带电粒子在有界磁场中运动[超经典]

合集下载

带电粒子在有界匀强磁场中的运动

带电粒子在有界匀强磁场中的运动
息烽县第一中学物理组
廖红英
带电粒子在有界匀 强磁场中的运动
知识回顾
一、带电粒子在匀强磁场中运动形式
(1)V//B-------匀速直线运动 (2)V⊥B-------匀速圆周运动 (3)粒子运动方向与磁场有一夹角 (大于0度小于90度)-------轨迹为螺旋线
带电粒子在匀强磁场中 做匀速圆周运动,洛伦 兹力就是它做圆周运动 的向心力
(3)欲使粒子要打在极板上,
则粒子入射速度v应满足么条 件?
+q L
m
v
B
L
3、如图所示,在y<0的区域内存在匀强磁场,磁 场方向垂直纸面向外,磁感应强度为B。一个正电 子以速度v从O点射入磁场,入射方向在xy平面内, 与x轴正向的夹角为θ。若正电子射出磁场的位置 与O点的距离为L,求:
(1)正电子在匀强磁场中作圆周 运动的圆心角为多少?
(2)正电子作圆周运动的 半径为多少?
(3)正电子的电量和质量之比为多少?
(4)正电子在匀强磁场中运动的时间是多少?
思考:如果是负电子,那么,两种情况下的时间 之比为多少?
4、如图所示在磁感应强度为B,半径为r的圆
形匀强磁场区 ,一质量为m,电荷量为q的
带电粒子从A点沿半径方向以速度ν
射入磁场中,从C点射出,求:
(1)此粒子在磁场中做圆周运
动的半径是多少?
B v
(2)此粒子的电荷q与质量 m 之比。
MP l
ON
2、长为L的水平极板间,有垂直纸面向内的匀强磁场,如 图所示,磁场强度为B,板间距离也为L,板不带电,现有 质量为m,电量为q的带正电粒子(不计重力),从左边极 板间中点处垂直磁场以速度v平行极板射入磁场,求: (1)粒子刚好打在极板的左端点时的速度为多少? (2)粒子刚好打在极板上的右端点时的速度是多少?

带电粒子在有界磁场中的运动 经典练习(含答案详解)

带电粒子在有界磁场中的运动   经典练习(含答案详解)

