排列组合练习题及答案.doc

合集下载

数学概率(排列组合)练习题(含答案)

数学概率(排列组合)练习题(含答案)


两名员工必须分配至同一车间,则不同的分配方法总数为
(用数字作答).
7.用 4 种颜色给一个正四面体的 4 个顶点染色,若同一条棱的两个端点不能用相同的
颜色,那么不同的染色方法共有_____________种。
8.数字 1,2,3,4,5,6 按如图形式随机排列,设第一行的数为 N1,其中 N2,N3 分别表示 第二、三行中的最大数,则满足 N1<N2<N3 的所有排列的个数是________.
个(用数字作答).
4.将 一个白 球,一 个红球 ,三个 相同 的黄球 摆放成 一排,则 白球与 红球不 相邻的 放法


5.用 1、2、3、4、5、6 六个数组成没有重复数字的六位数,其中 5、6 均排在 3 的同
侧,这样的六位数共有
个(用数字作答).
6.某工厂将 4 名新招聘员工分配至三个不同的车间,每个车间至少分配一名员工,甲、
对问卷结果进行了统计,并将其中“是否知道灭火器使用方法(知道或不知道)”的调
查结果统计如下表:
年龄(岁) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70]
频数
m
n
15
10
7
3
知道的人数 4
6
12
6
3
2
表中所调查的居民年龄在[10,20),[20,30),[30,40)的人数成等差数列.

则直线 OM 与 xOz 平面所成的角为 .
56 . 在 极 坐 标 系 中 , 曲 线 2sin 与 cos 3 的 交 点 的 极 坐 标 为 2
_________. (0 2 )
57.已知圆 C 的极坐标方程为 =2 ,以极点为原点,极轴为 x 轴的正半轴建立平面直

排列组合题目精选(附答案)

排列组合题目精选(附答案)

排列组合题目精选(附答案)1.A和B必须相邻且B在A的右边,剩下的C、D、E可以随意排列,因此排列方式为4.即24种。

选项D正确。

2.先计算所有可能的排列方式,即7.然后减去甲乙相邻的排列方式,即2×6.因此不同的排列方式为5×6.即3600种。

选项B正确。

3.第一个格子有4种选择,第二个格子有3种选择,第三个格子有2种选择,因此不同的填法有4×3×2=24种。

选项D 错误。

4.由于每封信可以投入5个信箱中的任意一个,因此总的投放方式为5的4次方,即625种。

5.对于每个路口,选择4名同学进行调查的方式有12选4种,因此总的分配方案为(12选4)的3次方,即154,440种。

6.第一排有6种选择,第二排有5种选择,第三排有4种选择,因此不同的排法有6×5×4=120种。

选项B正确。

7.首先从8个元素中选出2个排在前排,有8选2种选择方式。

然后从剩下的6个元素中选出1个排在后排,有6种选择方式。

最后将剩下的5个元素排在后排,有5!种排列方式。

因此不同的排法有8选2×6×5!=28×720=20,160种。

8.首先将甲、乙、丙三人排成一排,有3!种排列方式。

然后将其余4人插入到相邻的位置中,有4!种排列方式。

因此不同的排法有3!×4!=144种。

9.首先将10个名额排成一排,有10!种排列方式。

然后在9个间隔中插入6个分隔符,每个间隔至少插入一个分隔符,因此有8种插入方式。

因此不同的分配方案有10!÷(6×8)=21,000种。

10.首先将除了甲和乙的8个人排成一排,有8!种排列方式。

然后将甲和乙插入到相邻的位置中,有2种插入方式。

因此不同的派遣方案有8!×2=80,640种。

11.个位数字小于十位数字的六位数,可以从1、2、3、4、5中选出两个数字排列,有5选2种选择方式,即10种。

(完整版)排列组合练习题3套(含答案)

(完整版)排列组合练习题3套(含答案)

(完整版)排列组合练习题3套(含答案)排列练习⼀、选择题1、将3个不同的⼩球放⼊4个盒⼦中,则不同放法种数有()A、81B、64C、12D、142、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于()A、 B、 C、 D、3、⽤1,2,3,4四个数字可以组成数字不重复的⾃然数的个数()A、64B、60C、24D、2564、3张不同的电影票全部分给10个⼈,每⼈⾄多⼀张,则有不同分法的种数是()A、2160B、120C、240D、7205、要排⼀张有5个独唱和3个合唱的节⽬表,如果合唱节⽬不能排在第⼀个,并且合唱节⽬不能相邻,则不同排法的种数是()A、 B、 C、 D、6、5个⼈排成⼀排,其中甲、⼄两⼈⾄少有⼀⼈在两端的排法种数有()A、 B、 C、 D、7、⽤数字1,2,3,4,5组成没有重复数字的五位数,其中⼩于50000的偶数有()A、24B、36C、46D、608、某班委会五⼈分⼯,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,⼄不能担任学习委员,则不同的分⼯⽅案的种数是()A、B、C、D、⼆、填空题1、(1)(4P84+2P85)÷(P86-P95)×0!=___________(2)若P2n3=10Pn3,则n=___________2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为__________________________________________________________________3、4名男⽣,4名⼥⽣排成⼀排,⼥⽣不排两端,则有_________种不同排法4、有⼀⾓的⼈民币3张,5⾓的⼈民币1张,1元的⼈民币4张,⽤这些⼈民币可以组成_________种不同币值。

三、解答题1、⽤0,1,2,3,4,5这六个数字,组成没有重复数字的五位数,(1)在下列情况,各有多少个?①奇数②能被5整除③能被15整除④⽐35142⼩⑤⽐50000⼩且不是5的倍数2、7个⼈排成⼀排,在下列情况下,各有多少种不同排法?(1)甲排头(2)甲不排头,也不排尾(3)甲、⼄、丙三⼈必须在⼀起(4)甲、⼄之间有且只有两⼈(5)甲、⼄、丙三⼈两两不相邻(6)甲在⼄的左边(不⼀定相邻)(7)甲、⼄、丙三⼈按从⾼到矮,⾃左向右的顺序(8)甲不排头,⼄不排当中3、从2,3,4,7,9这五个数字任取3个,组成没有重复数字的三位数(1)这样的三位数⼀共有多少个?(2)所有这些三位数的个位上的数字之和是多少?(3)所有这些三位数的和是多少?排列与组合练习(1)⼀、填空题1、若,则n的值为()A、6B、7C、8D、92、某班有30名男⽣,20名⼥⽣,现要从中选出5⼈组成⼀个宣传⼩组,其中男、⼥学⽣均不少于2⼈的选法为()A、 B、 C、 D、3、空间有10个点,其中5点在同⼀平⾯上,其余没有4点共⾯,则10个点可以确定不同平⾯的个数是()A、206B、205C、111D、1104、6本不同的书分给甲、⼄、丙三⼈,每⼈两本,不同的分法种数是()A、 B、 C、 D、5、由5个1,2个2排成含7项的数列,则构成不同的数列的个数是()A、21B、25C、32D、426、设P1、P2…,P20是⽅程z20=1的20个复根在复平⾯上所对应的点,以这些点为顶点的直⾓三⾓形的个数为()A、360B、180C、90D、457、若,则k的取值范围是()A、[5,11]B、[4,11]C、[4,12]D、4,15]8、⼝袋⾥有4个不同的红球,6个不同的⽩球,每次取出4个球,取出⼀个线球记2分,取出⼀个⽩球记1分,则使总分不⼩于5分的取球⽅法种数是()A、 B、 C、 D、1、计算:(1)=_______(2)=_______2、把7个相同的⼩球放到10个不同的盒⼦中,每个盒⼦中放球不超1个,则有_______种不同放法。

(完整版)排列组合练习题(含答案)

(完整版)排列组合练习题(含答案)

