神经电生理检查技术
神经肌肉的电生理学检查项目
神经肌肉的电生理学检查项目神经肌肉的电生理学检查项目是一种常见的医学检查方法,用于评估神经和肌肉的功能状态。
该检查包括多个项目,每个项目都有其特定的目的和应用范围。
以下是对神经肌肉的电生理学检查项目进行全面详细解析。
一、神经传导速度测定(NCS)神经传导速度测定(NCS)是一种常见的神经电生理学检查方法,用于评估神经传导速度、幅度和延迟等指标。
该检查通常通过在皮肤表面放置电极,并刺激相应的神经来进行。
NCS可用于评估多种疾病,如周围神经病变、脊髓损伤和脊髓灰质炎等。
二、肌电图(EMG)肌电图(EMG)是一种用于评估肌肉活动和功能状态的电生理学检查方法。
该检查通常通过在皮肤表面或针头插入到特定位置放置电极来进行。
EMG可用于诊断多种疾病,如运动神经元疾病、周围神经病变和肌无力等。
三、重复神经刺激(RNS)重复神经刺激(RNS)是一种用于评估肌肉疲劳和神经传导状态的电生理学检查方法。
该检查通常通过在皮肤表面放置电极,并刺激相应的神经来进行。
RNS可用于诊断多种疾病,如重症肌无力和周期性麻痹等。
四、单光子发射计算机断层扫描(SPECT)单光子发射计算机断层扫描(SPECT)是一种用于评估脑部血流量和代谢率的影像学检查方法。
该检查通常通过注射放射性示踪剂,并使用计算机对其进行分析来进行。
SPECT可用于诊断多种疾病,如中风、癫痫和帕金森氏症等。
五、功能性核磁共振成像(fMRI)功能性核磁共振成像(fMRI)是一种用于评估大脑活动和功能状态的影像学检查方法。
该检查通常通过使用强大的磁场和无害的无线电波来获取图像,并对其进行分析来进行。
fMRI可用于诊断多种疾病,如脑卒中、多发性硬化和阿尔茨海默症等。
六、脑电图(EEG)脑电图(EEG)是一种用于评估大脑电活动的电生理学检查方法。
该检查通常通过在头皮表面放置电极,并记录大脑电活动来进行。
EEG可用于诊断多种疾病,如癫痫、睡眠障碍和脑损伤等。
七、视觉诱发电位(VEP)视觉诱发电位(VEP)是一种用于评估视觉系统功能状态的电生理学检查方法。
电生理技术在神经和心血管疾病研究中的应用
电生理技术在神经和心血管疾病研究中的应用随着科学技术的发展,人们逐渐意识到电生理技术在神经和心血管疾病研究中的重要性。
电生理技术是一种通过测量生物电活动,进而研究神经系统和心血管系统的技术。
这种技术被广泛应用于疾病的诊断和治疗,可以为医学研究提供宝贵的数据。
神经科学中的电生理技术神经科学方面,电生理技术主要包括脑电图(EEG)、脑磁图(MEG)和脑脊液分析三种。
EEG技术是一种通过记录头皮表面电活动来测量大脑状态的非侵入性技术。
该技术广泛应用于失眠、头痛、癫痫等疾病的诊断,并且还可用于评估药物治疗的有效性和检测各种疾病的特征波。
MEG技术是通过记录头皮表面磁场来识别和定位大脑中神经元的活动。
它可以更准确地确定病灶区域,诊断神经损伤、帕金森病等疾病。
早期的脑电图技术是通过纸笔记录的,现代的技术则采用了计算机辅助的方法进行数字信号分析。
在神经科学领域,电生理技术被广泛应用于研究大脑的正常功能和异常变化。
神经科学家可以通过这些数据来了解神经元的活动,并研究神经可塑性、认知和情感心理学,还可以将这些技术用于疾病治疗的监测和评估。
神经科学家最近还研究出了通过EEG技术达成唤醒状态的技术,在医疗领域的应用潜力很大。
心血管科学中的电生理技术心血管科学方面,电生理技术主要包括心电图(ECG)和心血管磁共振(CMR)两种。
ECG技术是通过记录心脏电活动来评估心脏的健康状况。
通过ECG技术可以检测心律异常、心肌缺血和心肌梗死等疾病。
CMR技术则是利用强磁场和无线电波对心脏进行成像。
它可以用于评估心脏结构和功能,并检测是否存在血栓或其他疾病。
在心血管科学领域,电生理技术被广泛应用于疾病的诊断和治疗。
ECG技术是心脏病医学中最常用的技术之一,并且也是非常精准的。
它可以检测心跳不规律、平均心率、收缩压以及心肌缺血等状况。
直接检测心电生理现象比传统的物理观察更加高效,并且其诊断结果非常精准。
CMR技术则是在研究心脏结构和功能时,越来越多的被使用。
神经电生理检查技术—针极肌电图(康复评定技术课件)
肆、运动单位
概念:由一个运动神经元与所支 配的全部肌纤维共同组成的,是 肌肉随意收缩时的最小功能单位。 运动单位电位3个主要参数:时 限、波幅、位相。
肆、运动单位
A、运动单位时限测量 B、运动单位波幅的测量 C、运动单位位相的测量
伍、神经源性疾病与肌源性疾病肌电图的鉴别
神经源性损害:插入电位延长,有正尖纤颤电 位,轻收缩时,运动单位电位可时限增宽,波幅 高,多相波多,大力收缩时,运动单位数量 减少, 呈单纯相。 肌源性损害:可有自发电位,轻收缩时运动单位 电位时限缩短,波幅减小,多相电位增多,大力 收缩时,出现早期募集现象。
叁、电位图
二 正常静息电位
在静息状态下,正常肌纤维,在终板区以 外不会有电活动
叁、电位图
