【数学】培优一元二次方程辅导专题训练附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、一元二次方程 真题与模拟题分类汇编(难题易错题)

1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.

(1)求k 的取值范围;

(2)若x 1+x 2=1﹣x 1x 2,求k 的值.

【答案】(1)12k ≤;(2)3k = 【解析】 试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤

12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,

∴k 1=1,k 2=-3.

∵k ≤12

,∴k =-3.

2.解下列方程:

(1)x 2﹣3x=1.

(2)12

(y+2)2﹣6=0. 【答案】(1)12313313,22x x +-=

= ;(2)12223,223y y =-+=-- 【解析】

试题分析:(1)利用公式法求解即可;

(2)利用直接开方法解即可;

试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0,

∵b 2﹣4ac=13>0

. ∴12313313,22

x x +-==. (2)(y+2)2=12, ∴或,

∴12223,223y y =-+=--

3.已知为正整数,二次方程

的两根为,求下式的值:

【答案】

【解析】

由韦达定理,有,.于是,对正整数,有

原式=

4.解下列方程:

(1)2x2-4x-1=0(配方法);

(2)(x+1)2=6x+6.

【答案】(1)x1=1+

6

2

x2=1-

6

21

=-1,x2=5.

【解析】

试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;

(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.

试题解析:(1)由题可得,x2-2x=1

2

,∴x2-2x+1=

3

2

.

∴(x-1)2=3

2

.

∴x-1=3

6 2

.

∴x1=1+6

2,x2=1-

6

2

.

(2)由题可得,(x+1)2-6(x+1)=0,∴(x+1)(x+1-6)=0.

∴x+1=0或x+1-6=0.

∴x1=-1,x2=5.

5.已知两条线段长分别是一元二次方程28120

x x

-+=的两根,(1)解方程求两条线段的长。

(2)若把较长的线段剪成两段,使其与另一段围成等腰三角形,求等腰三角形的面积。 (3)若把较长的线段剪成两段,使其与另一段围成直角三角形,求直角三角形的面积。

【答案】(1)2和6;(2)3)83

【解析】

【分析】

(1)求解该一元二次方程即可;

(2)先确定等腰三角形的边,然后求面积即可;

(3)设分为两段分别是x 和6x -,然后用勾股定理求出x ,最后求面积即可.

【详解】

解:(1)由题意得()()260x x --=,

即:2x =或6x =,

∴两条线段长为2和6;

(2)由题意,可知分两段为分别为3、3,则等腰三角形三边长为2,3,3,

∴此等腰三角形面积为12

2

⨯⨯= (3)设分为x 及6x -两段

()22226x x +=- ∴83

x =, ∴2823x S ∆=

=, ∴面积为83

. 【点睛】

本题考查了一元二次方程、等腰三角形、直角三角形等知识,考查知识点较多,灵活应用所学知识是解答本题的关键.

6.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根.

(1)求a 的取值范围;

(2)当a 为符合条件的最大整数,求此时方程的解.

【答案】(1)a ≤

174

;(2)x =1或x =2 【解析】

【分析】(1)由一元二次方程有实数根,则根的判别式△=b 2﹣4ac≥0,建立关于a 的不等式,即可求出a 的取值范围;

(2)根据(1)确定出a 的最大整数值,代入原方程后解方程即可得.

【详解】(1)∵关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根,

∴△≥0,即(﹣3)2﹣4(a ﹣2)≥0,解得a ≤174

; (2)由(1)可知a ≤

174

, ∴a 的最大整数值为4,

此时方程为x 2﹣3x +2=0,

解得x =1或x =2. 【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.

7.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.

(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;

(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?

【答案】(1)两次下降的百分率为10%;

(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.

【解析】

【分析】

(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;

(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可

【详解】

解:(1)设每次降价的百分率为 x .

40×(1﹣x )2=32.4

x =10%或 190%(190%不符合题意,舍去)

答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;

(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得

()4030y (448)5100.5

y --⨯+= 解得:1y =1.5,2y =2.5,

∵有利于减少库存,∴y =2.5.

相关文档
最新文档