排列组合练习题1、三个同学必须从四种不同的选修课中选一种自己想学的课程,共有种不同的选法。

2、8名同学争夺3项冠军,获得冠军的可能性有种。

3、乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种。

4、从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有。

5、有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人)得2本,其它每人一本,则共有种不同的奖法。

6、有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有种。

7、有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种。

8、五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有种陈列方法。

9、有6名同学站成一排:甲、乙、丙不相邻有种不同的排法。

10、五个人排成一排,要求甲、乙不相邻,且甲、丙也不相邻的不同排法的种数是11、6名男生6名女生排成一排,要求男女相间的排法有种。

12、4名男生和3名女生排成一排,要求男女相间的排法有种。

13、有4男4女排成一排,要求女的互不相邻有种排法;要求男女相间有种排法。

14、一排有8个座位,3人去坐,要求每人左右两边都有空位的坐法有种。

15、三个人坐在一排7个座位上,若3个人中间没有空位,有种坐法。

若4个空位中恰有3个空位连在一起,有种坐法。

16、由1、2、3、4、5组成一个无重复数字的5位数,其中2、3必须排在一起,4、5不能排在一起,则不同的5位数共有个。

17、有4名学生和3位老师排成一排照相,规定两端不排老师且老师顺序固定不变,那么不同的排法有种。

18、从6名短跑运动员中选4人参加4 100米的接力赛,如果其中甲不能跑第一棒,乙不能跑第四棒,共有种参赛方案。

排列组合专项练习1-4

排列组合专项练习1-4

1.从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有 ( )A .36种B .30种C .42种D .60种2.从甲、乙、丙、丁四名同学中选出三名同学,分别参加三个不同科目的竞赛,其中甲同学必须参赛,不同的参赛方案共有 ( )A .24种B .18种C .21种D .9种3.某校园有一椭圆型花坛,分成如图四块种花,现有4种不同颜色的花可供选择,要求每块地只能种一种颜色,且有公共边界的两块不能种同一种颜色,则不同的种植方法共有( )(A )48种 (B)36种 (C)30种 (D)24种4.将5名大学生分配到3个乡镇去任职,每个乡镇至少一名,不同的分配方案有( B )种.A 240 .B 150 .C 60 .D 1805.甲、乙、丙、丁、戌5人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为( )A .72种B .54种C .36种D .24种6.某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为( )A .12B .16C .24D .327.某班要从6名同学中选出4人参加校运动会的4×100m 接力比赛,其中甲、乙两名运动员必须入选,而且甲、乙两人中必须有一个人跑最后一棒,则不同的安排方法共有( )A .24种B .72种C .144种D .360种8.从0,2,4中取一个数字,从1,3,5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是( )A .36B .48C .52D .549. 将A 、B 、C 、D 、E 五种不同的文件放入一排编号依次为1、2、3、4、5、6的六个抽屉内,每个抽屉至多放一种文件.若文件A 、B 必须放入相邻的抽屉内,文件C 、D 也必须放相邻的抽屉内,则文件放入抽屉内的满足条件的所有不同的方法有 种.9610.某车队有7辆车,现在要调出4辆,再按一定顺序出去执行任务.要求甲、乙两车必须参加,而且甲车在乙车前开出,那么不同的调度方案有 种.12011.从4个班级的学生中选出7名学生代表,若每一个班级中至少有一名代表,则选法种数为20 。

排列组合练习题及答案

排列组合练习题及答案

排列组合习题精选一、纯排列与组合问题:1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是()A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有()A.12个B.13个C.14个D.15个2221322选C.二、相邻问题:1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法?2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )A.720B.1440C.2880D.3600答案:1.242448A A=(2) 选B 3253251440A A A=三、不相邻问题:1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个?3.4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有()A.2880B.1152C.48D.1444.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法?5.8X椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?8. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮方式是()A.28种B.84种C.180种D.360种答案:1.43451440A A = (2)3434144A A = (3)选B 444421152A A = (4)3424A = (5)4245480A A =(6)333424A C = (7)3334144A A = (8)选A 6828C =四、定序问题:1. 有4名男生,3名女生。

排列组合经典练习题答案答案.doc

排列组合经典练习题答案答案.doc

排列组合二项定理排列组合二项定理知识要点—、两个原理.1.乘法原理、加法原理.2.可以有事复无奉的排列.从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二...... 第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m-m-... m= m n..例如:n件物品放入m个抽屉中,不限放法,共有多少种不同放法?(解:秫"种)二' 排列.1.⑴对排列定义的理解.定义:从n个不同的元素中任取m(m<n)个元素,哲眼丁定顺序排成一列,叫做从儿个不同元素中取出秫个元素的一个排列.⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑶排列数.从n个不同元素中取出个元素排成一列,称为从«个不同元素中取出m个元素的一个排列.从n个不同元素中取出m个元素的一个排列数,用符号A片表示.⑷排列数公式:A m= n(n一1)• • • (〃一m +1)= :——(m < n, n, m G N)注意:n-nl=(n + l)!-n!规定0! = 1看=履客规定C?=C:=12,含有可事及素的排列问题.对含有相同元素求排列个数的方法是:设重集S有k个不同元素a” a2,......a”其中限重复数为ni、n2......n k,且n = ni+n2+ ... 以,则S的排列个数等于n = ----- --- .n i ln2\..n k\例如:已知数字3、2、2,求其排列个数"=(1 + 2)!=3又例如:数字5、5、5、求其排列个数?其排列个1!2! 数n = - = l.3!三、组合.1.⑴组合:从〃个不同的元素中任取m(m<n)个元素并成一组,叫做从〃个不同元素中取出秫个元素的一个组合.⑵组合数公式:c,"=41 = "("T)“・(n + l)C"'=—-—”A;;;尻"m\(n-my.⑶两个公式:①C*=Cf②C%+驾=C£%1从n个不同元素中取出m个元素后就剩下n-m个元素,因此从n个不同元素中取出n-m个元素的方法是一一对应的,因此是一样多的就是说从n个不同元素中取出n-m个元素的唯一的一个组合.(n + 1)! (n (或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是 含红球选法有c m -*-c ;=c m-,! 一类是不含红球的选法有C :)%1 根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与 不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-l 个元素,所以有C”':,如果不取这 一元素,则需从剩余n 个元素中取出m 个元素,所以共有C :种,依分类原理有C m ~\+C^=C n ^.⑷排列与组合的联系与区别.联系:都是从"个不同元素中取出加个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.⑸①几个常用组合数公式 n n n nC°+C 2+C 4+••- =C*+C 3+C 5+••• =2,?-1n n nn n n ° 〃十° m+1 十° m+2 • •七 m+n+1kc k =心:1 「k_ 1 厂灯1C n~ C n+1k + 1 n + 1%1 常用的证明组合等式方法例.i. 裂项求和法.如:-+-+-+—— =1-一—(利用 —=——一1)n! (〃一 1)! n\ 2! 3! 4! (n + 1)! (〃 + 1)!ii. 导数法.iii.数学归纳法.iv.倒序求和法.V.递推法(即用 c"-+c m -l=c n :;递推)如:C ;+C ;+C ;+ •••C :=C"+:. Vi.构造二项式.如:(C°)2+(C^)2 + ••• + (C:)2=C 2;; 证明:这里构造二项式(x + l)"(l + x)"=(l + x)2"其中x"的系数,左边为席吒+•••+ac=e)2+(c;)2+...+(a)2,而右边=c 2:四、排列' 组合综合.i.i.排列、组合问题几大解题方法及题型:%1 直接法.②排除法.%1 捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局 部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某/»(/»<»)个元素必相邻的排列有个.其中A ::::;是一个“整体排列”,而则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-%1 有n 件不同商品,若其中A 、B 排在一起有%1 有n 件不同商品,若其中有二件要排在一起有A,;.A ;;:;.注:①③区别在于①是确定的座位,有A ;种;而③的商品地位相同,是从n 件不同商品任取的2个,有不 确定性.%1插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题例如:n个元素全排列,其中m个元素互不相邻,不同的排法种数为多少?(插空法),当n-m+l>m,即mV*时有意义,2%1占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.%1调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素进行全排列有种,个元素的全排列有A岩种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到A n去调序的作用,即若"个元素排成一列,其中加个元素次序一定,共有二种排列方法.A m例如:n个元素全排列,其中m个元素顺序不变,共有多少种不同的排法?C n C%1平均法:若把kn个不同元素平均分成k组,每组n个,共有~ .例如:从1, 2, 3, 4中任取2个元素将其平均分成2组有几种分法?有管=3 (平均分组就用不着管组2!与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少?厂8厂2(p=)G”2!注意:分组与插空综合.例如:n个元素全排列,其中某m个元素互不相邻且顺序不变,共有多少种排法?有当n-m+l>m, BP m<ZL±l 时有意义.2%1隔板法:常用于解正整数解组数的问题.例如:%1+X2+X3+X4=12的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为无,巧/3/4显然X1+X2+X3+X4=12,故(x1,x2,x3,x4)是方程的一组解.反之,方程的任何一组解(y1,j,2,y3,y4),对应着惟了的一f 中在〔12个球之间插入隔板的方式(如图•匚丁',二,所示)故方程的解和插板的方法一一对应.即方程的解的组数等于插隔板的方法数C* 注意:若为非负数解的X 个数,即用勺皿中⑶等于"1 ,有X] + x2 + .v3... + X" = A => % -1 + % -1 + ■■-a n -1 = A ,进而转化为求a的正整数解的个数为C^+n .%1定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r 个指定位置则有例如:从n个不同元素中,每次取出m个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:A::;;不在某一位置上:A':—A';;]:或&岩+&」.&;:(一类是不取出特殊元素a, 有A”. 一类是取特殊元素a,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)%1指定元素排列组合问题.i.从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内。

排列组合的试题及答案高中

排列组合的试题及答案高中

排列组合的试题及答案高中一、选择题1. 从5个不同的小球中取出3个进行排列,共有多少种不同的排列方式?A. 20种B. 60种C. 120种D. 240种2. 有5个人排成一排,其中甲乙两人必须相邻,共有多少种不同的排法?A. 48种B. 60种C. 120种D. 240种二、填空题3. 用0,1,2,3,4这五个数字组成没有重复数字的三位数,其中个位数字为1的共有多少个?4. 某班有10名同学,需要选出3名代表,有多少种不同的选法?三、解答题5. 某公司有10名员工,需要选出5名员工组成一个工作小组,要求其中至少有1名女性员工。