三 正常运动单位电位
正常肱二头肌运动单位电位 (注意时限、波幅、波形和多相波的百分比)
叁、电位图
四 正常大力收缩时募集电位
叁、电位图
五 正常肌电图为
插入电位<300ms 放松时 电静息 轻收缩 正常形态的运动单位电位 重收缩 干扰相
贰、常用肌肉解剖定位和进针部位
1.第一背侧骨间肌 2.小指展肌 3.拇短展肌 4.指总伸肌 5.旋前圆肌 6.肱二头肌
7.三角肌 8. 趾短伸肌 9.胫前肌 10.腓肠肌内侧头 11.股内侧肌
贰、常用肌肉解剖定位和进针部位
贰、常用肌肉解剖定位和进针部位
贰、常用肌肉解剖定位和进针部位
贰、常用肌肉解剖定位和进针部位
叁、针极肌电图检查观察的四个步骤
• ①插入电活动:将记录针插入肌肉时所引起的电位变化。 • ②放松时:观察肌肉在完全放松时是否有异常自发电活动。 • ③轻收缩时:观察运动单位电位时限、波幅、位相和发放频率。 • ④大力收缩时:观察运动单位电位募集类型。
周围神经损伤常用的电生理评定方法
周围神经损伤是一种常见的神经系统疾病,临床上需要通过电生理评定方法来帮助诊断和治疗。
此类方法是通过记录神经传导速度和肌肉电活动来评估神经系统功能的一种手段。
以下是常用的电生理评定方法:1. 神经传导速度测定(Nerve Conduction Velocity, NCV)神经传导速度测定是通过电刺激神经并测定刺激信号传导的速度来评估神经系统功能的测试方法。
这种方法通过贴电极在神经上并施加短暂的电刺激,然后记录刺激信号从刺激点到肌肉的传导速度。
通过比较正常值,可以判断神经传导速度是否受损,是一种主要用于评估周围神经损伤的方法。
2. 肌肉电图(Electromyography, EMG)肌肉电图是通过在肌肉上放置电极来检测肌肉电活动的方法。
这种方法可以测量肌肉的电活动,从而评估肌肉神经功能是否正常。
肌肉电图通常与神经传导速度测定一起使用,可以全面评估周围神经损伤。
3. 视觉诱发电位(Visual Evoked Potentials, VEP)视觉诱发电位是一种通过刺激视觉系统并记录大脑皮层潜伏期反应来评估视觉系统功能的方法。
这种方法适用于评估视觉神经损伤,可以通过比较潜伏期反应的正常值来判断视觉系统功能是否正常。
4. 听觉诱发电位(Auditory Evoked Potentials, AEP)听觉诱发电位是一种通过刺激听觉系统并记录大脑皮层潜伏期反应来评估听觉系统功能的方法。
这种方法通常用于评估听觉神经功能,可以帮助诊断听觉系统疾病和损伤。
总结起来,以上是常用的周围神经损伤的电生理评定方法,通过这些方法的综合分析可以全面评估神经系统功能是否正常,帮助临床诊断和治疗。
在实际临床中,医生们需要根据患者的具体情况选择合适的电生理评定方法,并结合临床症状和体征进行综合分析,以达到准确诊断和有效治疗的目的。
通过电生理评定方法可以更准确、客观地评估神经损伤或疾病的程度和病情发展趋势。
这些方法不仅可以用于诊断,还可以用于评估治疗效果和预后预测。
神经科学中的电生理学技术
神经科学中的电生理学技术神经科学是研究神经系统结构、功能和疾病的学科。
电生理学技术是神经科学中最常用的技术之一,它利用电极在神经元之间测量电位变化以研究神经系统的活动。
本文将探讨神经科学中的电生理学技术。
一、电生理学技术的概述电生理学技术包括脑电图(EEG)、脑源性诱发电位(VEP)、脑干诱发电位(BAEP)、自发电位(SP)和肌电图(EMG)等技术,它们广泛应用于神经科学、精神病学、神经内科学、认知科学和行为科学等领域。
EEG是最古老、最成熟的电生理学技术之一,它能够测量头皮上的电位变化,并反映从大脑皮层发出的电信号的时间和频率。
VEP是测量视觉信息被传递给大脑皮层的速度和质量的技术,它通过记录从眼睛到大脑的电位变化来测量视觉信息的传递速度。
BAEP是测量大脑干中神经传导速度和传导路径的技术,它通过记录从耳朵到大脑干的电位变化来测量传导速度。
SP是一种记录身体的自发电活动的技术,它通过记录不同身体部位的电位变化来观察身体位置的改变。
EMG是一种记录肌肉电活动的技术,它可以用来观察肌肉的收缩和松弛。
以上的电生理学技术都具有一些优点,如非侵入性、方便快捷、成本低廉等,它们被广泛应用于临床和科学研究中,成为研究神经系统的重要工具。
二、电生理学技术在神经疾病诊断中的应用电生理学技术广泛应用于神经疾病的临床诊断中,如癫痫、帕金森病、阿尔茨海默病等。
其中,EEG是癫痫诊断的关键技术之一,它可以检测到癫痫病人大脑皮层的异常电位变化。
VEP和BAEP则常用于诊断多发性硬化症、脑干损伤等。
SP和EMG常用于肌肉病变、神经病变等疾病的诊断。
电生理学技术的应用可以提高神经疾病的诊断精确度和治疗效果。
三、电生理学技术在神经科学研究中的应用电生理学技术是神经科学研究中重要的工具之一。
通过记录从神经元发出的电信号,可以了解神经元的活动和神经网络之间的相互作用。
例如,EEG可以记录大脑皮层的电势变化,用于观察大脑不同区域之间的相互作用。
