2019年天津市高考数学试卷(文科)和答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年天津市高考数学试卷(文科)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)设集合A={﹣1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()
A.{2}B.{2,3}C.{﹣1,2,3}D.{1,2,3,4}
2.(5分)设变量x,y满足约束条件则目标函数z=﹣4x+y
的最大值为()
A.2B.3C.5D.6
3.(5分)设x∈R,则“0<x<5”是“|x﹣1|<1”的()A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件4.(5分)阅读如图的程序框图,运行相应的程序,输出S的值为()
A.5B.8C.24D.29
5.(5分)已知a=log27,b=log38,c=0.30.2,则a,b,c的大小关系为()
A.c<b<a B.a<b<c C.b<c<a D.c<a<b 6.(5分)已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线﹣=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()
A.B.C.2D.
7.(5分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,且f(x)的最小正周期为π,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g()=,则f()=()
A.﹣2B.﹣C.D.2
8.(5分)已知函数f(x)=若关于x的方程f(x)=﹣x+a(a∈R)恰有两个互异的实数解,则a的取值范围为()
A.[,]B.(,]C.(,]∪{1}D.[,]∪{1}
二、填空题:本大题共6小题,每小题5分,共30分.
9.(5分)i是虚数单位,则||的值为.
10.(5分)设x∈R,使不等式3x2+x﹣2<0成立的x的取值范围为.
11.(5分)曲线y=cosx﹣在点(0,1)处的切线方程为.12.(5分)已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.13.(5分)设x>0,y>0,x+2y=4,则的最小值为.14.(5分)在四边形ABCD中,AD∥BC,AB=2,AD=5,∠A =30°,点E在线段CB的延长线上,且AE=BE,则•=.
三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.
15.(13分)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,
108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.
(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如表,其中“〇”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
A B C D E F
子女教育〇〇×〇×〇
继续教育××〇×〇〇
大病医疗×××〇××
〇〇××〇〇
住房贷款
利息
住房租金××〇×××
赡养老人〇〇×××〇
(i)试用所给字母列举出所有可能的抽取结果;
(ii )设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.
16.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a,3csinB=4asinC.
(Ⅰ)求cosB的值;
(Ⅱ)求sin(2B+)的值.
17.(13分)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC⊥平面PCD,PA⊥CD,CD =2,AD=3.
(Ⅰ)设G,H分别为PB,AC的中点,求证:GH∥平面PAD;(Ⅱ)求证:PA⊥平面PCD;
(Ⅲ)求直线AD与平面PAC所成角的正弦值.
18.(13分)设{a n}是等差数列,{b n}是等比数列,公比大于0.已知a1=b1=3,b2=a3,b3=4a2+3.
(Ⅰ)求{a n}和{b n}的通项公式;
(Ⅱ)设数列{c n}满足c n=求a1c1+a2c2+…+a2n c2n (n∈N*).
19.(14分)设椭圆+=1(a>b>0)的左焦点为F,左顶点为A,上顶点为B.已知|OA|=2|OB|(O为原点).
(Ⅰ)求椭圆的离心率;
(Ⅱ)设经过点F且斜率为的直线l与椭圆在x轴上方的交点为P,圆C同时与x轴和直线l相切,圆心C在直线x=4上,且OC ∥AP.求椭圆的方程.
20.(14分)设函数f(x)=lnx﹣a(x﹣1)e x,其中a∈R.
(Ⅰ)若a≤0,讨论f(x)的单调性;
(Ⅱ)若0<a<,
(i)证明f(x)恰有两个零点;
(ii)设x0为f(x)的极值点,x1为f(x)的零点,且x1>x0,证明3x0﹣x1>2.
2019年天津市高考数学试卷(文科)
答案与解析
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
1.【分析】根据集合的基本运算即可求A∩C,再求(A∩C)∪B;【解答】解:设集合A={﹣1,1,2,3,5},C={x∈R|1≤x<3},则A∩C={1,2},
∵B={2,3,4},
∴(A∩C)∪B={1,2}∪{2,3,4}={1,2,3,4};
故选:D.
2.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
【解答】解:由约束条件作出可行域如图:
联立,解得A(﹣1,1),
化目标函数z=﹣4x+y为y=4x+z,由图可知,当直线y=4x+z过