如果公司中有5名女性员工和5名男性员工,问有多少种不同的组合方式?6. 某校有5个社团,每个学生最多可以参加2个社团,问有多少种不同的参加方式?答案一、选择题1. 答案:B解析:从5个不同的小球中取出3个进行排列,使用排列公式A_{5}^{3} = 5 × 4 × 3 = 60。

2. 答案:A解析:将甲乙两人看作一个整体,有4!种排法,再将甲乙两人内部排列,有2!种排法,所以总共有4! × 2! = 48种排法。

二、填空题3. 答案:18解析:首先确定百位,有4种选择(不能选0和1),然后确定十位,有3种选择(不能与百位相同),最后确定个位为1,所以共有 4 × 3 = 12种。

但是,由于0不能作为百位,所以需要减去3种情况,最终答案为 12 - 3 = 9种。

4. 答案:120解析:从10个人中选出3个人,使用组合公式 C_{10}^{3} = 10! / (3! × (10 - 3)!) = 120。

三、解答题5. 答案:252种解析:首先计算所有可能的组合数,即 C_{10}^{5} = 252。

然后计算没有女性员工的组合数,即 C_{5}^{5} = 1。

所以至少有1名女性员工的组合数为 252 - 1 = 251。

(word完整版)经典题库-排列组合练习题

(word完整版)经典题库-排列组合练习题

经典题库-排列组合练习题注:排列数公式亦可记为。

mn P mnA 一、选择题1.从0,1,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有( )A 、24个 B 、36个 C 、48个 D 、54个2.某学生制定了数学问题解决方案: 星期一和星期日分别解决4个数学问题, 且从星期二开始, 每天所解决问题的个数与前一天相比, 要么“多一个”要么“持平”要么“少一个”.在一周中每天所解决问题个数的不同方案共有( )A.50种B.51种C.140种D.141种3.有10件不同的电子产品,其中有2件产品运行不稳定。

技术人员对它们进行一一测试,直到2件不稳定的产品全部找出后测试结束,则恰好3次就结束测试的方法种数是( )A .16B .24C .32D .484.一个袋中有6个同样大小的黑球,编号为1、2、3、4、5、6,现从中随机取出3个球,以X 表示取出球的最大号码. 则X 所有可能取值的个数是( )A .6B .5C .4D .35.在1,2,3,4,5,6这六个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有( )A .60个 B .36个 C .24个 D .18个6.将A ,B ,C ,D ,E 排成一列,要求A ,B ,C 在排列中顺序为“A ,B ,C”或“C ,B ,A”(可以不相邻),这样的排列数有( )A .12种 B .20种 C .40种 D .60种7.将7支不同的笔全部放入两个不同的笔筒中,每个笔筒中至少放2支,则不同的放法有( )A .56种 B .84种 C .112种 D .28种8.两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为( )A .48种 B .36种 C .24种 D .12种【答案】C【解析】爸爸排法为种,两个小孩排在一起故看成一体有种排法.妈妈和孩子共有种排法,∴排法种数共有22A 22P 33P 22A 22A =24种.故选C .33A 9.运动会举行.某运动队有男运动员6名,女运动员4名,选派5人参加比赛,则至少有1名女运动员的选派方法有( )A .128种B .196种C .246种D .720种【答案】C【解析】“至少有1名女运动员”的反面为“全是男运动员”.从10人中任选5人,有种选法,其中全是男运动员的选法有510C 种.所以“至少有1名女运动员”的选法有-=246种.56C 510C 56C 10.三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到不同的三位数(6不能作9用)的个数为( )A .8 B .6 C .14 D .48【答案】D【解析】先排首位6种可能,十位数从剩下2张卡中任取一数有4种可能,个位数1张卡片有2种可能,∴一共有6×4×2=48(种).11.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有( )A .8种B .10种C .12种D .32种【答案】B【解析】从A 到B 若路程最短,需要走三段横线段和两段竖线段,可转化为三个a 和两个b 的不同排法,第一步:先排a 有种35C 排法,第二步:再排b 有1种排法,共有10种排法,选B 项.12.某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有( )A .35种 B .16种 C .20种 D .25种【答案】D 【解析】试题分析:学生从7门课程中选修4门,其中甲、乙两门课程不能都选,有三种方法,一是不选甲乙共有种方法,二是选甲,45C 共有种方法,三是选乙,共有种方法,把这3个数相加可得结果为2535C 35C 考点:排列组合公式13.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A .324 B .648 C .328 D .360 【答案】C 【解析】试题分析:首先应考虑“0”是特殊元素,当0排在个位时,有=9×8=72(个),当0不排在个位时,有=4×8×8=256(个),于是由分类加法计数原理,得符合题意的偶数共有72+256=328(个). 考点:排列组合知识14.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数A .288种B .264种C .240种D .168种【答案】B【解析】先分步再排列先涂点E ,有4种涂法,再涂点B ,有两种可能:(1)B 与E 相同时,依次涂点F ,C ,D ,A ,涂法分别有3,2,2,2种;(2)B 与E 不相同时有3种涂法,再依次涂F 、C 、D 、A 点,涂F 有2种涂法,涂C 点时又有两种可能:(2.1)C 与E 相同,有1种涂法,再涂点D ,有两种可能:①D 与B 相同,有1种涂法,最后涂A 有2种涂法;②D 与B 不相同,有2种涂法,最后涂A 有1种涂法.(2.2)C 与E 不相同,有1种涂法,再涂点D ,有两种可能:①D 与B 相同,有1种涂法,最后涂A 有2种涂法;②D 与B 不相同,有2种涂法,最后涂A 有1种涂法.所以不同的涂色方法有4×{3×2×2×2+3×2×[1×(1×2+1×2)+1×(1×2+1×1)]}=4×(24+42)=264.18.将6名男生、4名女生分成两组,每组5人,参加两项不同的活动,每组3名男生和2名女生,则不同的分配方法有( )A .240种 B .120种 C .60种 D .180种 【答案】B 【解析】试题分析:从6名男生中选3人,从4名女生中选2人组成一组,剩下的组成一组,则.3264120C C =19.现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙、丙不会开车但能从事其他三项工作,丁、戊都能胜四项工作,则不同安排方案的种数是( )A .240 B .126 C .78 D .72【答案】C试题分析:根据题意,分情况讨论,①甲、乙、丙三人中有两人在一起参加除了开车的三项工作之一,有2112332236C C C A ⨯=种;②甲、乙、丙三人各自1人参加除了开车的三项工作之一即丁、戌两人一起参加开车工作时,有种;③甲、乙、丙三336A =人中有一1人与丁、戌中的一人一起参加除开车的三项工作之一,有种,由分类计数原理,可得共有11123232136C C C A ⨯=种,故选C.3663678++=20.六名大四学生(其中4名男生、2名女生)被安排到A ,B ,C 三所学校实习,每所学校2人,且2名女生不能到同一学校,也不能到C 学校,男生甲不能到A 学校,则不同的安排方法为( )A .24 B .36 C .16 D .18【答案】D【答案】60试题分析:①若第一个出场的是男生,则第二个出场的是女生,以后的顺序任意排,方法有种.11323336C C A ⋅⋅=②若第一个出场的是女生(不是女生甲),则将剩余的个女生排列好,个男生插空,方法有22种.12222324C A A ⋅⋅=故所有的出场顺序的排法种数为.6032.用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间,这样的五位数有________.【答案】28【解析】若0夹在1、3之间,有A 22×3×A 22=12(个),若2或4夹在1、3中间,考虑两奇夹一偶的位置,有(2×2+2×2)×2=16(个),所以共有12+16=28(个).33.从5位男生4位女生中选4位代表,其中至少有2位男生,且至少有1位女生,分别到四个不同的工厂调查,则不同的分派方法有________种.【答案】2 400【解析】“从5位男生4位女生中选4位代表,其中至少有2位男生,且至少有1位女生”的情况为:2男2女、3男1女,则有种;“分别到四个不同的工厂调查”,再在选出的代表中进行排列,则有(C 52·C 42+C 53·C 41)A 44=2400(种).()22315454CC C C ⋅+⋅34.某省高中学校自实施素质教育以来,学生社团得到迅猛发展.某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为________.【答案】180【解析】设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:(1)从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C 41种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分配到其他三个社团中,有C 42A 33种方法,这时共有C 41C 42A 33种参加方法;(2)从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C 42种方法,甲与丁、戊分配到其他三个社团中有A 33种方法,这时共有C 42A 33种参加方法;综合(1)(2),共有C 41C 42A 33+C 42A 33=180(种)参加方法.35.3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是________.【答案】288【解析】先保证3位女生中有且只有两位女生相邻,则有C 32·A 22·A 33·A 42种排法,再从中排除甲站两端的排法,∴所求排法种数为A 22·C 32·(A 33A 42-2A 22·A 32)=6×(6×12-24)=288.36.现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是________.【答案】126【解析】依题意得,这四项工作中必有一项工作有2人参加.因为甲、乙不会开车,所以只能先安排司机,分两类:(1)从丙、丁、戊三人中任选一人开车;再从其余四人中任选两人作为一个元素同其余两人从事其他三项工作,共有C 31C 42A 33种方案;(2)先从丙、丁、戊三人中任选两人开车,其余三人从事其他三项工作,共有C 32A 33种方案,所以不同安排方案的种数是C 31C 42A 33+C 32A 33=126.37.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有________个(用数字作答).【答案】324【解析】分两大类:(1)四位数中如果有0,这时0一定排在个、十、百位的任一位上,如排在个位,这时,十、百位上数字又有两种情况:①可以全是偶数;②可以全是奇数.故此时共有C 32A 33C 41+C 32A 33C 41=144(种).(2)四位数中如果没0,这时后三位可以全是偶数,或两奇一偶.此时共有A 33C 31+C 32C 31A 33C 31=180(种).故符合题意的四位数共有144+180=324(种).38.某电视台连续播放6个广告,其中有3个不同的商业广告、两个不同的宣传广告、一个公益广告,要求最后播放的不能是商业广告,且宣传广告与公益广告不能连续播放,两个宣传广告也不能连续播放,则有多少种不同的播放方式?【答案】108试题分析:(1)排列与元素的顺序有关,而组合与顺序无关,如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同,才是不同的组合;(2)排列、组合的综合问题关键是看准是排列还是组合,复杂的问题往往是先选后排,有时是排中带选,选中带排;(3)对于排列组合的综合题,常采用先组合(选出元素),再排列(将选出的这些元素按要求进行排序)试题解析:用1、2、3、4、5、6表示广告的播放顺序,则完成这件事有三类方法.第一类:宣传广告与公益广告的播放顺序是2、4、6.分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.第二类:宣传广告与公益广告的播放顺序是1、4、6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.第三类:宣传广告与公益广告的播放顺序是1、3、6,同样分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.由分类加法计数原理得:6个广告不同的播放方式有36+36+36=108种.39.用0,1,3,5,7五个数字,可以组成多少个没有重复数字且5不在十位上的五位数?【答案】78个【解析】本题可分为两类:第一类:0在十位位置上,这时,5不在十位位置上,所以五位数的个数为=24个.44A 第二类:0不在十位位置上,这时,由于5不能排在十位位置上,所以,十位位置上只能排1,3,7之一,有种方法;13A 又由于0不能排在万位位置上,所以万位位置上只能排5或1,3,7被选作十位上的数字后余下的两个数字之一,有种方法;十13A 位、万位上的数字选定后,其余三个数字全排列即可,有种方法.33A 根据分步计数原理,第二类中所求五位数的个数为··=54个.13A 13A 33A、3不同色,2有1种种法,∴有张,其中标号为1,2的卡片放入同一信封,的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为A.10 B.11 C.12 D.1518. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