神经电生理检查技术—诱发电位(康复评定技术课件)
用电磁刺激相应脑区,记录电极放置于拇短展肌、 胫前肌等肌肉表面,记录运动诱发电反应。一般在 肌肉放松状态下记录。某些患者松弛状态下引不出 电位,可采用随意收缩激发出电位来检查。对癫痫 及脑出血病人应慎用磁刺激。
常做的检查内容
一 躯体感觉诱发电位
二 脑干听觉诱发电位
三 视觉诱发电位
四 运动诱发电位
第五节 诱发电位OBJECTIVE学源自掌握:诱发电位常做的检查内容
习
目
熟悉:诱发电位的临床应用
标
了解:诱发电位检查技术的基本要求、方法
及注意事项
概念
1.概念:诱发电位指中枢神经系统在感受内在或外部刺激过程中产生的生 物电活动。 2.常用的有:躯体感觉诱发电位、脑干听觉诱发电位和视觉诱发电位、运 动诱发电位。
肆、脑干听觉诱发电位
视觉诱发电位的临床应用
• VEP最有价值之处是发现视神经的潜在病灶,视神 经病变常见于视乳头炎和球后视神经炎,PRVEP异 常率可达89%;VEP对多发性硬化的诊断也很有意 义。
肆、脑干听觉诱发电位
运动诱发电位的临床应用
• 脑损伤后运动功能的评估及预后的判断;协助诊断 多发性硬化及运动神经元病;可客观评价脊髓型颈 椎病的运动功能和锥体束损害程度。
壹、概述
一 躯体感觉诱发电位
• 躯体感觉诱发电位也称为体感诱发电位, 临床上最常用的时短潜伏时体感诱发电 位,简称SLSEP。贴电视波形稳定,无 适应性和不受睡眠和麻醉药的影响。刺 激阈值一般用感觉阈以上,运动阈以下。
• 主要反映躯体神经通路的功能状态。
壹、概述
• 脑干听觉诱发电位是利用短声刺 激双耳,在头颅表面记录到听神 经至脑干的电活动。
贰、常用的检查方法
神经电生理(脑电图)技术
神经电生理(脑电图)技术(副高)
下列各项,肺癌与肺脓肿的主要鉴别是
神经电生理(脑电图)技术(副高)
一15岁男生,10余天前上呼吸道感染,2天前开始眼睑浮肿。血压2
神经电生理(脑电图)技术(副高)
检查肾小球滤过功能最恒定且灵敏的方法是
神经电生理(脑电图)技术(副高)
急性肾小球肾炎的发病机制是
神经电生理(脑电图)技术(副高)
D
ABCD
ABCDE
ABCDE
ABCDE
BE
A
B
A B C D E A B C D E A B C D E
焦虑症 恐怖症 强迫症 分离性遗忘 神经衰弱 头部CT 脑电图 心电图 胸部X片 心脏B超 周围神经 胸段脊髓 颈膨大 高颈段脊髓 后颅窝
C
C
C
A 血浆置换有暂时性疗效 E B 免疫球蛋白静点有效 C 主要针对肿瘤病因治疗 D 手术切除肿瘤可改善肌无力 症状 E 抗胆碱酯酶药物效果明显 A B C D E A B C D E 基底核区 大脑 小脑 脑干 蛛网膜下隙 衰退性 稳定性 停滞性 超前性 快速性 C
D
A 起病急,有寒战、高热、胸 E 痛、咳嗽 B 血白细胞总数升高 C 休克 D 局部出现明显的湿啰音 E X线检查呈肺叶分布的密度 均匀影 A 真菌 E B 肺炎球菌 C 厌氧菌 D 葡萄球菌 E 革兰阴性杆菌 A B C D E A B C D E A B C D E 气道异物 急性喉炎 药物过敏 急性左心衰 支气管哮喘 咳嗽、咳脓痰 性别 血白细胞偏高 年龄大小 X线或痰液检查 肾病综合征 急性肾小球肾炎 慢性肾炎 急性肾盂肾炎 膀胱炎 E
以下哪项描述符合儿童失神癫痫
神经电生理(脑电图)技术(副高)
监测神经功能的利器——神经电生理学检查,应该怎么查
监测神经功能的利器——神经电生理学检查,应该怎么查人体密集而精细的神经网络往往令人“捉摸不透”,即便是有经验的医生有时也难以辨清“敌我”。
这时,就需要有一种办法来分清病变和正常组织,为精准手术或有效治疗提供导航,这就是监测神经功能的利器——神经电生理学检查,我们看看吧!神经电生理检查诊断的目的和意义神经电生理检查的主要目的是评估神经系统的功能和病变程度,以帮助医生诊断和治疗神经系统疾病。
具体来说,神经电生理检查可以实现以下几个方面的目的和意义:1. 诊断神经系统疾病:神经电生理检查可以帮助医生诊断多种神经系统疾病,如周围神经病变、中枢神经系统疾病、肌肉疾病等。
2. 评估神经系统功能:神经电生理检查可以评估神经系统的功能,如神经传导速度、肌肉反应等,以帮助医生了解神经系统的状况。
3. 判断病变程度和范围:神经电生理检查可以帮助医生判断神经系统病变的程度和范围,以确定治疗方案和预后。
4. 监测治疗效果:神经电生理检查可以用于监测治疗效果,以帮助医生调整治疗方案和评估预后。
总之,神经电生理检查是一种非常重要的神经系统检查方法,可以帮助医生诊断和治疗多种神经系统疾病,提高治疗效果和预后。
神经电生理学检查是什么1.基本情况神经电生理学检查是一种通过记录和分析神经系统电信号来评估神经系统功能的检查方法。
它包括两种主要的检查方法:脑电图(EEG)和神经肌肉电图(EMG)。
脑电图是一种记录大脑电活动的检查方法,通过在头皮上放置电极来记录大脑皮层的电信号。