带电粒子在有界磁场中的运动图38101.半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直磁场方向射入磁场中,并从B 点射出.∠AOB =120°,如图3810所示,则该带电粒子在磁场中运动的时间为( )A.2πr 3v 0B.23πr 3v 0C.πr 3v 0D.3πr 3v 0 答案 D解析 从AB 弧所对圆心角θ=60°,知t =16 T =πm 3qB.但题中已知条件不够,没有此选项,另想办法找规律表示t .由匀速圆周运动t =ABv 0,从题图分析有R =3r ,则:AB =R ·θ=3r ×π3=33πr ,则t =AB v 0=3πr 3v 0.D 正确. 带电粒子在复合场中的运动图38112.一正电荷q 在匀强磁场中,以速度v 沿x 正方向进入垂直纸面向里的匀强磁场中,磁感应强度为B ,如图3811所示,为了使电荷能做直线运动,则必须加一个电场进去,不计重力,此电场的场强应该是( )A .沿y 轴正方向,大小为Bv qB .沿y 轴负方向,大小为BvC .沿y 轴正方向,大小为v BD .沿y 轴负方向,大小为Bv q答案 B解析 要使电荷能做直线运动,必须用电场力抵消洛伦兹力,本题正电荷受洛伦兹力的方向沿y 轴正方向,故电场力必须沿y 轴负方向且qE =Bqv ,即E =Bv .带电粒子在组合场中的运动图38123.如图3812所示,在平面直角坐标系xOy 内,第Ⅰ象限存在沿y 负方向的匀强电场,第Ⅳ象限以ON 为直径的半圆形区域内存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电的粒子,从y 轴正半轴上y =h 处的M 点,以速度v 0垂直于y 轴射入电场,经x 轴上x =2h 处的P 点进入磁场,最后以垂直于y 轴的方向射出磁场.不计粒子重力.求:(1)电场强度的大小E ;(2)粒子在磁场中运动的轨道半径r ;(3)粒子从进入电场到离开磁场经历的总时间t .答案 见解析解析 粒子的运动轨迹如右图所示(1)设粒子在电场中运动的时间为t 1则有2h =v 0t 1,h =12at 21根据牛顿第二定律得Eq =ma求得E =mv 202qh.(2)设粒子进入磁场时速度为v ,在电场中,由动能定理得Eqh =12mv 2-12mv 20又Bqv =m v 2r, 解得r =2mv 0Bq(3)粒子在电场中运动的时间t 1=2h v 0粒子在磁场中运动的周期T =2πr v =2πm Bq设粒子在磁场中运动的时间为t 2,t 2=38T ,求得t =t 1+t 2=2h v 0+3πm 4Bq.(时间:60分钟)题组一 带电粒子在匀强磁场中的匀速圆周运动1.(2014·临沂高二检测)运动电荷进入磁场(无其他场)中,可能做的运动是( )A .匀速圆周运动B .平抛运动C .自由落体运动D .匀速直线运动答案 AD解析 若运动电荷平行磁场方向进入磁场,则电荷做匀速直线运动,若运动电荷垂直磁场方向进入磁场,则电荷做匀速圆周运动,A 、D 正确;由于电荷的质量不计,故电荷不可能做平抛运动或自由落体运动.B 、C 错误.图38132.如图3813所示,带负电的粒子以速度v 从粒子源P 处射出,若图中匀强磁场范围足够大(方向垂直纸面),则带电粒子的可能轨迹是( )A .aB .bC .cD .d答案 BD解析 粒子的出射方向必定与它的运动轨迹相切,故轨迹a 、c 均不可能,正确答案为B 、D.图38143.(2013·孝感高二检测)如图3814所示,在x >0,y >0的空间有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B ,现有四个质量及电荷量均相同的带电粒子,由x 轴上的P 点以不同的初速度平行于y 轴射入此磁场,其出射方向如图所示,不计重力的影响,则( )A .初速度最大的粒子是沿①方向射出的粒子B .初速度最大的粒子是沿②方向射出的粒子C .在磁场中运动时间最长的是沿③方向射出的粒子D .在磁场中运动时间最长的是沿④方向射出的粒子答案 AD解析 显然图中四条圆弧中①对应的半径最大,由半径公式R =mv Bq可知,质量和电荷量相同的带电粒子在同一个磁场中做匀速圆周运动的速度越大,半径越大,A 对B 错;根据周期公式T =2πm Bq 知,当圆弧对应的圆心角为θ时,带电粒子在磁场中运动的时间为t =θm Bq,圆心角越大则运动时间越长,圆心均在x 轴上,由半径大小关系可知④的圆心角为π,且最大,故在磁场中运动时间最长的是沿④方向射出的粒子,D 对C 错.图38154.利用如图3815所示装置可以选择一定速度范围内的带电粒子.图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L .一群质量为m 、电荷量为q 、具有不同速度的粒子从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( )A .粒子带正电B .射出粒子的最大速度为qB L +3d 2mC .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大答案 BC解析 由左手定则可判断粒子带负电,故A 错误;由题意知:粒子的最大半径r max =L +3d 2、粒子的最小半径r min =L 2,根据r =mv qB,可得v max =qB L +3d 2m 、v min =qBL 2m,则v max -v min =3qBd 2m ,故可知B 、C 正确,D 错误.图38165.如图3816所示,左右边界分别为PP ′、QQ ′的匀强磁场的宽度为d ,磁感应强度大小为B ,方向垂直纸面向里.一个质量为m 、电荷量为q 的微观粒子,沿图示方向以速度v 0垂直射入磁场.欲使粒子不能从边界QQ ′射出,粒子入射速度v 0的最大值可能是( )A.Bqd mB.2+2Bqd mC.2-2Bqdm D.2Bqd 2m答案 BC解析 粒子射入磁场后做匀速圆周运动,由r =mv 0qB知,粒子的入射速度v 0越大,r 越大,当粒子的径迹和边界QQ ′相切时,粒子刚好不从QQ ′射出,此时其入射速度v 0应为最大.若粒子带正电,其运动轨迹如图(a)所示(此时圆心为O 点),容易看出R 1sin 45°+d=R 1,将R 1=mv 0qB 代入上式得v 0=2+2Bqd m,B 项正确.若粒子带负电,其运动轨迹如图(b)所示(此时圆心为O ′点),容易看出R 2+R 2cos 45°=d ,将R 2=mv 0qB代入上式得v 0=2-2Bqdm ,C 项正确.图38176.如图3817所示的矩形abcd 范围内有垂直纸面向外的磁感应强度为B 的匀强磁场,且ab 长度为L ,现有比荷为q m的正电离子在a 处沿ab 方向射入磁场,求离子通过磁场后的横向偏移y (设离子刚好从C 点飞出).答案 mv Bq -mv Bq 2-L 2解析 离子作匀速圆周运动从a →c ,易知圆心在图中的O 处,即a 、c 两处速度垂线的交点处.横向偏移y =aO -dO =R -R 2-L 2由Bqv =mv 2R ,得R =mv Bq ,故有y =mv Bq -mv Bq 2-L 2图38187.如图3818所示,分布在半径为r 的圆形区域内的匀强磁场,磁感应强度为B ,方向垂直纸面向里.电量为q 、质量为m 的带正电的粒子从磁场边缘A 点沿圆的半径AO 方向射入磁场,离开磁场时速度方向偏转了60°角.(不计粒子的重力)求:(1)粒子做圆周运动的半径.(2 )粒子的入射速度.答案 (1)3r (2)3Bqr m解析 (1)设带电粒子在匀强磁场中做匀速圆周运动半径为R ,如图所示,∠OO ′A = 30°,由图可知,圆运动的半径R =O ′A =3r(2)根据牛顿运动定律,有:Bqv =m v 2R有:R =mv Bq故粒子的入射速度v =3Bqr m .题组二 带电粒子的运动在科技中的应用图38198.如图3819所示是粒子速度选择器的原理图,如果粒子所具有的速率v =E /B ,那么( )A .带正电粒子必须沿ab 方向从左侧进入场区,才能沿直线通过B .带负电粒子必须沿ba 方向从右侧进入场区,才能沿直线通过C .不论粒子电性如何,沿ab 方向从左侧进入场区,都能沿直线通过D .不论粒子电性如何,沿ba 方向从右侧进入场区,都能沿直线通过答案 AC解析 按四个选项要求让粒子进入,洛伦兹力与电场力等大反向抵消了的就能沿直线匀速通过磁场.图38209.如图3820所示是磁流体发电机原理示意图.A、B极板间的磁场方向垂直于纸面向里.等离子束从左向右进入板间.下述正确的是( )A.A板电势高于B板,负载R中电流向上B.B板电势高于A板,负载R中电流向上C.A板电势高于B板,负载R中电流向下D.B板电势高于A板,负载R中电流向下答案 C解析等离子束指的是含有大量正、负离子,整体呈中性的离子流,进入磁场后,正离子受到向上的洛伦兹力向A板偏,负离子受到向下的洛伦兹力向B板偏.这样正离子聚集在A 板,而负离子聚集在B板,A板电势高于B板,电流方向从A→R→B.图382110.医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁血流计由一对电极a和b以及一对磁极N和S构成,磁极间的磁场是均匀的.使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图3821所示.由于血液中的正负离子随血流一起在磁场中运动,电极a、b之间会有微小电势差.在达到平衡时,血管内部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点间的距离为3.0 mm,血管壁的厚度可忽略,两触点间的电势差为160 μV,磁感应强度的大小为0.040 T.则血流速度的近似值和电极a、b的正负为( ) A.1.3 m/s,a正、b负B.2.7 m/s,a正、b负C.1.3 m/s,a负、b正D.2.7 m/s,a负、b正答案 A解析血液中的粒子在磁场的作用下会在a,b之间形成电势差,当电场给粒子的力与洛伦兹力大小相等时达到稳定状态(与速度选择器原理相似),血流速度v=EB≈1.3 m/s,又由左手定则可得a 为正极,b 为负极,故选A.图382211.质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图3822,离子源S 产生的各种不同正离子束(速度可看作为零),经加速电场加速后垂直进入有界匀强磁场,到达记录它的照相底片P 上,设离子在P 上的位置到入口处S 1的距离为x ,可以判断( )A .若离子束是同位素,则x 越小,离子质量越大B .若离子束是同位素,则x 越小,离子质量越小C .只要x 相同,则离子质量一定相同D .x 越大,则离子的比荷一定越大答案 B解析 由qU =12mv 2 ① qvB =mv 2r ② 解得r =1B2mU q ,又x =2r 故选B.题组三 带电粒子在复合场中的运动图382312.如图3823所示,匀强磁场的方向垂直纸面向里,匀强电场的方向竖直向下,有一正离子恰能以速率v 沿直线从左向右水平飞越此区域.下列说法正确的是( )A .若一电子以速率v 从右向左飞入,则该电子也沿直线运动B .若一电子以速率v 从右向左飞入,则该电子将向上偏转C .若一电子以速率v 从右向左飞入,则该电子将向下偏转D .若一电子以速率v 从左向右飞入,则该电子也沿直线运动答案 BD解析 若电子从右向左飞入,静电力向上,洛伦兹力也向上,所以电子上偏,选项B 正确,A 、C 错误;若电子从左向右飞入,静电力向上,洛伦兹力向下.由题意,对正电荷有qE =Bqv ,会发现q 被约去,说明等号的成立与q 无关,包括q 的大小和正负,所以一旦满足了E =Bv ,对任意不计重力的带电粒子都有静电力大小等于洛伦兹力大小,显然对于电子两者也相等,所以电子从左向右飞入时,将做匀速直线运动,选项D 正确.图382413.一个带电微粒在如图3824所示的正交匀强电场和匀强磁场中的竖直平面内做匀速圆周运动,求:(1)该带电微粒的电性?(2)该带电微粒的旋转方向?(3)若已知圆的半径为r ,电场强度的大小为E ,磁感应强度的大小为B ,重力加速度为g ,则线速度为多少?答案 (1)负电荷 (2)逆时针 (3)gBr E解析 (1)带电粒子在重力场、匀强电场和匀强磁场中做匀速圆周运动,可知,带电粒子受到的重力和电场力是一对平衡力,重力竖直向下,所以电场力竖直向上,与电场方向相反,故可知带电粒子带负电荷.(2)磁场方向向外,洛伦兹力的方向始终指向圆心,由左手定则可判断粒子的旋转方向为逆时针(四指所指的方向与带负电的粒子的运动方向相反).(3)由粒子做匀速圆周运动,得知电场力和重力大小相等,得:mg =qE ①带电粒子在洛伦兹力的作用下做匀速圆周运动的半径为: r =mv qB② ①②联立得:v =gBr E题组四 带电粒子在电场和磁场组合场中的运动图382514.如图3825所示,在x 轴上方有垂直于xy 平面向里的匀强磁场,磁感应强度为B .在x 轴下方有沿y 轴负方向的匀强电场,场强为E ,一质量为m ,电荷量为-q 的粒子从坐标原点O 沿着y 轴正方向射出,射出之后,第三次到达x 轴时,它与点O 的距离为L ,求此粒子射出的速度v 和运动的总路程s .(重力不计)答案 qBL 4m πL 2+qB 2L 216mE解析 由题意知第3次经过x 轴的运动如图所示由几何关系:L =4R设粒子初速度为v ,则有:qvB =m v 2R可得:v =qBL 4m; 设粒子进入电场作减速运动的最大路程为L ′,加速度为a ,则有:v 2=2aL ′qE =ma则电场中的路程:L ′=qB 2L 216mE粒子运动的总路程:s =2πR +2L ′=πL 2+qB 2L 216mE15.如图3826所示,平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成60°角射入磁场,最后从y 轴负半轴上的P 点与y 轴正方向成60°角射出磁场,不计粒子重力,求:图3826(1)粒子在磁场中运动的轨道半径R ;(2)匀强电场的场强大小E .答案 (1)2mv 0qB (2)3-3v 0B 2解析 (1)因为粒子在电场中做类平抛运动,设粒子过N 点时的速度为v ,把速度v 分解如图甲所示甲根据平抛运动的速度关系,粒子在N 点进入磁场时的速度v =v x cos 60°=v 0cos 60°=2v 0. 如图乙所示,乙分别过N 、P 点作速度方向的垂线,相交于Q 点,则Q 是粒子在磁场中做匀速圆周运动的圆心根据牛顿第二定律qvB =mv 2R所以R =mv qB, 代入v =2v 0得粒子的轨道半径R =2mv 0qB(2)粒子在电场中做类平抛运动,设加速度为a,运动时间为t由牛顿第二定律:qE=ma①设沿电场方向的分速度为v y=at②粒子在电场中x轴方向做匀速运动,由图根据粒子在磁场中的运动轨迹可以得出:粒子在x轴方向的位移:R sin 30°+R cos 30°=v0t③又v y=v0tan 60°④由①②③④可以解得E=3-3v0B2.。