排列组合试题及答案

排列组合试题及答案

排列组合试题及答案一、选择题1. 从5个不同的元素中取出3个元素进行排列,共有多少种不同的排列方式?A. 10B. 20C. 30D. 60答案:D2. 有8个人排成一排,其中甲乙两人必须相邻,共有多少种不同的排列方式?A. 5760B. 5040C. 720D. 1440答案:D3. 从10个不同的元素中取出3个元素进行组合,共有多少种不同的组合方式?A. 120B. 210C. 100D. 1000答案:B二、填空题4. 从8个不同的元素中取出4个元素进行排列,共有______种不同的排列方式。

答案:16805. 从10个不同的元素中取出5个元素进行组合,共有______种不同的组合方式。

答案:252三、解答题6. 有5个不同的球和3个不同的盒子,要求每个盒子至少有一个球,有多少种不同的放法?答案:首先,将5个球分成3组,有C(5,2)种分法。

然后,将分好的3组球放入3个盒子中,有A(3,3)种放法。

所以总共有C(5,2) *A(3,3) = 60种不同的放法。

7. 一个班级有30个学生,现在要选出5个学生组成一个委员会,其中必须包括班长和团支书,共有多少种不同的选法?答案:首先,从28个非班长、团支书的学生中选出3个,有C(28,3)种选法。

然后,将选出的3个学生与班长和团支书一起组成委员会,共有C(28,3)种不同的选法。

8. 有4个不同的苹果和3个相同的盘子,要求每个盘子至少放一个苹果,有多少种不同的放法?答案:首先,将4个苹果分成3组,有C(4,1) + C(4,2) = 7种分法。