这种检查可以用于诊断癫痫、脑损伤、睡眠障碍等疾病。
神经肌肉电图是一种记录肌肉电活动的检查方法,通过在肌肉和神经上放置电极来记录肌肉和神经的电信号。
这种检查可以用于诊断肌肉和神经疾病,如肌无力、神经病变等。
神经电生理学检查是一种无创的检查方法,不需要进行手术或注射,对患者没有任何伤害。
它可以提供有关神经系统功能的详细信息,帮助医生进行诊断和治疗。
2.哪些疾病要神经电生理检查神经电生理检查可以用于诊断多种神经系统疾病,包括但不限于以下:1.周围神经病变:如神经根病变、神经炎、肌无力等。
临床神经电生理诊断技术和应用
资料仅供参考,不当之处,请联系改正。
进展的神经源性损害
• 由于MU或其轴索的损害与代偿性再支配同时发生, 因此临床上很难判断起病时间。
• 通常在进行肌电图检查时MUAP已经有了再支配 的证据;插入电位增加并可见自发电位。
资料仅供参考,不当之处,请联系改正。
神经源性损害的肌电改变
总之,神经源性损害较为特异性的改变 是MUAP时限增宽同时伴有波幅和面积增 大。MUAP的复杂性增加和单纯波幅增大 并没有特异性,但是对于早期的较轻度的 损害比较敏感。 MUAP不稳定提示正在进 行的再支配。
Inching检测尺神经肘 部传导:图中示肘下 3cm到肘上4cm每隔 1cm的连续刺激,在 肘到肘上1cm处发现 传导减慢并有轻度的 传导阻滞。
上述波形的重叠
资料仅供参考,不当之处,请联系改正。
CIDP:右侧尺神经运动传导,刺激点分别为腕,肘下,肘上 和Erb’s点。可见在肘下-腕和肘上下传导速度正常下限,而在 Erb’s点-肘上显示传导速度明显减慢伴传导阻滞。
资料仅供参考,不当之处,请联系改正。
右侧正中神经运动传导远端潜伏期轻度延长,传导速度正 常范围,CMAP波幅明显降低。见于一例AMAN。
资料仅供参考,不当之处,请联系改正。
CMTI型:右侧尺神经运动传导,刺激点分别为腕,肘下,肘上 和Erb’s点。可见在神经的各个节段传导速度都明显减慢而不伴 有传导阻滞。
资料仅供参考,不当之处,请联系改正。
资料仅供参考,不当之处,请联系改正。
募集遵循的原则 -大小原则(size principle)
资料仅供参考,不当之处,请联系改正。
针电极的类型
电极类型 同心圆针电极 单极针电极
电极的记录面积 0.07mm2 0.24mm2
神经系统电生理检查
神经系统电生理检查一.脑电图(EEG)二.脑诱发电位三.肌电图四.神经传导速度五.重复神经电刺激一.脑电图EEG(一)定义(二)常规和特殊电极(三)诱发试验(四)正常EEG表现▲▲▲四要素(五)异常EEG▲▲▲(六)临床应用(一)定义:通过测定自发的有节律的生物活动以了解脑功能状态,是证实癫痫和进行分类的最客观的手段.(二)常规和特殊电极检查方法1.常规检查方法:参考电极为双耳垂.电极可采用单电极和双电极的连接方法2.特殊电极检查:1)蝶骨电极检查:提高颞叶癫痫脑电图诊断的阳性率2)鼻咽电极:少用3)深部电极:具有并发症为出血和感染(三)诱发试验1.过度换气:让患者加快呼吸频率和深度,引起短暂性呼吸碱中毒,使常规检查难以记录到的,不明显的异常变得明显.过度换气持续时间为3分钟.2.闪光刺激:为EEG的常规检查项目之一,特别是对光敏感的癫痫有重要的价值3.睡眠EEG:半数以上的癫痫发作和睡眠有关,部分患者只在睡眠中发作.所以可以提高检查阳性率(四)正常表现EEG▲▲▲四要素:1.频率1)a波: 频率为8~12HZ2)β波: 频率为13~25HZ 快波在清醒,安静和闭眼时3)o 波: 频率为4~7HZ4)§波: 频率为<4HZ 慢波2.波幅低波幅: <25uV 中等波幅: 25~75uV 高波幅: >75uV3.波形1)儿童EEG: 主要以慢波为主,随着年龄增加就a波逐渐增多.14~18岁即成人式A. 快眼动相:主要以低波幅的o波wizhu和间歇出现低电压的a波为主的混合频率电活动(1)1期:即困倦期,a波逐渐小时,被低波幅的慢波取代2)睡眠EEG: B. 慢动眼睡眠期(2)2期:浅睡眠期,在地波幅脑电波的基础上出现睡眠纺锤波正常波形(3)3期::在睡眠纺锤波的基础上出现高波波幅的慢波§,但是其比例在50%以下(4)4期: 纺锤波逐渐减少至消失,§波比例在50%以上4.位相: 负相表现为向上的波形,相反正向波表现为向下的波形(五)异常EEG1.弥漫性慢波: 为最常见的异常表现,无特异性. 见于各种原因导致的弥漫性脑病,缺氧性脑病,中枢性系统病变和脱髓鞘脑病等2.▲局灶性慢波:是局部脑实质病变导致的.见于局灶性癫痫,脑脓肿,局灶性硬膜下或硬膜外血肿3.三相波:▲▲▲通常为中至高波幅,频率为低频的负—正—负或者正—负—正波.见于肝性脑病和其他中毒代谢性脑病4.癫痫样放电:▲▲▲包括了棘波,尖波,棘慢波综合,多棘波,尖慢波综合以及多棘慢波综合50%以上患者在癫痫发作的间期记录到癫痫样放电,放电的类型不同常提示不同的癫痫综合征.