(超全)带电粒子在有界磁场中运动的临界问题、极值问题和多解问题-课件

(超全)带电粒子在有界磁场中运动的临界问题、极值问题和多解问题-课件
高考调研
高三物理(新课标版)
第4节 带电粒子在有界 磁场中运动的临界极值问题和多解问题
第八章 第4节
高考调研
高三物理(新课标版)
一、带电粒子在有界磁场中运动的临界极值问题 1.刚好穿出磁场边界的条件是带电粒子在磁场中运 动的轨迹与边界①__相__切____. 2.当速度 v 一定时,弧长(或弦长)越长,圆周角越大, 则带电粒子在有界磁场中运动的时间②___越__长___.
高考调研
高三物理(新课标版)
例 1 如图所示,S 为一个电子源,它可以在纸面内 360°范围内发射速率相同的质量为 m、电量为 e 的电子, MN 是一块足够大的挡板,与 S 的距离 OS=L,挡板在 靠近电子源一侧有垂直纸面向里的匀强磁场,磁感应强 度为 B,问:
(1)若使电子源发射的电子能到达挡 板,则发射速度最小为多大?
第八章 第4节
高考调研
高三物理(新课标版)
(1)轨迹圆的缩放:当粒子的入射方向不变而速度大 小可变时,粒子做圆周运动的轨迹圆心一定在入射点所 受洛伦兹力所表示的射线上,但位置(半径 R)不确定,用 圆规作出一系列大小不同的轨迹圆,从圆的动态变化中 即可发现“临界点”.
(2)轨迹圆的旋转:当粒子的入射速度大小确定而方 向不确定时,所有不同方向入射的粒子的轨迹圆是一样 大的,只是位置绕入射点发生了旋转,从定圆的动态旋 转(作图)中,也容易发现“临界点”.
圆心在
过入射
点跟速
d
c 度方向
垂直的
直线上
B
θv
a
b
①速度较小时粒子做部分圆周运动
后从原边界飞出;②速度在某一范
围内从上侧面边界飞;③速度较大
时粒子做部分圆周运动从右侧面边

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。

带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。

一、解题方法画图→动态分析→找临界轨迹。

(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。

)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)分述如下:第一类问题:例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。

一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。

已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。

第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。

【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。

P为屏上的一小孔,PC与MN垂直。

一群质量为m、带电荷量为-q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。

带电粒子在有界磁场中运动总结PPT参考课件

带电粒子在有界磁场中运动总结PPT参考课件

C
E0
. v O
B
D
F
1.带电粒子电性不确定形成多解2.磁场方向不 确定形成多解3.临界状态不唯一形成多解 13
练习:质量为m电荷量为q的带负电粒子,从A
点射入宽度为d,磁感应强度为B的匀强磁场中,
MN、PQ为该磁场的边界线,磁感应强度方向
垂直纸面向里,如图所示,带电粒子射入时初
速度方向与PQ成45°,且粒子恰好没有从MN
区域,其中R=mv/qB.哪个图是正确的?A
A.
2R
B. 2R
O
O
M
2R R
N
M R 2R
N
M
C.
D.
2R
R
O
O
M
2R
2R
N
M
2R
2R N
B
O
N
10
1.直线边界
QP
二、双边平行边界磁场
(1)临界问题
P
Q
Q
B
v
S
圆心在磁场原边界上
v
S
圆心在过入射点 跟边界垂直的直 线上
v
S
圆心在过入射点 跟速度方向垂直 的直线上
射出。(不计粒子重力)
M
N
PA
Q
1.求该粒子的初速度?2.求该粒子从PQ边界
射出点到A点的距离?
14
2.圆形边界
例:在以O为圆心,内外半径分别为R1和R2的圆 环形区域内,存在垂直纸面的匀强磁场,R1=R0, R2=3R0.一电荷量为+q,质量为m的粒子从内圆 上的A点进入,速度大小为V,方向不确定,要是 粒子一定能从外圆射出,磁感应强度应小于多少?
y
y v B