然后,将分好的3组苹果放入3个相同的盘子中,有A(3,3) / A(3,3) = 1种放法。

所以总共有7种不同的放法。

四、计算题9. 计算从10个不同的元素中取出4个元素进行排列的总排列数。

答案:A(10,4) = 10 * 9 * 8 * 7 = 504010. 计算从10个不同的元素中取出4个元素进行组合的总组合数。

排列组合练习题及答案

排列组合练习题及答案

排列组合习题精选一、纯排列与组合问题:1.从9人中选派2人参加某一活动,有多少种不同选法2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m 个车站,为了适应客运需要新增加n 个车站n>1,则客运车票增加了58种从甲站到乙站与乙站到甲站需要两种不同车票,那么原有的车站有个 个 个 个222132258m nm A A +-= 选C.二、相邻问题:1. A 、B 、C 、D 、E 五个人并排站成一列,若A 、B 必相邻,则有多少种不同排法2. 有8本不同的书, 其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为答案:1.242448A A = 2 选B 3253251440A A A = 三、不相邻问题:1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个名男生和4名女生站成一排,若要求男女相间,则不同的排法数有4.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法8. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮方式是种 种 种 种答案:1.43451440A A = 23434144A A = 3选B 444421152A A = 43424A = 54245480A A =6333424A C = 73334144A A = 8选A 6828C = 四、定序问题:1. 有4名男生,3名女生;现将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法2. 书架上有6本书,现再放入3本书,要求不改变原来6本书前后的相对顺序,有多少种不同排法答案:1.7733840AA= 2.9966504AA=五、分组分配问题:1.某校高中二年级有6个班,分派3名教师任教,每名教师任教两个班,不同的安排方法有多少种2. 6本不同的书分给甲、乙、丙三人,每人一本、二本、三本的不同分法有多少种项工程,甲承包三项,乙承包一项,丙、丁各承包二项,不同的承包方案有多少种4. 6人住ABC三个房间,每间至少住1人,有多少种不同住宿方案5.有4个不同小球放入四个不同盒子,其中有且只有一个盒子留空,有多少种不同放法6. 把标有a,b,c,d,e,f,g,h,8件不同纪念品平均赠给甲、乙两位同学,其中a、b不赠给同一个人,则不同的赠送方法有种用数字作答;答案:1.222364233390C C C A A = 212336533360C C C A = 33122285422221680C C C C A A = 41142223123336546423653332323540C C C C C C A C C C A A A A ++= 5211134214322144C C C C A A = 6331122632122222240C C C C A A A A ⋅= 六、相同元素问题:1. 不定方程 的正整数解的组数是 ,非负整数解的组数是 ;2.某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有 种 种 种 种3.将7个相同的小球全部放入4个不同盒子中, (1)每盒至少1球的方法有多少种 (2)(3)恰有一个空盒的方法共有多少种4.有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有 种 种 种 种5.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种答案:1.3361020 , 120C C == 2.选A 6984C = 3.13620C = 2124660C C = 4选C,2615C =5611462C = 七、直接与间接问题:1.有6名男同学,4名女同学,现选3名同学参加某一比赛,至少有1名女同学,由多少种不 同选法12347x x x x +++=人排成一列1甲乙必须站两端,有多少种不同排法2甲必须站两端,乙站最中间,有多少种不同排法3 甲不站排头乙不站排尾, 有多少种不同排法3.由1、2、3、4、5、6六个数字可组成多少个无重复数字且不是5的倍数的五位数4. 2名男生4名女生排成一行,女生不全相邻的排法有多少种5. 从5门不同的文科学科和4门不同的理科学科中任选4门,组成一个综合高考科目组,若要求这组科目中文理科都有,则不同的选法的种数 种 种 种 种6. 5人排成一排,要求甲、乙之间至少有1人,共有多少种不同排法7.四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点不同取法有多少种答案:1、1221346464100C C C C C ++= 或 33106100C C -= 2.12525240A A = 21525240A A = 3115655563720A A A A +=或76576523720A A A -+= 3、1455600A A =或5465600A A -= 4、643643576A A A -=或32221224234223576A A A A A A A += 5、选C.132231545454120C C C C C C ++=或 444954120C C C --= 6、123222323233223272A A A A A A A A ++=或52452472A A A -= 7、44106463141C C ---=八、分类与分步问题: 1.求下列集合的元素个数. 1{(,)|,,6}M x y x y N x y *=∈+≤;2. 2.一个文艺团队有10名成员,有7人会唱歌,5人会跳舞,现派2人参加演出,其中1名会唱歌,1名会跳舞,有多少种不同选派方法3. 9名翻译人员中,6人懂英语,4人懂日语,从中选拔5人参加外事活动,要求其中3人担任英语翻译,2人担任日语翻译,选拔的方法有 种用数字作答;4.某博物馆要在20天内接待8所学校的学生参观,每天只安排一所学校,其中一所人数较多的学校要连续参观3天,其余学校只参观1天,则在这20天内不同的安排方法为 A. 种 B. 种 C. 种 D. 种5. 从10种不同的作物种子选出6种放入6个不同的瓶子展出,如果甲乙两种种子不能放第一号瓶内,那么不同的放法共有A. 种B. 种C. 种D. 种6. 在画廊要展出1幅水彩画、4幅油画、5幅国画,要求排成一排,并且同一种的画摆放在一起,还要求水彩画不能摆两端,那么不同的陈列方式有 A. 种 B. 种 C. 种 D. 种7. 把一个圆周24等分,过其中任意3个分点,可以连成圆的内接三角形,其中直角三角形的个数是8. 有三张纸片,正、反面分别写着数字1、2、3和4、5、6 ,将这三张纸片上的数字排成三位数,共能组不同三位数的个数是 A. 249.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种10.用0,1,2,3,4,5这六个数字,{(,)|,,14,15}H x y x y N x y *=∈≤≤≤≤372017C A 820A 171817C A 1818A 24108C A 1599C A 1589C A 1598C A 1545A A 245345A A A 145445A A A 245245A A A1可以组成多少个数字不重复的三位数2可以组成多少个数字允许重复的三位数3可以组成多少个数字不重复的三位数的奇数4可以组成多少个数字不重复的三位数的偶数5可以组成多少个数字不重复的小于1000的自然数6可以组成多少个大于3000,小于5421的数字不重复的四位数11.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是12. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有种种种种13.从编号为1,2,…,10,11的11个球中取5个,使得这5个球的编号之和为奇数,其取法总数是种种种种14.从6双不同颜色的手套中任取4只,试求各有多少种情况出现如下结果1 4只手套没有成双;2 4只手套恰好成双;3 4只手套有2只成双,另2只不成双15.从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有 种不同的放映方法用数字作答;3.32223153535390C C C C C C ++=4.选C 171817C C 5.选C 1589C A 6.选D 452452A A A 7.选C3321112111(5) 325325551231C C C +⨯+⨯= 13、选B 1432565656236C C C C C ++= 14、14111162222240C C C C C =22615C =312116522240C C C C =15.211434215322180C C C C A A = 16.所有不同的三角形可分为三类: 第一类:其中有两条边是原五边形的边,这样的三角形共有5个;第二类:其中有且只有一条边是原五边形的边,这样的三角形共有5×4=20个;第三类:没有一条边是原五边形的边,即由五条对角线围成的三角形,共有5+5=10个.由分类计数原理得,不同的三角形共有5+20+10=35个. 九、元素与位置问题:1.有四位同学参加三项不同的比赛,1每位同学必须参加一项竞赛,有多少种不同的结果2每项竞赛只许一位学生参加,有多少种不同的结果2. 25200有多少个正约数有多少个奇约数答案:1.1每位学生有三种选择,四位学生共有参赛方法:333381⨯⨯⨯=种;2每项竞赛被选择的方法有四种,三项竞赛共有参赛方法:44464⨯⨯=种.2. 25200的约数就是能整除25200的整数,所以本题就是分别求能整除25200的整数和奇约数的个数. 由于 25200=24×32×52×71 25200的每个约数都可以写成lk j l 7532⋅⋅⋅的形式,其中40≤≤i ,02j ≤≤,20≤≤k ,10≤≤l于是,要确定25200的一个约数,可分四步完成,即l k j i ,,,分别在各自的范围内任取一个值,这样i 有5种取法,j 有3种取法,k 有3种取法,l 有2种取法,根据分步计数原理得约数的个数为5×3×3×2=90个.2奇约数中步不含有2的因数,因此25200的每个奇约数都可以写成lk j 753⋅⋅的形式,同上奇约数的个数为3×3×2=18个. 十、染色问题:1.如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为 A. 180 B. 160 C. 96 D. 60若变为图二,图三呢2. 某班宣传小组一期国庆专刊,现有红、 黄、白、绿、蓝五种颜色的粉笔供选用, 要求在黑板中A 、B 、C 、D 如图每一图一图二图三部分只写一种颜色,相邻两块颜色不同,则不同颜色粉笔书写的方法共有种用具体数字作答;答案:1.选A 5433180⨯⨯⨯= 5×4×4×4=320 2.⨯⨯⨯=5434240⨯⨯⨯=5433180。

2024年数学八年级上册排列组合基础练习题(含答案)

2024年数学八年级上册排列组合基础练习题(含答案)

2024年数学八年级上册排列组合基础练习题(含答案)试题部分一、选择题:1. 在下列四个数中,哪一个数的排列方式有24种?( )A.B. 123C. 12D. 12. 从4个不同的小球中取出3个进行排列,有多少种不同的排列方式?( )A. 4B. 12C. 24D. 363. 有5个男生和3个女生站成一排,要求男生必须相邻,有多少种不同的排列方式?( )A. 120B. 720C. 1440D. 2520少种不同的排列方式?( )A. 15B. 20C. 30D. 605. 有6本不同的书,从中选出3本放在书架上,有多少种不同的排列方式?( )A. 120B. 160C. 180D. 2406. 从字母A、B、C、D、E中任选3个字母组成一个三位字母组,有多少种不同的排列方式?( )A. 20B. 30C. 40D. 607. 有4个男生和4个女生站成一排,要求男女交替站立,有多少种不同的排列方式?( )A. 384B. 512C. 672D. 1024数字的四位数,有多少种不同的排列方式?( )A. 120B. 240C. 360D. 4809. 有7个小朋友站成一排,其中甲、乙两位小朋友必须站在一起,有多少种不同的排列方式?( )A. 360B. 720C. 1260D. 252010. 从字母A、B、C、D、E、F、G中任选4个字母组成一个没有重复字母的四位字母组,有多少种不同的排列方式?( )A. 840B. 1260C. 1680D. 2520二、判断题:1. 从4个不同的小球中取出2个进行排列,有6种不同的排列方式。

()2. 有3个男生和3个女生站成一排,男女各占一边,排列方式有36种。

()3. 从数字1、2、3、4中任选3个数字组成一个三位数,排列方式有12种。

()4. 有5本不同的书,从中选出3本放在书架上,排列方式有60种。

()5. 从字母A、B、C、D中任选3个字母组成一个三位字母组,排列方式有24种。

排列组合测试题(含答案)

排列组合测试题(含答案)

排列组合一、选择题:1. 将3个不同的小球放入4个盒子中,那么不同放法种数有A .81B .64C .12D .142.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有A .33AB .334AC .523533A A A -D .2311323233A A A A A + 3.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是A.20 B .16 C .10 D .64.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是A .男生2人女生6人B .男生3人女生5人C .男生5人女生3人D .男生6人女生2人. 5. 6.A .180B .90C .45D .3606.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有A .60个B .48个C .36个D . 24个7.3张不同的电影票全局部给10个人,每人至多一张,那么有不同分法的种数是A .1260B .120C .240D .720 8.n N ∈且55n <,那么乘积(55)(56)(69)n n n ---等于A .5569nn A -- B .1569n A - C .1555n A - D .1469n A -9.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为A .120B .240C .280D .6010.不共面的四个定点到面α的距离都相等,这样的面α共有几个A .3B .4C .6D .711.设含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,那么TS的值为 A.20128 B .15128 C .16128 D .2112815.4名男生,4名女生排成一排,女生不排两端,那么有 种不同排法. 〔8640 〕17.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个. 〔840〕 18.用1,4,5,x 四个不同数字组成四位数,所有这些四位数中的数字的总与为288,那么x = . 〔2〕5.假设2222345363,n C C C C ++++=那么自然数n =_____.(13)19.n 个人参加某项资格考试,能否通过,有 种可能的结果?( 2n )20.集合{}1,0,1S =-,{}1,2,3,4P =,从集合S ,P 中各取一个元素作为点的坐标,可作出不同的点共有_____个. (23)22.{}1,2,3,4,5,6,7,8,9A =,那么含有五个元素,且其中至少有两个偶数的子集个数为_____.10523.8张椅子排成,有4个人就座,每人1个座位,恰有3个连续空位的坐法共有多少种_______ 48025.7个人排成一排,在以下情况下,各有多少种不同排法? 〔1〕甲排头:〔2〕甲不排头,也不排尾: 〔3〕甲、乙、丙三人必须在一起: 〔4〕甲、乙之间有且只有两人: 〔5〕甲、乙、丙三人两两不相邻: 〔6〕甲在乙的左边〔不一定相邻〕:〔7〕甲、乙、丙三人按从高到矮,自左向右的顺序: 〔8〕甲不排头,乙不排当中:解:〔1〕甲固定不动,其余有66720A =,即共有66720A =种;〔2〕甲有中间5个位置供选择,有15A ,其余有66720A =,即共有16563600A A =种; 〔3〕先排甲、乙、丙三人,有33A ,再把该三人当成一个整体,再加上另四人,相当于5人的全排列,即55A ,那么共有5353720A A =种;〔4〕从甲、乙之外的5人中选2个人排甲、乙之间,有25A ,甲、乙可以交换有22A ,把该四人当成一个整体,再加上另三人,相当于4人的全排列,那么共有224524960A A A =种;〔5〕先排甲、乙、丙之外的四人,有44A ,四人形成五个空位,甲、乙、丙三人排这五个空位,有35A ,那么共有34541440A A =种;〔6〕不考虑限制条件有77A ,甲在乙的左边〔不一定相邻〕,占总数的一半, 即种;〔7〕先在7个位置上排甲、乙、丙之外的四人,有47A ,留下三个空位,甲、乙、丙三人按从高到矮,自左向右的顺序自动入列,不能乱排的,即47840A =〔8〕不考虑限制条件有77A ,而甲排头有66A ,乙排当中有66A ,这样重复了甲排头,乙排当中55A 一次,即76576523720A A A -+=1.6个人坐在一排10个座位上,问(1)空位不相邻的坐法有多少种(2)4个空位只有3个相邻的坐法有多少种(3) 4个空位至多有2个相邻的坐法有多少种解:6个人排有66A 种, 6人排好后包括两端共有7个“间隔〞可以插入空位.(1)空位不相邻相当于将4个空位安插在上述7个“间隔〞中,有4735C =种插法,故空位不相邻的坐法有646725200A C =种。