●1)多棘波和多棘慢波综合伴有肌阵挛: 提示全身性癫痫和光敏感癫痫●2)双侧同步,对称,每妙3次重复出现的高波幅的棘慢波综合波: 提示失神发作(六)临床应用▲▲:1.EEG主要用于癫痫的诊断,分类和病灶的定位2.区别脑部器质性或功能性病变和弥漫性或局限性损害以及脑炎,中毒性和代谢性等各种原因引起脑病的辅助诊断二.脑诱发电位(一)定义(二)躯体感觉诱发电位(三)视觉诱发电位(四)听觉诱发电位(五)磁刺激运动诱发电位(六)事件相关电位(一)脑诱发电位的定义:ECP指的是中枢系统在感受体内外各种特异性刺激所产生的生物电活动,该检查技术主要是可以了解脑的功能状态(二)躯体感觉诱发电位1.定义2.刺激部分3.波形命名4.波形判断5.临床应用1.定义:指的是刺激肢体末端粗大感觉纤维,在躯体感觉上行通路不同部位记录的电位,主要反映的是周围神经,脊髓后束和有关神经核,脑干,丘脑和丘脑放射和皮层感觉功能2.刺激部位:常为上肢的正中神经和尺神经,下肢的胫后神经和腓总神经上肢记录部位为: Erb’s点,颈椎棘突和头部相应的感觉区下肢记录部位为腘窝,臀点,T12和头部相应区3.波形命名命名原则: 极性(波峰向下为P,向上为N)+潜伏期,如潜伏期为14ms,波峰向下的波称为P14 4.波形判断1)SEP:异常的判断标准: 潜伏期>平均值+3SD, 波幅明显降低伴有波分化不良2)SEP影响主要因素: 性别, 年龄和温度5.临床应用:应用于: 吉兰---巴雷综合征(GBS),颈椎病,后侧索硬化综合征,多发性硬化(MS)和脑血管等感觉通路的病变诊断和评价(三)视觉诱发电位1.定义2.描记3.波形分析4.应用1.定义:经头皮记录的枕叶皮层对视觉刺激产生的电活动2.描记:常用黑白棋盘格翻转刺激VEP(PRVEP)3.波形分析:PRVEP是一个由NPN组成的三相复合波,分布按照各自的潜伏期命名为N75,P100,和P145 在正常情况下P100潜伏期最为稳定和波幅高,是唯一可靠的成分4.应用:应用于:1)多发性硬化(MS) 2)青光眼3)帕金森病4)皮质盲5)婴幼儿视敏度的检查(四)听觉诱发电位:1.定义2.描记3.波形分析4.应用1 .BAEP:指的是经耳机传出的声音刺激听神经传导通路在头顶的记录电位.2.描记多采用短声刺激3.波形分析:正常的BAEP由5个波构成. I波起源于听神经, II波起源于耳蜗神经核III为上橄榄核IV波为外侧丘系V波起源于下丘脑的中央核团区4.应用:1)客观的评价听力2)桥脑小脑肿瘤: I—III波间期延长,出现早.肿瘤为内侧型仅有I波或I波和II波脑干内肿瘤III波和V波消失3)MS:单侧损害多见,主要表现为V波波幅降低或消失4)脑死亡: 脑死亡的判断主要依据是EEG和SEP, 而BAEP的改变只是参考,早期有V波消失5)手术监护(五)磁刺激运动诱发电位:1.定义;经颅磁刺激大脑皮层运动细胞,脊髓和周围神经运动通路,在相应的肌肉上记录的复合肌肉动作电位2.应用:主要用于运动通路病变的诊断(六)事件相关电位1.定义;ERP是人退外界或环境刺激的心理反应,指人对某件事或信息进行认知加工时,通过叠加和平均技术在头颅表面记录的大脑电位. ERP中应用最为广泛的是P300电位2.P300的临床应用用于各种大脑疾病引起的认知功能障碍的评价三. 肌电图(一)定义(二)检查方法(三)异常EMG和临床意义(四)临床应用(一)定义EMG指的是同心圆针电极插入肌肉后,记录的肌肉安息状态和不同程度随意收缩状态下和周围神经刺激时各种电生理特性的电活动的一种技术. 广义上包括常规EMG, 神经传导速度NCV 重复神经电刺激RNSA(二)常规EMG检查1.适应症和临床意义: ▲脊髓前角细胞和其以下的病变是EMG检查的适应症其临床意义是: 主要是诊断和鉴别神经源性和肌源性损害2.检查方法:包括在静息下,轻度肌肉收缩下和大力收缩状态下测定结果3.异常自发电位:▲▲▲1)纤颤电位:由于失神经支配的肌纤维运动终板对血中乙酰胆碱的敏感性提高引起的去极化或者失神经支配的肌纤维静息电位降低所导致的自动去极化产生的动作电位具体波形为: 双相波,先正相见于神经源性损害和肌源性损害2)正锐波: 波形为双相波,起始为一正相波,之后为一时限较宽,波幅较低的福薄,形似V 字形临床意义同上3)束颤波:指一个或部分运动单位支配的肌纤维自发放电.多见于神经源性损害4)复合重复放电:(CRD):是一组肌纤维自发同步放电.发放过程通常没有波幅和频率的改变,声音如机关枪发放. 多见于进行性肌营养不良和炎性疾病和慢性失神经.4.▲▲▲肌强直放电:肌肉自主收缩或受机械刺激后出现的节律性放电. 放电过程中波幅和频率逐渐的衰减,扩音器可传出类似“飞机俯冲或者摩托车减速”的声音. 见于各种原因导致的肌肉强直,常见的有萎缩性肌强直, 先天性肌强直和副肌强直以及高钾血型周期性瘫痪等5.异常的MUAPs运动单位动作电位▲▲▲▲神经源性损害的波形改变: 波形时限增宽, 波幅增高和多相波见于脊髓前角细胞病变神经根病变神经丛和周围神经病等肌源性损害的波形改变: 波形时限缩短,波幅降低和多相波见于进行性肌营养不良,炎性肌病四.