带电粒子在有界磁场中的运动_课件

带电粒子在有界磁场中的运动_课件
由于运动的带电粒子垂直磁场方向,从磁场边界进入磁场的方向不同,或磁场 区域边界不同,造成它在磁场中运动的圆弧轨道各有不同。
知识梳理
带电粒子在有界磁场中的运动 ①直线边界
粒子进出磁场具有对称性 从某一直线边界射入的粒子,从同一边界射出时,速度与边界的夹角_相__等__。
知识梳理
带电粒子在有界磁场中的运动 ②平行边界
A.带电粒子1的比荷与带电粒子2的比荷的比为 3∶1
C.带电粒子1与带电粒子2在磁场中运动时间的比为 2∶1 D.带电粒子1与带电粒子2在磁场中运动时间的比为 提1∶示2:圆边界磁场中,沿径向射入的粒子必沿径向射出;确定2个粒子运动轨迹 圆的圆心,根据几何关系求解运动的圆心角以及半径。
例题——带电粒子在圆边界磁场中的圆周运动
例题——带电粒子在磁场中做匀速圆周运动的一般解题步骤
规律总结
带电粒子在匀强磁场中做匀速圆周运动的一般解题步 骤 画轨迹 画出轨迹,并确定圆心,利用几何方法求半

找联系
轨道半径与B、v相联系,偏转角度与圆心角、t相 联系,在磁场中运动的时间与周期相联系
用规律
用牛顿第二定律和圆周运动的规律,特别是周期 公式和半径公式
练习
练习
练习
提示:粒子恰好没射出正方形磁场区域说明粒子从N处射出后的运动轨迹与AB边 相切;规范做出粒子的运动轨迹,依据几何关系求解。
练习 (2)正方形区域的边长 ;答案 4R
练习
(2)正方形区域的边长; 答案 4R
知识梳理
带电粒子在有界磁场中的运动 有界匀强磁场指在局部空间存在着匀强磁场,带电粒子从磁场区域外垂直磁场 方向射入磁场区域,在磁场区域内经历一段匀速圆周运动,也就是通过一段圆 弧后离开磁场区域。

[实用参考]带电粒子在有界磁场中运动及复合场运动题型及解题技巧

[实用参考]带电粒子在有界磁场中运动及复合场运动题型及解题技巧

带电粒子在有界磁场中运动及复合场运动题型及解题技巧近年来在考题中多次出现求磁场的最小范围问题;或带电粒子在空间运动范围问题,这类题对学生的平面几何知识与物理知识的综合运用能力要求较高。

其难点在于带电粒子的运动轨迹不是完整的圆,其进入边界未知的磁场后一般只运动一段圆弧后就飞出磁场边界,运动过程中的临界点(如运动形式的转折点、轨迹的切点、磁场的边界点等)难以确定。

一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。

利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。

例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。

正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。

所以两个射出点相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。

例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。

一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。

当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。

解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。

由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°=又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。

带电粒子在磁场中的圆周运动---经典练习题(含答案详解)

带电粒子在磁场中的圆周运动---经典练习题(含答案详解)