(完整版)排列组合经典练习(带答案)

(完整版)排列组合经典练习(带答案)

排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为() A.40B.50C.60D.70[解析]先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A.6个B.9个C.18个D.36个[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有() A.2人或3人B.3人或4人C.3人D.4人[解析]设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A.45种B.36种C.28种D.25种[解析]因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种B.36种C.38种D.108种[解析]本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33 B.34 C.35 D.36[解析]①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是() A.72 B.96 C.108 D.144[解析]分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种[解析]先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[解析]先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49·C25·C33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[解析]先将6名志愿者分为4组,共有C26C24A22种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有:C 26·C 24A 22·A 44=1 080种. 13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析] 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 (A )72 (B )96 (C ) 108 (D )144 解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个 答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 A.10 B.11 C.12 D.1518. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

(完整版)排列组合练习题___(含答案)

(完整版)排列组合练习题___(含答案)

(完整版)排列组合练习题___(含答案)排列组合练习题1、三个同学必须从四种不同的选修课中选⼀种⾃⼰想学的课程,共有种不同的选法。

2、8名同学争夺3项冠军,获得冠军的可能性有种。

3、乒乓球队的10名队员中有3名主⼒队员,派5名参加⽐赛,3名主⼒队员要安排在第⼀、三、五位置,其余7名队员选2名安排在第⼆、四位置,那么不同的出场安排共有_________种。

4、从5位同学中选派4位同学在星期五、星期六、星期⽇参加公益活动,每⼈⼀天,要求星期五有2⼈参加,星期六、星期⽇各有1⼈参加,则不同的选派⽅法共有。

5、有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第⼀名(仅⼀⼈)得2本,其它每⼈⼀本,则共有种不同的奖法。

6、有3位⽼师、4名学⽣排成⼀排照相,其中⽼师必须在⼀起的排法共有种。

7、有8本不同的书,其中数学书3本,外⽂书2本,其他书3本,若将这些书排成⼀列放在书架上,则数学书恰好排在⼀起,外⽂书也恰好排在⼀起的排法共有____________种。

8、五种不同的收⾳机和四种不同的电视机陈列⼀排,任两台电视机不靠在⼀起,有种陈列⽅法。

9、有6名同学站成⼀排:甲、⼄、丙不相邻有种不同的排法。

10、五个⼈排成⼀排,要求甲、⼄不相邻,且甲、丙也不相邻的不同排法的种数是11、6名男⽣6名⼥⽣排成⼀排,要求男⼥相间的排法有种。

12、4名男⽣和3名⼥⽣排成⼀排,要求男⼥相间的排法有种。

13、有4男4⼥排成⼀排,要求⼥的互不相邻有种排法;要求男⼥相间有种排法。

14、⼀排有8个座位,3⼈去坐,要求每⼈左右两边都有空位的坐法有种。

15、三个⼈坐在⼀排7个座位上,若3个⼈中间没有空位,有种坐法。

若4个空位中恰有3个空位连在⼀起,有种坐法。

16、由1、2、3、4、5组成⼀个⽆重复数字的5位数,其中2、3必须排在⼀起,4、5不能排在⼀起,则不同的5位数共有个。

17、有4名学⽣和3位⽼师排成⼀排照相,规定两端不排⽼师且⽼师顺序固定不变,那么不同的排法有种。

(完整版)排列组合练习题及答案.doc

(完整版)排列组合练习题及答案.doc

《排列组合》一、排列与组合1.从 9 人中选派 2 人参加某一活动,有多少种不同选法?2.从 9 人中选派 2 人参加文艺活动, 1 人下乡演出, 1 人在本地演出,有多少种不同选派方法?3.现从男、女 8 名学生干部中选出 2 名男同学和 1 名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有 90 种不同的方案,那么男、女同学的人数是A. 男同学 2 人,女同学 6 人B.男同学3人,女同学5人C. 男同学 5 人,女同学 3 人D.男同学6人,女同学2人4.一条铁路原有 m个车站,为了适应客运需要新增加 n 个车站( n>1),则客运车票增加了 58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有A.12 个B.13个C.14个D.15个5.用 0,1,2,3,4, 5 这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个数字不重复的小于 1000 的自然数?(5)可以组成多少个大于 3000,小于 5421 的数字不重复的四位数?二、注意附加条件1.6 人排成一列(1)甲乙必须站两端,有多少种不同排法?( 2)甲乙必须站两端,丙站中间,有多少种不同排法?2.由 1、2、3、4、5、6 六个数字可组成多少个无重复数字且是 6 的倍数的五位数?3.由数字 1,2,3,4,5,6,7 所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第 379 个数是A.3761B.4175C.5132D.61574.有号 1、2、3、4、5 的五个茶杯和号 1、2、3、4、5 的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的号相同的盖法有A.30 种B.31种C.32种D.36种5.从号 1,2,⋯, 10,11 的 11 个球中取 5 个,使 5 个球中既有号偶数的球又有号奇数的球,且它的号之和奇数,其取法数是A.230 种B.236种C.455种D.2640种6.从 6 双不同色的手套中任取 4 只,其中恰好有 1 双同色的取法有A.240 种B.180种C.120种D.60种7.用 0,1,2, 3,4, 5 六个数成没有重复数字的四位偶数,将些四位数从小到大排列起来,第 71 个数是。

排列组合练习题(附答案)

排列组合练习题(附答案)

排列组合练习题(附答案)1、如图,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多有几种栽种方案()A. 180种B. 240种C. 360D. 420种2、4名同学争夺三项冠军,冠军获得者的可能种数是()A、43 B. A43 C. C43 D. 43、某会议室共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为( )A.12B.16C.24D.324、从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A.24B.18C.12D.65、两家夫妇各带一个小孩一起去公园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为.6、7人排成一列,甲必须在乙的后面(可以不相邻),有种不同的排法.用1,2,3,4,5,6,7组成没有重复数字的七位数,若1,3,5,7的顺序一定,则有个七位数符合条件.8、用0,1,2,3,4,5六个数字:(1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的五位数?(3)能组成多少个比1 325大的四位数?9、六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?(1)每组两本.(2)一组一本,一组二本,一组三本.(3)一组四本,另外两组各一本.10、有四个男生,三个女生按下列要求排队拍照,各有多少种不同的排列方法?(1)七个人排成一列,四个男生必须连排在一起;(2)七个人排成一列,三个女生中任何两个均不能排在一起;(3)七个人排成一列,甲、乙、丙三人顺序一定;(4)七个人排成一列,但男生必须连排在一起,女生也必须连排在一起,且男甲与女乙不能相邻.答案与解析1、答案D解:若5个花池栽了5种颜色的花卉,方法有A 55种,若5个花池栽了4种颜色的花卉,则2、4两个花池栽同一种颜色的花;或者3、5两个花池栽同一种颜色的花,方法有2A 54种,若5个花池栽了3种颜色的花卉,方法有A 53种,故最多有A 55+2A 54+A 53=420种栽种方案.故选D .2、答案A解:每一项冠军的情况都有4种,故四名学生争夺三项冠军,分三步,4×4×4=43.获得冠军的可能的种数是43,故选A .3、答案C将三个人插入五个空位中间的四个空当中,有A 43=24种不同的坐法.4、答案B若从0,2中选出的是2,则2可以在百位也可以在十位,所以有A 32×A 21=12个奇数;若从0,2中选出的是0,则0只能在十位,所以有A 32=6个奇数,所以共有12+6=18个奇数.5、答案 24两位爸爸排在首尾有A 22种排法,两个小孩排在一起有A 22种排法,小孩与两位妈妈排列有A 33种排法,所以共有A 22·A 22·A 33=24种排法.6、答案25207人排队,2人顺序固定,共有A 77A 22=5 0402=2 520种排法.7、答案 210若1,3,5,7的顺序不定,有A 44=24种排法,故1,3,5,7的顺序一定的排法数只占总排法数的一种,故有A 77A 44=210个七位数符合条件. 8、(1)符合要求的四位偶数可分为三类.第一类:0在个位时有A 53个;第二类:2在个位时,首位从1,3,4,5中选定1个有A 41种,十位和百位从余下的数字中选有A 42种,于是有A 41·A 42个;第三类:4在个位时,与第二类同理,也有A 41·A 42个.由分类加法计数原理知,无重复数字的四位偶数共有A 53+A 41·A 42+A 41·A 42=156个.(2)五位数中5的倍数的数可分为两类:个位上的数字是0的五位数有A 54个;个位上的数字是5的五位数有A 41·A 43个.故所求数共有A 54+A 41·A 43=216个.(3)比1 325大的四位数可分为三类.第一类:千位数字分别为2,3,4,5时,共A 41·A 53个;第二类:千位数字为1,百位数字分别为4,5时,共有A 21·A 42个;第三类:千位数字为1,百位数字为3,十位数字分别为4,5时,共有A 21·A 31个.由分类加法计数原理知,比1 325大的四位数共有A 41A 53+A 21A 42+A 21A 31=270个.9、(1)22264233C C C A =15(种) (2)615233C C C =60(种)(3)41162122C C C A =15(种) 10、解:(1)不妨先将四个男生看作一个整体,连同三个女生共4个元素进行排列,有A 44种排法,然后将4个男生全排列,有A 44种排法,根据分步乘法计数原理有A 44A 44=576(种)不同的排法;(2)先排男生,有A 44种排法,再在他们之间和左右两端共5个空档中插入3个女生,有A 53种排法,故共有A 44A 53=1440(种);(3)先不考虑三人的顺序,任意排列有A 77种,其中每A 33种有且只有1种符合甲、乙、丙三人顺序一定,因此共有A 77A 33=840(种); (4)先将男生和女生看作两个整体,男生、女生分别全排列,有A 22A 44A 33种排法,再考虑男甲与女乙相邻,有A 22A 33A 22种,故有A 22A 44A 33−A 22A 33A 22=264(种).。