神经传导速度NCV(一)定义:用于评价周围神经传导功能的一项诊断技术,通常包括运动神经传导速度(MCV) F波和感觉神经传导速度(SCV)的测定(二)临床应用:▲▲▲1. 鉴别诊断脱髓鞘病变和轴索损伤脱髓鞘病变: 传导速度减慢, 潜伏期延长但是波幅不变轴索损伤: 波幅降低,但是传导速度不变2.F波和H反射F波是超强电刺激神经干在M波(肌肉复合动作电位)后的一个晚成分,由运动神经回返放电引起.F波的特点是其波幅不随刺激量变化而改变,重复刺激F波的波形和潜伏期变异大临床意义▲▲▲F波相对于MCV能很好的反应出运动神经近端的功能F波的异常表现为: 出现率低, 潜伏期延长,传导速度减慢和无反应等五.重复神经电刺激RNS1.定义指的是超强重复刺激神经干在相应肌肉记录复合动作电位,是检测神经肌接头功能的重要手段.2.正常和异常表现:1)正常人低频波幅递减在10%~15%以内,而高频刺激波幅递减在30%以下,而波幅递增在50%以下2)波幅递减: 低频波幅递减>15%和高频刺激波幅递减>30%3)波幅递增: 高频刺激波幅递增>100%3.RNS的临床意义▲▲▲诊断和鉴别突触前膜和后膜的病变,特别是重症肌无力和Lambert—Eaton综合征(肌无力综合征)重症肌无力的表现: 低频或高频刺激波幅递减肌无力综合征的表现: 低频刺激波幅递减,而高频刺激波幅递增。
神经电生理检查
主要用于运动通路病变的诊断,如多发性硬化、肌萎缩侧索硬化、脊髓型颈椎病、脑血管病等
三、诱发电位
(五)事件相关电位 1. 事件相关电位(event-related potential,ERP)
ERP指大脑对某种信息进行认知加工(注意、记忆和思维等)时,通过叠加和平均技术在头颅表面记录 的电位。ERP主要反映认知过程中大脑的电生理变化。ERP中应用最广泛的是P300电位。
四、肌电图和神经传导速度
(一)肌电图
指用同心圆针电极记录的肌肉安静状态下和不同程度随意收缩状态下各种电活动的一种技术。 1. 正常EMG
(1)静息状态:观察插入电位 (2)轻收缩状态:观察运动单位动作电位(motor unit action potential,MUAP),它是单个前角细胞支 配的所有肌纤维同步放电的总和。就MUAP的时限、波幅、波形及多相波百分比而言,不同肌肉各有其 不同的正常值范围 (3)大力收缩状态:观察募集现象,即观察肌肉在大力收缩时运动电位的多少及其发放频率的快慢。 正常情况下,大力收缩时肌电图上呈密集的相互重叠的难以分辨基线的许多运动单位电位,即为干扰相。
VEP是对视神经进行光刺激时,经头皮记录的枕叶皮质产生的电活动。
2. 检测方法
有模式翻转刺激技术诱发VEP(pattern reversal visual evoked potential,PRVEP)和闪光刺激VEP。 PRVEP的优点是波形简单易于分析、阳性率高和重复性好,而闪光刺激VEP受视敏度影响小,适用于 PRVEP检测不能合作者。
2. 特殊电极
(1)蝶骨电极:可明显提高颞叶癫痫EEG诊断的阳性率。 (2)鼻咽电极:主要用于检测额叶底部和颞叶前内侧的病变。因患者有明显不适感而使用受限。 (3)深部电极:将电极插入颞叶内侧的海马及杏仁核等较深部位进行记录。主要用于癫痫的术前定位, 属非常规的检测方法。
神经电生理检查技术—神经传导(康复评定技术课件)
肆、F波及测定
A F波环路 B 正常人正中神经F波。 第1个箭头代表F波最短潜伏时; 第2个箭头代表F波最长潜伏时; F波出现率为75%
伍、H反射及测定
一定
义
H反射是用电刺激胫神经,由Ia类感觉神 经传入,经过突触,再由腓神经运动纤维 传出,导致腓肠肌收缩,它是一个真正的 反射。
伍、H反射及测定
3.桡神经
4.腓总神经
5.胫神经
6.腓肠神经
贰、感觉神经传导
意义:研究的是后根神经节和其后周围神经的功能状态。 检查方法:刺激神经干一端,在另一端记录感觉神经电 位(SNAP),通常用环状电极来测定。
刺激与记录点间距离(mm) 感觉神经传导速度(m/s) =-----------------------------
第四节 神经传导
OBJECTIVE
学
掌握:常见神经传导检查
习
目
熟悉:感觉神经传导正常值
标
了解:神经传导检查意义
神经传导的测定
一
运动神经传导
二
感觉神经传导
壹、运动神经传导
意义:评估运动神经轴索、神经和肌肉接头以及肌肉的 功能状态,为针电极肌电图检查提供准确的信息。 检查方法:超强刺激神经干上远、近两点,在远端肌肉 上可以记录到诱发出的混合肌肉动作电位(CMAP),通过 对此动作电位波幅、潜伏时和时限分析,来判断运动神经 的传导功能。
一定
义
F波是神经干在超强刺激下,在肌肉动作电 位M波后出现的一个小的动作电位,它是 经过运动纤维近端的传导又由前角细胞兴 奋后返回的电位。
肆、F波及测定
二 临床应用