电粒子在磁场中的圆周运动1.处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动.将该粒子的运动等效为环形电流,那么此电流值( ) A .与粒子电荷量成正比 B .与粒子速率成正比 C .与粒子质量成正比 D .与磁感应强度成正比答案 D解析 假设带电粒子的电荷量为q ,在磁场中做圆周运动的周期为T =2πm qB ,则等效电流i =q T =q 2B2πm ,故答案选D.带电粒子在有界磁场中的运动2.如图377所示,在第Ⅰ象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速率沿与x 轴成30°角的方向从原点射入磁场,则正、负电子在磁场中运动的时间之比为( )图377A .1∶2B .2∶1C .1∶ 3D .1∶1答案 B解析 正、负电子在磁场中运动轨迹如图所示,正电子做匀速圆周运动在磁场中的部分对应圆心角为120°,负电子圆周部分所对应圆心角为60°,故时间之比为2∶1.回旋加速器问题图3783.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底面的匀强磁场中,如图378所示,要增大带电粒子射出时的动能,下列说法中正确的是( ) A .增加交流电的电压 B .增大磁感应强度 C .改变磁场方向 D .增大加速器半径答案 BD解析 当带电粒子的速度最大时,其运动半径也最大,由牛顿第二定律q v B =m v 2r ,得v =qBrm .若D 形盒的半径为R ,则R =r 时,带电粒子的最终动能E km =12m v 2=q 2B 2R 22m .所以要提高加速粒子射出的动能,应尽可能增大磁感应强度B 和加速器的半径R .(时间:60分钟)题组一 带电粒子在磁场中的圆周运动图3791.如图379所示,ab 是一弯管,其中心线是半径为R 的一段圆弧,将它置于一给定的匀强磁场中,方向垂直纸面向里.有一束粒子对准a 端射入弯管,粒子的质量、速度不同,但都是一价负粒子,则下列说法正确的是( )A .只有速度大小一定的粒子可以沿中心线通过弯管B .只有质量大小一定的粒子可以沿中心线通过弯管C .只有质量和速度乘积大小一定的粒子可以沿中心线通过弯管D .只有动能大小一定的粒子可以沿中心线通过弯管 答案 C解析 由R =m vqB 可知,在相同的磁场,相同的电荷量的情况下,粒子做圆周运动的半径决定于粒子的质量和速度的乘积.图37102.如图3710所示,水平导线中有电流I 通过,导线正下方的电子初速度的方向与电流I 的方向相同,则电子将( )A .沿路径a 运动,轨迹是圆B .沿路径a 运动,轨迹半径越来越大C .沿路径a 运动,轨迹半径越来越小D .沿路径b 运动,轨迹半径越来越小 答案 B解析 由左手定则可判断电子运动轨迹向下弯曲.又由r =m vqB 知,B 减小,r 越来越大,故电子的径迹是a .故选B.3.一电子在匀强磁场中,以一正电荷为圆心在一圆轨道上运行.磁场方向垂直于它的运动平面,电场力恰好是磁场作用在电子上的磁场力的3倍,电子电荷量为e ,质量为m ,磁感应强度为B ,那么电子运动的角速度可能为( )A .4Be mB .3Be mC .2Be m D.Be m答案 AC解析 向心力可能是F 电+F B 或F 电-F B ,即4eB v 1=m v 21R =mω21R 或2eB v 2=m v 22R =mω22R ,所以角速度为ω1=4Be m 或ω2=2Be m.故A 、C 正确.4.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又顺利垂直进入另一磁感应强度是原来磁感应强度2倍的匀强磁场中做匀速圆周运动,则( ) A .粒子的速率加倍,周期减半 B .粒子的速率不变,轨道半径减半 C .粒子的速率减半,轨道半径变为原来的14D .粒子的速率不变,周期减半 答案 BD解析 由R =m v qB 可知,磁场加倍半径减半,洛伦兹力不做功,速率不变,由T =2πmBq 可知,周期减半,故B 、D 选项正确.图37115.如图3711所示,一带电粒子(重力不计)在匀强磁场中沿图中轨道运动,中央是一薄绝缘板,粒子在穿过绝缘板时有动能损失,由图可知( ) A .粒子的运动方向是abcde B .粒子带正电C .粒子的运动方向是edcbaD .粒子在下半周期比上半周期所用时间长 答案 BC题组二 带电粒子在有界磁场中运动图37126.空间存在方向垂直于纸面向里的匀强磁场,图3712中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O 点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是( ) A .入射速度不同的粒子在磁场中的运动时间一定不同 B .入射速度相同的粒子在磁场中的运动轨迹一定相同 C .在磁场中运动时间相同的粒子,其运动轨迹一定相同D .在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大 答案 BD解析 由于粒子比荷相同,由R =m vqB 可知速度相同的粒子轨迹半径相同,运动轨迹也必相同,B 正确.对于入射速度不同的粒子在磁场中可能的运动轨迹如图所示,由图可知,粒子的轨迹直径不超过磁场边界一半时转过的圆心角都相同,运动时间都为半个周期,而由T =2πmqB 知所有粒子在磁场运动周期都相同,A 、C 皆错误.再由t =θ2πT =θmqB可知D 正确,故选BD.图37137.如图3713所示,有界匀强磁场边界线SP ∥MN ,速率不同的同种带电粒子从S 点沿SP 方向同时射入磁场.其中穿过a 点的粒子速度v 1与MN 垂直;穿过b 点的粒子速度v 2与MN 成60°角,设粒子从S 到a 、b 所需时间分别为t 1和t 2,则t 1∶t 2为(重力不计)( ) A .1∶3 B .4∶3 C .1∶1 D .3∶2答案 D解析 如图所示,可求出从a 点射出的粒子对应的圆心角为90°.从b 点射出的粒子对应的圆心角为60°.由t =α2πT ,可得:t 1∶t 2=3∶2,故选D.图37148.如图3714所示,直角三角形ABC 中存在一匀强磁场,比荷相同的两个粒子沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则( ) A .从P 射出的粒子速度大 B .从Q 射出的粒子速度大C .从P 射出的粒子,在磁场中运动的时间长D .两粒子在磁场中运动的时间一样长 答案 BD解析 作出各自的轨迹如图所示,根据圆周运动特点知,分别从P 、Q 点射出时,与AC 边夹角相同,故可判定从P 、Q 点射出时,半径R 1<R 2,所以,从Q 点射出的粒子速度大,B 正确;根据图示,可知两个圆心角相等,所以,从P 、Q 点射出时,两粒子在磁场中的运动时间相等.正确选项应是B 、D. 题组三 质谱仪和回旋加速器图37159.如图3715是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有磁感应强度为B 0的匀强磁场.下列表述正确的是( ) A .质谱仪是分析同位素的重要工具 B .速度选择器中的磁场方向垂直纸面向外 C .能通过狭缝P 的带电粒子的速率等于EBD .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小答案 ABC解析 质谱仪是测量带电粒子的质量和分析同位素的重 要工具,故A 选项正确;速度选择器中电场力和洛伦兹力是一对平衡力,即:q v B =qE ,故v =EB ,根据左手定则可以确定,速度选择器中的磁场方向垂直纸面向外,故B 、C 选项正确.粒子在匀强磁场中运动的半径r =m v qB 0,即粒子的比荷qm =v B 0r ,由此看出粒子的运动半径越小,粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越大,故D 选项错误. 10.用回旋加速器分别加速α粒子和质子时,若磁场相同,则加在两个D 形盒间的交变电压的频率应不同,其频率之比为( )A .1∶1B .1∶2C .2∶1D .1∶3 答案 B图371611.(2014·高新区高二检测)一个用于加速质子的回旋加速器,其核心部分如图3716所示,D 形盒半径为R ,垂直D 形盒底面的匀强磁场的磁感应强度为B ,两盒分别与交流电源相连.下列说法正确的是( ) A .质子被加速后的最大速度随B 、R 的增大而增大 B .质子被加速后的最大速度随加速电压的增大而增大 C .只要R 足够大,质子的速度可以被加速到任意值 D .不需要改变任何量,这个装置也能用于加速α粒子 答案 A解析 由r =m v qB 知,当r =R 时,质子有最大速度v m =qBRm ,即B 、R 越大,v m 越大,v m 与加速电压无关,A 对、B 错.随着质子速度v 的增大、质量m 会发生变化,据T =2πmqB 知质子做圆周运动的周期也变化,所加交流电与其运动不再同步,即质子不可能一直被加速下去,C 错.由上面周期公式知α粒子与质子做圆周运动的周期不同,故此装置不能用于加速α粒子,D 错. 题组四 综合应用图371712.带电粒子的质量m =1.7×10-27kg ,电荷量q =1.6×10-19C ,以速度v =3.2×106 m/s 沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B =0.17 T ,磁场的宽度L =10 cm ,如图3717所示.(1)带电粒子离开磁场时的速度多大? (2)带电粒子在磁场中运动多长时间?(3)带电粒子在离开磁场时偏离入射方向的距离d 为多大?(g 取10 m/s 2) 答案 见解析解析 粒子所受的洛伦兹力F 洛=q v B ≈8.7×10-14 N ,远大于粒子所受的重力G =mg =1.7×10-26 N ,故重力可忽略不计.(1)由于洛伦兹力不做功,所以带电粒子离开磁场时速度仍为3.2×106 m/s.(2)由q v B =m v 2r 得轨道半径r =m v qB =1.7×10-27×3.2×1061.6×10-19×0.17m =0.2 m .由题图可知偏转角θ满足:sin θ=Lr =0.1 m 0.2 m =0.5,所以θ=30°=π6,带电粒子在磁场中运动的周期T =2πm qB,可见带电粒子在磁场中运动的时间t =θ2π·T =112T ,所以t =πm 6qB = 3.14×1.7×10-276×1.6×10-19×0.17 s ≈3.3×10-8 s. (3)带电粒子在离开磁场时偏离入射方向的距离d =r (1-cos θ)=0.2×(1-32)m ≈2.7×10-2 m.图371813.如图3718所示,两个板间存在垂直纸面向里的匀强磁场,一带正电的质子以速度v 0从O 点垂直射入.已知两板之间距离为d .板长为d ,O 点是NP 板的正中点,为使粒子能从两板之间射出,试求磁感应强度B 应满足的条件(已知质子带电荷量为q ,质量为m ). 答案4m v 05dq ≤B ≤4m v 0dq解析 如图所示,由于质子在O 点的速度垂直于板NP ,所以粒子在磁场中做圆周运动的圆心O ′一定位于NP 所在的直线上.如果直径小于ON ,则轨迹将是圆心位于ON 之间的一段半圆弧. (1)如果质子恰好从N 点射出,R 1=d 4,q v 0B 1=m v 20R 1.所以B 1=4m v 0dq.(2)如果质子恰好从M 点射出R 22-d 2=⎝⎛⎭⎫R 2-d 22,q v 0B 2=m v 20R 2,得B 2=4m v 05dq.所以B 应满足4m v 05dq ≤B ≤4m v 0dq.图371914.如图3719,一个质量为m ,电荷量为-q ,不计重力的带电粒子从x 轴上的P (a,0)点以速度v ,沿与x 轴正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y 轴射出第一象限,求: (1)匀强磁场的磁感应强度B ; (2)穿过第一象限的时间. 答案 (1)3m v 2qa (2)43πa 9v解析 (1)作出带电粒子做圆周运动的圆心和轨迹,由图中几何关系知: R cos 30°=a ,得:R =23a3Bq v =m v 2R 得:B =m v qR =3m v2qa .(2)运动时间:t =120°360°·2πm qB =43πa9v.。