排列组合练习题及答案

排列组合练习题及答案

《排列组合》一、排列与组合3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有A.12个B.13个C.14个D.15个二、注意附加条件1.6人排成一列(1)甲乙必须站两端,有多少种不同排法?(2)甲乙必须站两端,丙站中间,有多少种不同排法?4. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有A.30种B.31种C.32种D.36种5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是A.230种B.236种C.455种D.2640种6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有A.240种B.180种C.120种D.60种7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是。

三、间接与直接1.有4名女同学,6名男同学,现选3名同学参加某一比赛,至少有1名女同学,由多少种不同选法?2. 6名男生4名女生排成一行,女生不全相邻的排法有多少种?4. 从5门不同的文科学科和4门不同的理科学科中任选4门,组成一个综合高考科目组,若要求这组科目中文理科都有,则不同的选法的种数A.60种B.80种C.120种D.140种5.四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点不同取法有多少种?6. 以正方体的8个顶点为顶点的四棱锥有多少个?7. 对正方体的8个顶点两两连线,其中能成异面直线的有多少对?四、分类与分步.2.一个文艺团队有9名成员,有7人会唱歌,5人会跳舞,现派2人参加演出,其中1名会唱歌,1名会跳舞,有多少种不同选派方法?3.已知直线,在上取3个点,在上取4个点,每两个点连成直线,那么这些直线在和之间的交点(不包括、上的点)最多有A. 18个B.20个C.24个D.36个4. 9名翻译人员中,6人懂英语,4人懂日语,从中选拔5人参加外事活动,要求其中3人担任英语翻译,2人担任日语翻译,选拔的方法有种(用数字作答)。

(完整版)排列组合习题_(含详细答案)

(完整版)排列组合习题_(含详细答案)

圆梦教育中心排列组合专项训练1.题1 (方法对比,二星)题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法?(2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法? 解析:“名额无差别”——相同元素问题(法1)每所学校各分一个名额后,还有2个名额待分配,可将名额分给2所学校、1所学校,共两类:2133C C +(种)(法2——挡板法)相邻名额间共4个空隙,插入2个挡板,共:246C =(种) 注意:“挡板法”可用于解决待分配的元素无差别,且每个位置至少分配一个元素的问题.(位置有差别,元素无差别)同类题一 题面:有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?答案:69C详解:因为10个名额没有差别,把它们排成一排。

相邻名额之间形成9个空隙。

在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。

同类题二题面:求方程X+Y+Z=10的正整数解的个数。

答案:36. 详解:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x 、y 、z 之值, 故解的个数为C 92=36(个)。

2.题2 (插空法,三星)题面:某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种. 答案:60,48同类题一题面:6男4女站成一排,任何2名女生都不相邻有多少种排法?答案:A 66·A 47种.详解: 任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47种不同排法.同类题二 题面:有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A .36种B .48种C .72种D .96种答案:C.详解:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A 33A 24=72种排法,故选C.3.题3 (插空法,三星)题面:5个男生到一排12个座位上就座,两个之间至少隔一个空位.1]没有坐人的7个位子先摆好,[2](法1——插空)每个男生占一个位子,插入7个位子所成的8个空当中,有:58A =6720种排法.(法2)[1]5个男生先排好:55A ;[2]每个男生加上相邻的一个座位,共去掉9个位置,当作5个排好的元素,共有6个空,剩下的3个元素往里插空,每个空可以插1个、2个、3个元素,共有:3216662C C C ++种,综上:有55A (3216662C C C ++)=6720种.同类题一题面:文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添两个小品节目,则不同的排列方法有多少种? 答案:30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合习题精选一、纯排列与组合问题:1. 从 9 人中选派 2 人参加某一活动,有多少种不同选法?2. 从 9 人中选派 2 人参加文艺活动, 1 人下乡演出, 1 人在本地演出,有多少种不同选派方法?3. 现从男、女 8 名学生干部中选出 2 名男同学和 1 名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有 90 种不同的方案,那么男、女同学的人数是( )A. 男同学2 人,女同学6 人B.男同学3 人,女同学5 人C. 男同学5 人,女同学3 人D.男同学6 人,女同学2 人4. 一条铁路原有 m 个车站,为了适应客运需要新增加 n 个车站( n>1),则客运车票增加了 58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有 ( )个个个个答案:1、2 272 3 、选B. 设男生 n 2 1 3 2299n8n 3。

、 m nmC362、A人,则有 C C A 90 4 AA 58选 C.二、相邻问题:1. A 、B 、C 、D 、E 五个人并排站成一列,若 A 、B 必相邻,则有多少种不同排法?2. 有 8 本不同的书, 其中 3 本不同的科技书, 2 本不同的文艺书, 3 本不同的体育书,将这 些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )答案: 1.2 432524325A A48(2) 选B AAA 1440三、不相邻问题:1. 要排一个有 4 个歌唱节目和 3 个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、1 到 7 七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个?名男生和 4 名女生站成一排,若要求男女相间,则不同的排法数有()4. 排成一排的 8 个空位上,坐 3 人,使每人两边都有空位,有多少种不同坐法?张椅子放成一排, 4 人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的 9 个空位上,坐 3 人,使三处有连续二个空位,有多少种不同坐法?7. 排成一排的 9 个空位上,坐 3 人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?8. 在一次文艺演出中, 需给舞台上方安装一排彩灯共 15 只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有 6 只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必 须点亮的要求进行设计,那么不同的点亮方式是( )种种种 种答案:1. A 44 A 53 1440 ( 2) A 33 A 44 144 ( )选 B 2A 44 A 44 1152 ( 4) A 43 24 (5) A 44 A 52 480 333( ) 3 3 ( )选 6(6) 3424 3 4144 A C 828A C7 A A8四、定序问题:1. 有 4 名男生, 3 名女生。

现将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法?2. 书架上有 6 本书,现再放入 3 本书,要求不改变原来 6 本书前后的相对顺序,有多少种不同排法?答案: 1.A 77840 2.A 99504A 33 A 66五、分组分配问题:1. 某校高中二年级有 6 个班,分派 3 名教师任教,每名教师任教两个班,不同的安排方法有多少种?2. 6 本不同的书分给甲、乙、丙三人,每人一本、二本、三本的不同分法有多少种?项工程,甲承包三项,乙承包一项,丙、丁各承包二项,不同的承包方案有多少种?4. 6 人住 ABC 三个房间,每间至少住 1 人,有多少种不同住宿方案?5. 有 4 个不同小球放入四个不同盒子,其中有且只有一个盒子留空,有多少种不同放法?6. 把标有 a,b,c,d,e,f,g,h,8 件不同纪念品平均赠给甲、乙两位同学,其中a、b 不赠给同一个人,则不同的赠送方法有种(用数字作答)。