①测定F波的潜伏时间及传导速度可了解该 神经近髓段神经传导状况,对于神经根或 神经丛病变有一定的诊断价值; ②观察F波的波幅及出现率,可以了解神经 元池的兴奋性,用于评估痉挛程度。
神经生理学技术研究神经系统的实验方法
神经生理学技术研究神经系统的实验方法神经生理学是研究神经系统结构和功能的学科,通过实验方法来探究神经系统的工作原理和相互作用。
在神经生理学研究中,使用各种技术和方法来观察、记录和操控神经元的活动。
本文将介绍一些常用的神经生理学技术,包括电生理学、光遗传学和脑成像技术。
一、电生理学技术1. 脑电图(Electroencephalography,EEG)脑电图是记录头皮上电位变化的一种非侵入性方法。
通过放置电极阵列在头皮上,可以监测到大脑皮层的电活动。
脑电图广泛应用于研究睡眠、意识状态和癫痫等神经系统疾病。
2. 单细胞记录(Single-unit Recording)单细胞记录是一种记录单个神经元活动的方法。
通过在动物大脑中植入微电极,可以监测到神经元的动作电位。
单细胞记录技术常用于研究神经元在特定行为任务中的活动模式。
3. 脑区微电极阵列(Multielectrode Array)脑区微电极阵列是一种同时记录多个神经元活动的方法。
通过将多个微电极插入大脑特定区域,可以实时记录到神经元群体的活动。
脑区微电极阵列技术在研究网络活动和神经编码方面发挥着重要作用。
二、光遗传学技术1. 光遗传学(Optogenetics)光遗传学利用特定的光敏蛋白和光纤激光的组合,通过光刺激来操控神经元的活动。
通过将光敏蛋白基因导入神经元,可以使神经元对特定光信号产生反应。
光遗传学技术广泛应用于研究神经回路的调控和行为的控制。
2. 刘易斯门控离子通道(Channelrhodopsin,ChR2)刘易斯门控离子通道是一种蓝光敏感蛋白,能够使神经元对蓝光产生兴奋性反应。
通过将ChR2基因导入特定的脑区,可以通过蓝光刺激来激活神经元,控制其活动。
三、脑成像技术1. 功能性磁共振成像(Functional Magnetic Resonance Imaging,fMRI)功能性磁共振成像是一种通过检测血氧水平变化来反映脑活动的技术。
电生理技术在神经科学中的应用
电生理技术在神经科学中的应用电生理技术是一种利用电信号记录和分析生物机能的技术,其应用范围广泛,包括了医学、神经科学、生物学等领域。
在神经科学中,电生理技术的应用可以帮助我们了解神经信号传递的机制和神经损伤的治疗方法,使神经科学研究更加深入和精确。
一、电生理技术的种类电生理技术包括了许多种类,根据记录信号的位置和信号类型不同,可分为以下三种:1.脑电图(EEG)脑电图是一种记录头皮上神经元活动产生的电信号的技术。
通常使用放置在头皮上的电极来记录大脑神经元的活动。
这种技术主要用于诊断脑部疾病,如癫痫、睡眠障碍等。
2.脑磁图(MEG)脑磁图是一种记录大脑中神经元活动所产生的磁信号的技术。
通过放置在头皮上的磁场探测器来测量大脑中的磁场,进而得到神经元活动产生的信号。
这种技术主要用于分析神经元活动的时间和空间分布,有利于对大脑网络的结构和功能进行研究。
3.多单元记录(MEG)多单元记录技术是通过在动物或人体神经组织中放置微电极来记录神经元的电活动,并且通过信号处理技术对神经元放电进行分析。
这种技术适用于对神经元网络结构和功能的研究。
二、电生理技术在神经科学研究中的应用1.理解神经信号传递机制神经信号通过神经元细胞膜上的离子通道和神经递质来传递。
通过记录离子通道开放和关闭产生的电信号,电生理技术可以帮助我们了解神经元的动作电位和轴突的动力学属性。
这种技术对于理解神经信号传递的机制非常有帮助。
2.治疗神经损伤和疾病电生理技术在神经损伤和疾病治疗中也有着很大的应用前景。
通过植入电极来记录和刺激神经元,可以帮助恢复神经元的功能和重建神经连接。
例如,脑机接口技术可以通过记录大脑神经元活动来驱动外部设备执行某些运动,这对于残疾人的康复非常有帮助。
3.帮助研究大脑功能电生理技术可以帮助我们了解大脑功能区之间的通讯作用,这对于研究大脑的认知、情绪和运动功能非常有帮助。
通过测量不同区域的神经元活动,我们可以确定大脑中与某些特定功能相关的神经网络。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.测定和计算方法 2.技术要求
2019/5/28
13
(三)影响神经传导测定因素
1、技术因素 2、温度 3、年龄 4、不同神经及同一神经不同部
位的传导速度不同
2019/5/28
1.轴索损害 2.髓鞘脱失 3.传导阻滞
2019/5/28
19
三、特殊检查
由于常规的神经传导主要是研究相对远端的神经节段,对 于神经近端的功能,需要特殊的检查。特殊检查包括
(一)F波 (二)H反射 (三)瞬目反射
2019/5/28
20
(一)F波
F波(F response)是神经干在超强刺激下,在 肌肉动作电位M波后出现的一个小的动作电位, 它是经过运动纤维近端的传导又由前角细胞兴奋 后返回的电位。