专题12 带电粒子在磁场中的运动-2023年高考物理大题限时集训(解析版)

专题12 带电粒子在磁场中的运动-2023年高考物理大题限时集训(解析版)

专题12带电粒子在磁场中的运动【例题】如图所示,直线MN 上方有垂直纸面向外的匀强磁场,磁感应强度2T B =。

两带有等量异种电荷的粒子,同时从O 点以相同速度6110m/s v =⨯射入磁场,速度方向与MN 成30°角。

已知粒子的质量均为236.410kg m -=⨯,电荷量-163.210C q =⨯,不计粒子的重力及两粒子间相互作用力,求:(1)它们从磁场中射出时相距多远?(2)射出的时间差是多少?【答案】(1)0.2m ;(2)7410s 3π-⨯【解析】(1)易知正、负电子偏转方向相反,做匀速圆周运动的半径相同,均设为r ,根据牛顿第二定律有2v qvB m r=解得0.1m mv r qB==作出运动轨迹如图所示,根据几何关系可得它们从磁场中射出时相距220.2m mv d r qB===(2)正、负电子运动的周期均为72210s r T vππ-==⨯根据几何关系可知正、负电子转过的圆心角分别为60°和300°,所以射出的时间差是7410s 3603t T θπ-︒∆∆==⨯1.带电粒子在有界匀强磁场中的运动(1)粒子从同一直线边界射入磁场和射出磁场时,入射角等于出射角.粒子经过磁场时速度方向的偏转角等于其轨迹的圆心角.(如图,θ1=θ2=θ3)(2)圆形边界(进、出磁场具有对称性)①沿径向射入必沿径向射出,如图所示.②不沿径向射入时.射入时粒子速度方向与半径的夹角为θ,射出磁场时速度方向与半径的夹角也为θ,如图所示.2.临界问题(1)解决带电粒子在磁场中运动的临界问题,关键在于运用动态思维,寻找临界点,确定临界状态,根据粒子的速度方向找出半径方向,同时由磁场边界和题设条件画好轨迹,定好圆心,建立几何关系.(2)粒子射出或不射出磁场的临界状态是粒子运动轨迹与磁场边界相切.3.多解问题题目描述的条件不具体,存在多解的可能性,常见的多解原因有:(1)磁场方向不确定形成多解;(2)带电粒子电性不确定形成多解;(3)速度不确定形成多解;(4)运动的周期性形成多解.【变式训练】如图所示,矩形区域内有垂直于纸面向外的匀强磁场,磁感应强度的大小为25.010T B -=⨯,矩形区域长为235,宽为0.2m 。

带电粒子在直线有界磁场中的运动

带电粒子在直线有界磁场中的运动
线夹 角 的平 分线 过 圆心. ② 定 半径 : 几何法 求半 径 ( 股定 理 、 勾 三角 函数 ) ;
因为上 升 和下 降过 程 中物 体 都 克 服 滑 动 摩 擦 力
做功 , 数值 相 等 , 以往 返一 次 克服 滑 动 摩 擦 力所 且 所 做 的总功 为 8 . 功 能关 系 可 知 , 返 一 次 机 械 能 0J 由 往
1 解 题 的 思 路 方 法
1 )解决 带 电粒 子在 磁 场 中的运 动 类 问题 时 必须
依 据 以 下 思 路
由③ 、 ④两式 得 : : 0J 即上 升 过程 中物 体 F 一4 , 克服 滑动摩 擦力 做 了 4 0J的功 . .
① 找圆 心 : 利用 上R; 用 弦 的 中垂线 ; 条 切 利 两
■ ■ I ,
例 1 一个 负 离 子 , 量 为 m, 质 电荷 量 大小 为 q ,
以速率 垂直 于屏 S经过 小 孔 0 射入 存 在 着匀 强 磁 场 的真 空室 中( 图 2 . 感应 强度 B 的方 向与离 子 如 )磁 的运动方 向垂 直 , 垂直 于 图 2中纸 面 向里 . 并 ( )求离 子进 入磁场 后到 达屏 S上时 的位置 与 0 1
度 重视 .
② 注 意 圆周 运 动 中的有关 对 称 规 律 :粒 子进 入
单 边磁 场时 , 入射速 度 与边界 夹 角 等于 出 射速 度 与边
界 的夹 角. 2 直 线 边 界 类 型
( 者单位 : 北省 丰润 车轴 山 中学) 作 河
1 )带 电粒 子在 单直 线边界磁 场 中的运 动
mg i 和滑 动摩擦 力 F,而且 上 升 的过 程 中这 2 s 0 n , 个

带电粒子在有界磁场中运动 的临界问题解析

带电粒子在有界磁场中运动 的临界问题解析

带电粒子在有界磁场中运动的临界问题解析“带电粒子在磁场中的运动”是历年高考中的一个重要考点,而“带电粒子在有界磁场中的运动” 则是此考点中的一个难点.其难点在于带电粒子进入设定的有界磁场后只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,它要求考生根据带电粒子运动的几何图形去寻找几何关系,然后应用数学工具和相应物理规律分析解决问题.下面举例谈谈带电粒子在不同形状有界磁场中运动的一些临界问题.一、 带电粒子在“圆形磁场区域”中的运动例1、如图1,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个方向射出速度为s m v /102.36⨯=的粒子.已知α粒子质量kg m 271064.6-⨯=,电量C q 19102.3-⨯=,试画出α粒子通过磁场空间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角.解:由qvB =Rv m 2可求R =0.2m由圆心角=偏向角,当粒子从O 点射出后穿过磁场路径最大时,对应圆心角最大。

