
第6 期
的解 .
彭庆英 : 常 系数 线 性微 分方 程组 的基 解矩 阵的 一种新 求 法
1 引
言
对 于常 系数线性 微分方 程组
一 .
ix,
( 1 )
其 中 A为 × 常数 方 阵 , 一 ( £ ) 是 未知 的 维列 向量 . 关于 方程组 ( 1 ) 的求解 问题 , 总是 个繁杂 的 问 题, 而求 解 的关键在 于求 其一 个基解 矩 阵. 根据 A 的特 征 向量 的特 点采 取合 适 的方 法尤 为 重要 , 合 适 的
n -1
e x p A t 一∑口 ( ) A ,
一 0
( 5 )
其中 口 ( )( 一 0 , 1 , …, 一 1 )是方 程组
口 o ( £ ) +口 1 ( £ ) 1 + …+n 一 1 ( ) 一 一e
口 1 ( ) +2 n 2 ( ) 1 +3 a 3 ( £ ) ; +… +( n -1 ) a 一 1 ( £ ) A : 一t e Z l ,
1 2 1
定理 2 将 计 算基解 矩 阵 e x p A t的 问题 归 结为求 解 齐线性 微分 方程 组 ( 3 ) 满足 初始 条件 ( 4 ) 的初值 问
题 .由于方 程组 ( 3 ) 是一 个特 殊 的一 阶常 系数齐 次线 性方程 组 , 其 系数矩 阵
l
1
2
1
微 分方程 组 也是 比较 麻烦 的 . 通 过改 进将解 微 分方 程 组转 化 为解 线 性 方程 组 的 问 题 . 进而 得 到一 种 求解
Wqju11年考研数学三大纲(整理版)
生命中,不断地有人离开或进入。
于是,看见的,看不见的;记住的,遗忘了。
生命中,不断地有得到和失落。
于是,看不见的,看见了;遗忘的,记住了。
然而,看不见的,是不是就等于不存在?记住的,是不是永远不会消失?一、函数、极限、连续考试内容函数的概念及表示法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性.最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值.最大值和最小值二重积分的概念.基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量的分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一:利用分块矩阵求矩阵(三个公式) 公式1:
⎥⎥⎦
⎤⎢⎢⎢⎣
⎡=⎥⎥⎥⎦
⎤
⎢⎢⎢⎣
⎡---1
1
11
1s s A A A A
公式
2:⎥⎦
⎤⎢⎣
⎡-=⎥⎦
⎤⎢⎣⎡-----1221
11211221
111
2221
11
00A A A A A A A
A
或⎥⎦
⎤
⎢⎣⎡-=⎥⎦
⎤
⎢⎣
⎡-----1
22
1
22121111111
221211
0A A A A A A A A
2
,1=i n A i ii 阶可逆矩阵,
为
公式
3:⎥⎦
⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---00001
1
1
A
B
B
A (为可逆矩阵
B A ,)
下面给出公式2的推导过程:设⎥⎦⎤
⎢⎣⎡=⎥⎦
⎤⎢⎣⎡-22211211
1
2221
11
0X X X X A A
A
由⎥⎦
⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡E E
X X X X A A A 0
002221
1211
2221
11
得⎪⎪
⎩⎪⎪
⎨⎧=+=+==E
X
A X A X A X A X A E X A 22
2212
21212211
211211111100
解之得⎪⎪⎩⎪⎪⎨⎧=-===----122
22
1
11211
222112
1
11110
A X X A A X
X A X
^-^
习题
1:1
,11
21000
0520021-⎥⎥
⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡---=A A 求 习题
2:1
,20
1200
3
1204312-⎥⎥
⎥⎥⎦
⎤⎢⎢⎢
⎢⎣⎡=A A 求
答案:习题1:
⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-313
100323100001200251
A
习题2:
⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎡---
-
--
=-210
0412*******
210165854121
1
A
二:利用定义求矩阵 例1:设n 阶方阵A 满足022
=--E A A ,求证A 可逆并求1
-A
证明:由022
=--E A A ,得:E E A A 2)(=-
即E
E
A A =-⋅2
,从而A 可逆且2
1
E A A
-=
-
例2:设B A ,为同阵且满足AB
B A =
+,证明E A -可逆并求其逆,
BA
AB =
证明:B
E A B AB A )(-=-=
,故
B
E A E E A )()(-=+-从而有E E B E A =--))((
即E A -可逆且E
B E A -=--1
)( 故
)
)(())((E A E B E B E A --=--即
E
B A BA E B A AB +--=+--从而
BA
AB =
例3:已知n 阶方阵A 满足3
)(2A E A A =-,求1
)(--A E
证明:由3
)(2A E A A =-,得0222
3
=+-A A A
所以E E A A A
-=-+-222
3
从而有E
E A A A E =+--))((2
即E
A A A E +-=--2
1
)
(
下面就检查下自己的学习能力^-^ 习题1:设)(0为正整数k A
k
=,证明:
1
2
-1
)
(-++++=-k A
A A E A E
习题2:设B A ,为n 阶方阵,且AB E -与BA E -均可逆,证明
A A
B E B E BA E 1
1
)
()
(---+=-
习题3:若n 阶方阵A 满足E A =2,求证E A 2-可逆
习题4:设A A =2
,试证明E A 2-为可逆阵
例题1:设)(x f 为可微函数,且满足方程
)0()()1()(0
>+=⎰⎰x dt
t tf x dt t f x x
x
求)(x f
解:方程两边对x 求导,得:
)()1()()()(0
x xf x dt t tf x xf dt t f x
x
++=+⎰⎰
化简得:⎰⎰=+x
x
dt t f x f x dt t tf 002
)()()(
两边再对)(x f 求导,化简得:0)(13)(2=-+
'x f x x f x )( 这是一阶线性齐次方程,分离变量得:dx x
x x f x df 2
31)
()(-=
两边积分得x x
Ce x f ln 31
--=)(
即)(13
为任意常数)(C e
Cx
x f x
-
-=
下面就检查下自己的学习能力^-^ 习题1:设连续函数
)(x f 满足方程2
0)(2)(x
dt t f x f x
=+⎰,求
)(x f
习题2:设连续函数)(x y 满足方程⎰+=x
x
e
dt t y x y 0)()(,求)(x y
答案:习题1:
x
e
x x f 22121)(-+-
=
习题2:x e x x y )1()(+=。