2019/5/28
3
(一)、常用肌肉解剖定位和进针部 位
1.第一背侧骨间肌
2.小指展肌
7.三角肌
3.拇短展肌
8. 趾短伸肌
4.指总伸肌
9.胫前肌
5.旋前圆肌
10.腓肠肌内侧头
6.肱二头肌
11.股内侧肌
2019/5/28
4
(二)、正常肌电图
做针极肌电图检查时,对于每一块需要检查的肌肉, 通常分四个步骤来观察:①插入电活动:将记录针插 入肌肉时所引起的电位变化;②放松时:观察肌肉在 完全放松时是否有异常自发电活动;③轻收缩时:观 察运动单位电位时限、波幅、位相和发放频率;④大 力收缩时:观察运动单位电位募集类型。
1.检查方法 2.H反射的观察 3.H反射的临床应用
2019/5/28
22
(三)瞬目反射
14
(四)常见神经传导检查
常用的检查是针对相对远端的神经节段进行测量, 近端需要特殊检查,有F波反射、H波反射、瞬 目反射等。常用的有:
1.正中神经 2.尺神经 3.桡神经 4.腓总神经 5.胫神经 6.腓肠神经
2019/5/28
15
(五)神经传导测定的正常值范围
1.运动神经传导正常值(成人) 2.感觉神经传导正常值(成人)
1.检查方法 2.F波的测定及计算方法 3.F波的临床应用
2019/5/28
21
(二)H反射
H反射(Hoffman reflex,HR)是用电刺激胫神经,由Ia类感 觉神经传入,经过突触,再由胫神经运动纤维传出,从而 导致它所支配的腓肠肌收缩,它是一个真正的反射。H反 射在成人仅能在胫神经上引出,和F波一样,它也是反映 周围神经近髓段的功能状态。
2019/5/28
11
(一)运动神经传导的测定
运动神经传导研究的是运动单位的功能和整合性。 通过对运动传导的研究可以评估运动神经轴索、 神经和肌肉接头以及肌肉的功能状态,并为进一 步作针电极肌电图检查提供准确的信息。
1.测定和计算方法 2.技术要求
2019/5/28
12
(二)感觉神经传导的测定
>4.5
>4 >2.5
>2.0
>4.5
17
感觉神经传导正常值(成人)
神经
记录部位
正中神经 食指
尺神经
小指
桡浅神经 手背桡侧
腓肠神经 外踝下
潜伏时 (ms)
≤3.0 ≤2.5 ≤2.5
≤4.5
传导速度 ( m/s)
波幅 mV
>50
>15
>55
2019/5/28
18
(六)常见的异常神经传导类型
1.插入电活动 2.电静息 3.轻收缩时肌电图 4.运动单位电位募集和发放类型
2019/5/28
5
(三)、异常肌电图
肌电图异常包括:插入电位延长或消失;静息时肌肉出 现的自发电活动如纤颤电位、正锐波、复杂重复放电等; 主动轻度收缩时运动单位电位的时限、波幅、位相和发 放频率有异常;大力收缩时运动单位电位有异常的募集。
2019/5/28
16
运动神经传导正常值(成人)
神经
记录部位
正中神经 尺神经 桡神经
拇短展肌 小指展肌 食指固有伸肌
腓总神经 胫神经
趾短伸肌 短展肌
2019/5/28
末端潜伏时 (ms)
≤4.0 ≤3.0 ≤2.2
≤4.5 ≤5.0
传导速度 ( m/s)
>50 >50 >50
>40 >40
波幅 mV
第一节 肌电图检查技术
2019/5/28
1
一、概述
1、原理 2、设备 3、检查时的基本要求 4、具体操作
2019/5/28
2
二、针电极肌电图
肌电图是将针电极插入肌肉记录电位变化的一 种电生理检查。
(一)、常用肌肉解剖定位和进针部位 (二)、正常肌电图 (三)、异常肌电图 (四)、常见病变异常肌电图类型
(五)表面肌电图的优缺点
2019/5/28
8
第二节 神经传导检查技术
2019/5/28
9
一、概述
客观定量检查。运用脉冲电流刺激运动 或感觉神经,测定神经传导速度。
两种:运动神经传导速度测定和感觉神 经传导速度测定
2019/5/28
10
二、常用的检查方法
(一)运动神经传导的测定 (二)感觉神经传导的测定 (三)影响神经传导测定因素 (四)常见神经传导检查 (五)神经传导测定的正常值范围 (六)常见的异常神经传导类型
1.插入电位改变 2.纤颤电位 3.正锐波(正尖波) 4.复杂重复放电 5.肌强直电位 6.束颤电位 7.轻度收缩时的异常肌电图 8.大力收缩时的异常肌电图
2019/5/28
6
(四)、常见病变异常肌电图类型
在肌电图检查时,我们可以根据自发电位出现的 情况、运动单位电位形态、发放频率和募集形式 来判断病变性质、程度和预后。以下是一些常见 病变异常肌电图类型。
1.周围神经病变及损伤 2.脊髓前角细胞病变 3.肌源性损害病变
2019/5/28
7
三、表面肌电图
表面肌电图,也称动态肌电图或运动肌电图,是用表面电 极采集肌肉活动产生的电活动的图形。另外,它既是一种 对运动功能有用的诊断方法,同时也是一种较好的生物反 馈治疗技术。
(一)sEMG仪及肌电测量 (二)影响sEMG测量的因素 (三)sEMG的分析及有关指标 (四)表面肌电图的临床应用