答案:1. C62C42 C22 390 1 2 3 3( 3)C83C51C42C22 2A333 6 5 3 3A222A (2)C C C A 360 A 1680( 4)C61C51C44 3 1 2 3 3 C62C42 C22 3 540 (5)C42C21C11 1 A 3 144 A22 A C C C A A33 A A22 C3 6 5 3 3 34 3C21C11 C63C33 2 2(6)A22 A22 A2 A2 40六、相同元素问题:1.不定方程x1x2x3x47 的正整数解的组数是,非负整数解的组数是。

2.某运输公司有 7 个车队,每个车队的车多于 4 辆,现从这 7 个车队中抽出 10 辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有()种种种种3.将 7 个相同的小球全部放入 4 个不同盒子中,(1)每盒至少 1 球的方法有多少种?(2)恰有一个空盒的方法共有多少种?4.有编号为 1、2、3 的 3 个盒子和 10 个相同的小球,现把 10 个小球全部装入 3 个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有()种种种种5.某中学从高中 7 个班中选出 12 名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有 1 人参加的选法有多少种?答案:1.C 3 3 684 3.(1)C3 1 260()选C, C215 6 10 9 6 4 6 620, C 1202.选A C 20 (2)C C 4( 5)C116462七、直接与间接问题:1. 有 6 名男同学, 4 名女同学,现选 3 名同学参加某一比赛,至少有 1 名女同学,由多少种不同选法?人排成一列( 1)甲乙必须站两端,有多少种不同排法?( 2)甲必须站两端,乙站最中间,有多少种不同排法?(3) 甲不站排头乙不站排尾 , 有多少种不同排法?3. 由 1、2、3、4、5、6 六个数字可组成多少个无重复数字且不是 5 的倍数的五位数?4. 2 名男生 4 名女生排成一行,女生不全相邻的排法有多少种?5. 从 5 门不同的文科学科和 4 门不同的理科学科中任选 4 门,组成一个综合高考科目组,若 要求这组科目中文理科都有,则不同的选法的种数()种种 种 种6. 5 人排成一排,要求甲、乙之间至少有 1 人,共有多少种不同排法?7. 四面体的顶点和各棱中点共有 10 个点,在其中取 4 个不共面的点不同取法有多少种?答案: 1、 C 41 C 62 C 42 C 61 C 43 100 或 C 103 C 63 100 2. (1) A 22 A 55 240 (2) A 21 A 55 240 (3)1 15 63720 或7653 、 14 600 或5460055567655565A A AAA2A A 3720A AA A4、6433222 122576 5 、选 1 3 2 C 2 3 1 120 或64342342235 4 5 4 5 4A A A576或AAAAAAA C C C C 94 C 54 C 44 120 6 、 A 31 A 22 A 33 A 32 A 22 A 22 A 33 A 22 72 或 A 55 A 22 A 44 72 7 、C 1044C 6463141八、分类与分步问题:1. 求下列集合的元素个数.(1) M {( x, y) | x, y N , x y 6} ;( 2).{( x, y) | x, y N ,1 x 4,1 y 5}H2. 一个文艺团队有 10 名成员,有 7 人会唱歌, 5 人会跳舞,现派 2 人参加演出,其中 1 名会唱歌, 1 名会跳舞,有多少种不同选派方法?3. 9 名翻译人员中, 6 人懂英语, 4 人懂日语,从中选拔 5 人参加外事活动,要求其中 3 人担 任英语翻译, 2 人担任日语翻译,选拔的方法有 种(用数字作答)。

4. 某博物馆要在 20 天内接待 8 所学校的学生参观,每天只安排一所学校,其中一所人数较多的学校要连续参观 3 天,其余学校只参观 1 天,则在这 20 天内不同的安排方法为 ( )A. C 320 A 177 种B.A 820 种 C.C 118A 177 种 D.A 1818 种5.从 10 种不同的作物种子选出 6 种放入 6 个不同的瓶子展出,如果甲乙两种种子不能放第一号瓶内,那么不同的放法共有 ( )A. C102A48种B.C19A 59种C.C18A 59种D.C19A 58种6.在画廊要展出 1 幅水彩画、 4 幅油画、 5 幅国画,要求排成一排,并且同一种的画摆放在一起,还要求水彩画不能摆两端,那么不同的陈列方式有 ( )A.A14A55种B.A23A 44A55种C.A14A 44A55种D. A 22A 44A 55种7.把一个圆周 24 等分,过其中任意 3 个分点,可以连成圆的内接三角形,其中直角三角形的个数是( )8.有三张纸片,正、反面分别写着数字 1、 2、 3 和 4、5、6 ,将这三张纸片上的数字排成三位数,共能组不同三位数的个数是 ( )A. 249.在 1~20 共 20 个整数中取两个数相加 , 使其和为偶数的不同取法共有多少种 ?10.用 0, 1, 2, 3,4,5 这六个数字,( 1)可以组成多少个数字不重复的三位数?( 2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不重复的三位数的奇数?( 4)可以组成多少个数字不重复的三位数的偶数?( 5)可以组成多少个数字不重复的小于 1000 的自然数?( 6)可以组成多少个大于 3000,小于 5421 的数字不重复的四位数?11.由数字 1, 2, 3,4,5,6,7 所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第 379 个数是()12.设有编号为 1、2、3、 4、 5 的五个茶杯和编号为 1、 2、3、 4、 5 的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有()种种种种13.从编号为 1,2,, 10,11 的 11 个球中取 5 个,使得这 5 个球的编号之和为奇数,其取法总数是( )种种 种 种14. 从 6 双不同颜色的手套中任取 4 只,试求各有多少种情况出现如下结果(1) 4 只手套没有成双; (2) 4 只手套恰好成双;(3) 4 只手套有 2 只成双,另 2 只不成双15. 从 5 部不同的影片中选出 4 部,在 3 个影院放映,每个影院至少放映一部,每部影片只放 映一场,共有种不同的放映方法(用数字作答)。

16. 如下图 , 共有多少个不同的三角形 ?答案: 1、( 1) 15 (2)20 2 、32 C 22 C 21C 81 C 51C 31 32 3. C 53C 32 C 52C 32C 53C 3190 4.选 C1C 75.156.45 27.C 1222 264 8.C 23348C17 选 C CA选 D A A A选 选 A188 945239.290 10.111100 ( )6 6180 ( ) 4 48 ( ) 211 110()55 452 442C1A A A 2 5 3 3 4 4 AAAA 52(5)6 25 100 131 (6) 120 48 61 175 11. 选 B32379 12 、选B653AA 1C 55 C 53 1 C 52 2 31 13、选 B C 61C 54 C 63C 52 C 65236 14 、(1)C 64C 21C 21C 21C 21240 (2) C 6215 (3) C 61C 52 C 21C 2124015.4C 42C 21C 113180 16. 所有不同的三角形可分为三类:5A 223C A第一类 : 其中有两条边是原五边形的边 , 这样的三角形共有 5 个 ; 第二类 : 其中有且只有一条边是原五边形的边 , 这样的三角形共有 5× 4=20个 ; 第三类 : 没有一条边是原五边形的边 , 即由五条对角线围成的三角形 , 共有 5+5=10 个. 由分类计数原理得 , 不同的三角形共有 5+20+10=35个 .九、元素与位置问题:1.有四位同学参加三项不同的比赛,(1)每位同学必须参加一项竞赛,有多少种不同的结果?(2)每项竞赛只许一位学生参加,有多少种不同的结果?2.25200 有多少个正约数 ?有多少个奇约数 ?答案: 1. (1)每位学生有三种选择,四位学生共有参赛方法:333381种;(2)每项竞赛被选择的方法有四种,三项竞赛共有参赛方法:44464 种.2.25200 的约数就是能整除 25200 的整数 , 所以本题就是分别求能整除 25200 的整数和奇约数的个数 .由于 25200=24×32×52×7(1) 25200的每个约数都可以写成2l 3 j5k7l的形式,其中0 i 4,0 j 2,0 k 2,l 1于是 , 要确定 25200 的一个约数 , 可分四步完成 , 即i, j, k,l分别在各自的范围内任取一个值, 这样i有 5 种取法 , j有 3 种取法 ,k有 3 种取法 ,l有 2 种取法 , 根据分步计数原理得约数的个数为 5×3× 3× 2=90 个.(2)奇约数中步不含有 2 的因数 , 因此 25200 的每个奇约数都可以写成3j5k7l的形式 , 同上奇约数的个数为 3× 3×2=18 个 .十、染色问题:1.如图一 , 要给① , ②, ③, ④四块区域分别涂上五种颜色中的某一种 , 允许同一种颜色使用多次 , 但相邻区域必须涂不同颜色 , 则不同涂色方法种数为 ( )A. 180B. 160C. 96D. 60②①①④③③④③④①②②图一图二图三若变为图二 , 图三呢 ?2.某班宣传小组一期国庆专刊,现有红、BA黄、白、绿、蓝五种颜色的粉笔供选用,要求在黑板中A、 B、C、D(如图)每一C D部分只写一种颜色,相邻两块颜色不同,则不同颜色粉笔书写的方法共有种(用具体数字作答)。

相关文档
最新文档