由几何关系圆心角为60º 故最大偏角为60 º二、带电粒子在“长方形磁场区域”中的运动例2、如图2,长为L 间距为d 的水平两极板间,有垂直于纸面向里的匀强磁场,磁感强度为B ,两板不带电,现有质量为m ,电量为q 的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v 应满足什么条件.解:两种情形1.当粒子以较小速度射入从磁场左边界射出,对应最大速度为v 1,半径为r 1图2⨯⨯⨯⨯⨯⨯⨯⨯→∙d LvmqBdv dr r v m B qv 4 4111211===可求2.以较大速度射入从磁场右边界射出对应最小速度v 2,半径r 2mdL d qB v L dr r r mv B qv 4)4()2( 222222222222+=+-==可求三、带电粒子在“三角形磁场区域”中的运动例3、在边长为a 2的ABC ∆内存在垂直纸面向里的磁感强度为B 的匀强磁场,(边界无磁场)有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图3所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件.解:若粒子恰好与AC 相切.轨道半径为r 1,速度为v 1mqBa v mqBam qBa v a r r a r v r BC mqBa v a r r mv B qv a r r 3)336(3 330cos ])32([)336()336( 330cos 22222211121111<<-===-+-=-===+故可求速度为相切半径为若粒子恰好与可求图3DB四、带电粒子在“宽度一定的无限长磁场区域”中的运动例4、如图4所示,A 、B 为水平放置的足够长的平行板,板间距离为m d 2100.1-⨯=, A 板中央有一电子源P ,在纸面内能向各个方向发射速度在s m /102.3~07⨯范围内的电子,Q为P 点正上方B 板上的一点,若垂直纸面加一匀强磁场,磁感应强度T B 3101.9-⨯=,已知电子的质量kg m 31101.9-⨯=,电子电量C e 19106.1-⨯=,不计电子的重力和电子间相互作用力,且电子打到板上均被吸收,并转移到大地.求:(1)沿P Q方向射出的电子击中A 、B 两板上的范围.(2)若从P点发出的粒子能恰好击中Q点,则电子的发射方向(用图中θ角表示)与电子速度的大小v 之间应满足的关系.解:①粒子运动的最大半径处至点右侧从板范围为打在范围点至距板上范围为打在m m Q B m d P P A mqB mv r mm 222210110)32(100.12102----⨯⨯-⨯=⨯==6108sin sin 2⨯====mqBdv qBmv r dr θθ则②五、带电粒子在“单边磁场区域”中的运动例5、如图5所示,在真空中坐标xoy 平面的0>x 区域内,有磁感强度T B 2100.1-⨯=的匀强磁场,方向与xoy 平面垂直,在x 轴上的)0,10(p 点,有一放射源,在xoy 平面内向各个方向发射速率s m v /100.14⨯=的带正电的粒子,粒子的质量为kg m 25106.1-⨯=,电量为C q 18106.1-⨯=,求带电粒子能打到y 轴上的范围.解:y 轴范围mqBmvr rr 1.03==-至从练习1.在半径为R 的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中, 如“圆周运动中小球能过最高点的速度条 件” “动量中的避免碰撞问题”等等, 这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。

带电粒子在有界磁 场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。

、解题方法画图T 动态分析T 找临界轨迹。

(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了——这一般都不难。

)、常见题型 (B 为磁场的磁感应强度,V 。

为粒子进入磁场的初速度)r ①旳方向一定,大小不确定一第一类 I 』确宦 < ②V 。

犬小一亦方向不确定——第二类■③旳大小、方向都不确定一第三类分述如下: 第一类问题:例1如图1所示,匀强磁场的磁感应强度为 B,宽度为d ,边界为CD 和EF 。

一电子从 CD 边界外侧以速率 V 。

垂直匀强磁场射入,入射方向与CD 边界夹角为9。

已知电子的质量为 m 电荷量为e ,为使电子能从磁场的另一侧 EF 射出,求电子的速率 v o 至少多大?2.行不确宦-①巾确定——第四类 {——五类例2如图3所示,水平线 MN 下方存在垂直纸面向里的磁感应强度为 B 的匀强磁场,在 MN线上某点O 正下方与之相距 L 的质子源S,可在纸面内360°范围内发射质量为 m 电量 为e 、速度为V o =BeL / m 的质子,不计质子重力,打在 MN 上的质子在 O 点右侧最远距离 OP ,打在O 点左侧最远距离 OO。

分析:首先求出半径得r =L ,然后作出临界轨迹如图 4所示(所有从 S 发射出去的质子 做圆周运动的轨道圆心是在以S 为圆心、以r =L 为半径的圆上,这类问题可以先作出这一圆——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),O 諒L , OQL 。

【练习】如图5所示,在屏MN 勺上方有磁感应强度为 B 的匀强磁场,磁场方向垂直纸面 向里。

P 为屏上的一小孔,PC 与MN 垂直。

一群质量为 m 带电荷量为一q 的粒子(不计重力),分析:如图2,通过作图可以看到:随着 界EF 相切,然后就不难解答了。

第二类问题:V o 的增大,圆半径增大,临界状态就是圆与边以相同的速率v ,从P 处沿垂直于磁场的方向射入磁场区域。

粒子入射方向在与磁场 B 垂直的平面内,且散开在与 PC 夹角为e 的范围内,则在屏 MN 上被粒子打中的区域的长度为( )2mv2ffsvcos52wv(l - sin ff)cosff)A. -1 -B.扛C.L-D .分析:如图6所示,打在屏上距 P 最远的点是以 0为圆心的圆与屏的交点,打在屏上最 近的点是以02或O 为圆心的圆与屏的交点 (与例2相似,可先作出一系列动态圆)。

故答案选 “D'。

第三类问题:例3 (2009年山东卷)如图甲所示,建立 Oxy 坐标系,两平行极板 P 、Q 垂直于y 轴且关 于x 轴对称,极板长度和板间距均为I ,第一、四象限有磁场,方向垂直于 Oxy 平面向里。

位于极板左侧的粒子源沿 x 轴向右连续发射质量为 m 电量为+q 、速度相同、重力不计的带 电粒子。

在0〜3t o 时间内两板间加上如图乙所示的电压(不考虑极板边缘的影响)。

图乙[V6I ItQ -----------yX X X X X X XXX XXXXXX X BX X XXX%——图甲■■ r已知t=0时刻进入两板间的带电粒子恰好在t o时刻经极板边缘射入磁场。

上述m q、I、t。

、B为已知量。

(不考虑粒子间相互影响及返回极板间的情况)(1)求电压U0的大小。

1(2)求2 t o时刻进入两板间的带电粒子在磁场中做圆周运动的半径。

(3)何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间。

图丙分析:粒子进入电场做类平抛运动,由平抛运动规律即可求得偏转电压U0;t=2t o时刻进入1的粒子先做类平抛运动,[t 0后沿末速度方向做匀速直线运动,利用相应规律可求得射出电场的速度大小,进入磁场后做匀速圆周运动,洛仑兹力提供向心力,可求提半径R; 2t o时刻进入的带电粒子加速时间最长(如图丙所示),加上此时粒子进入磁场是向上偏转,故运动时间最短,同样应用类平抛运动规律和圆周运动规律,即可求得此最短时间。

第四类问题:例4如图7所示,磁感应强度大小B=0. 15T、方向垂直纸面向里的匀强磁场分布在半径F=0. 10m的圆形区域内,圆的左端跟y轴相切于直角坐标系原点0,右端跟荧光屏MN相切于x轴上的A点。

置于原点的粒子源可沿x轴正方向射出速度V o=3. 0X 106m/s的带正电的粒子流,粒子的重力不计,荷质比q/m=1. o x lO8C/kg。

现以过O点并垂直于纸面的直线为轴,将圆形磁场逆时针缓慢旋转90°,求此过程中粒子打在荧光屏上离A的最远距离。

分析:本题可先设想磁场是无界的,那么粒子在磁场中运动的一段圆弧如图8中的弧0E (半径r=2R=0. 20m,圆心为O),现在圆形磁场以O为轴在旋转相当于直径OA也在旋转,当直径OA旋转至OD位置时,粒子从圆形磁场中离开射向荧光屏MN时离A有最远距离(落g OC= r tan —点为F)。

图中△ O O[为等边三角形,FD与O 02延长交于C点,图中e =60° 1 ,练习:如图9所示,一个质量为m带电荷量为+ q的粒子以速度V o从O点沿y轴正方向射入磁感应强度为B的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从x轴上的b点穿过,其速度方向与x轴正方向的夹角为30°,粒子的重力可忽略不计,试求:(1)圆形匀强磁场区域的最小面积;(2)粒子在磁场中运动的时间;(3)b到O的距离。

分析:如图10,过b点作速度的反向延长线交y轴于C点,作/ OCb的角平分线交x轴于O,再以O为圆心、以OO为半径画弧,与直线Cb相切于点A,粒子运动的轨迹即为O-gb, 圆形磁场即为以OA为直径的圆,利用相关物理公式及几何知识不难计算出本题的结果。

第五类问题:例5电子质量为m电荷量为e,从坐标原点O处沿xOy平面射入第一象限,射入时速度方向不同,速度大小均为v o,如图11所示。

现在某一区域加一方向向外且垂直于xOy平面的匀强磁场,磁感应强度为B,若这些电子穿过磁场后都能垂直射到荧光屏MN上,荧光屏与y轴平行,求:(1)荧光屏上光斑的长度;(2)所加磁场范围的最小面积。

分析:本题可先作出这些射入第一象限的电子做圆周运动的轨道圆心的集合,必在弧OQ上(如图12),然后设想以该弧上的各点(如图12中的O等四点)为圆心作出粒子运动的轨迹,最终垂直射到MN上的PQ间,所以荧光屏上光斑的长度即为PQ=R=mv/eB;所加磁场范围即为图中由弧OOOO所围的区域,其中弧OO可看成是由弧OO向上平移R得到的。

练习:例5若改为"磁场方向垂直于xOy平面向里,荧光屏MN移至y轴右侧,”其他条件不变,情况又怎样呢?读者可试作分析。

(所加磁场的最小范围为一“树叶”形状)综合以上题型,我们可以看到,这些问题的解答很能体现学生的分析思维能力以及想象能力,要求学生能够由一条确定的轨迹想到多条动态轨迹,并最终判定临界状态,这需要在平时的复习中让学生能有代表性地涉猎一些习题,才能在高考应试中得心就手,应对自如。

例析用圆心轨迹确定带电粒子在磁场中运动区域问题同种带电粒子从同一点以相同速率、沿不同方向进入同一匀强磁场中,粒子可能达到的区域的确定是教学中常遇,学生感到棘手,高考又考查的问题。

现就此类问题举例分析。

题目1 (2005年全国高考)如图1,在一水平放置的平板MN的上方有一匀强磁场,磁感应强度的大小为 B ,磁场方向垂直纸面向里,许多质量为m带电荷量为+ q的粒子,以相同的速率V。

沿位于纸面内的各个方向,由小孔O射入磁场区域。

不计重力,不计粒子间的相互影响。

图2中阴影部分表示带电粒子可能经过的区域,其中r =mv o/B q,哪个图是正确的()XXX**V V V VJTi()析与解依据题意,所有带电粒子在磁场中做圆周运动的半径相同r = m v o /B q所以,在纸面内由O点沿不同方向入射的带电粒子作圆周运动的圆心轨迹是以O为圆心,r 为半径的圆周(A 图中虚线圆示)。

又因为带电粒子带正电、进磁场时只分布在 以ON 和OM 为边界的上方空间,而向心力由洛仑兹力提供,它既指向圆心又始终垂直速度,可确定:圆心轨迹只能是 A 图中虚线圆直径分隔的左半边虚线圆周;再以 A 图 中左半虚线圆上各点为圆心、以 r 为半径作圆,圆周在磁场中所能达到的区域应为 A 图阴影区。

所以A 图正确。

题目2如图3所示,有许多电子(每个电子的质量为 m ,电量为e)在xOy 平面 内从坐标原点O 不断地以相同大小的速度 V o 沿不同方向射入第一象限。

现加上一个方 向向里垂直于xOy 平面、磁感应强度为B 的匀强磁场,要求这些电子穿过该磁场后都能 平行于x 轴并向x 轴的正方向运动。

试求符合该条件的磁场的最小面积。

析与解 因为所有电子都在匀强磁场中作半径为 r = m v o /B e 的匀速圆周运动。

而沿y 轴的正方向射入的边缘电子需转过1 /4圆周才能沿x 轴的正方向运动,它的轨迹应为所求最小面积磁场区域的上边界 ------ 如图中弧 线a ,其圆心在垂直入射速度的x 轴上O( r ,0)。

现设沿与x 轴成任意角a (0 < a < 90 ° )射入的电子在动点P 离开磁场。

这些从O 点沿不同方向入射的电子做圆周运动的圆心 O'到入射点O 的距离又都为半径r 。

所以, O'形成一个以入射点 O (即坐标原点)为圆心、r 为半径的1 14圆弧轨迹 ------------- 如图3 中弧线c 。

根据题目要求,各电子射出磁场时速度v 要为平行x 轴的正方向。

故由做圆周运动的物体的圆心又应在垂直出射速度的直线上可知,O'又必在对应出射点 p 的正下方,即曲线c 上各点到对应正上方出射点 p 的距离也都 等于r ;因此将1 /4圆弧轨迹c 沿y 轴正向平移距离后 -------- 如图中弧线 b ,弧线b 就 是各出射点p 的轨迹,它实际是以 Q(0 , r)为圆心,半径为r 的1 /4圆弧;既然点从不同点p 射出的电子的圆心严g 1阳3分析:①粒子受洛仑兹力后必将向下偏转,过0点作速度V。

的垂线必过粒子运动轨迹的圆心O ;由于圆的对称性知粒子经过点P时的速度方向与x轴正方向的夹角必为故点P作速度的垂线与点0处速度垂线的交点即为圆心0 (也可以用垂径定理作弦0P的垂直平分线与点0处速度的垂线的交点也为圆心)L q2v0sin5磁场中的运动半径为故有 2 sin 5,解之m BL \& 二2兀-20 ,故粒子在磁场中的运动时间为【例2】如图以ab为边界的二匀强磁场的磁感应强度为Bi = 2B2,现有一质量为m带电+q的粒子从0 点以初速度V。

相关文档
最新文档