人教版小学数学总复习专题讲解及训练
人教版小学六年级数学知识点归纳梳理及总复习归类讲解及训练中(含答案)附公式大全
5
2. 圆 弧 和 弦 :圆 上 任 意 两 点 间 的 部 分 叫 做 圆 弧 ,简 称 弧 。大 于 半 圆 的 弧 称 为 优 弧 ,小 于 半 圆 的 弧 称 为 劣 弧 ,半 圆 既 不 是 优 弧 ,也 不 是 劣 弧 。连 接 圆 上 任 意 两 点 的 线 段 叫 做 弦。圆中最长的弦为直径。 3. 圆 心 角 和 圆 周 角 :顶 点 在 圆 心 上 的 角 叫 做 圆 心 角 。顶 点 在 圆 周 上 ,且 它 的 两 边 分 别 与圆有另一个交点的角叫做圆周角。 4. 内 心 和 外 心 :和 三 角 形 三 边 都 相 切 的 圆 叫 做 这 个 三 角 形 的 内 切 圆 ,其 圆 心 称 为 内 心 。 过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。 5. 扇 形 :在 圆 上 ,由 两 条 半 径 和 一 段 弧 围 成 的 图 形 叫 做 扇 形 。圆 锥 侧 面 展 开 图 是 一 个 扇形。这个扇形的半径称为圆锥的母线。 6.圆 的 种 类 : ( 1) 整 体 圆 形 , ( 2) 弧 形 圆 , ( 3) 扁 圆 , ( 4) 椭 形 圆 , ( 5) 缠 丝 圆 ,( 6)螺 旋 圆 ,( 7)圆 中 圆 、圆 外 圆 ,( 8)重 圆 ,( 9)横 圆 ,( 10 )竖 圆 ,( 11 ) 斜圆。 7.圆和其他图形的位置关系:圆和点的位置关系:以点 P 与圆 O 的为例(设 P 是一点, 则 PO 是点到圆心的距离),P 在⊙O 外,PO>r;P 在⊙O 上,PO=r;P 在⊙O 内,0≤ PO<r。 8.百分数的由来
比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式 子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等, 有四项。因此,比和比例的意义也有所不同。 而且,比号没有括号的含义 而另一种 形式,分数有括号的含义! 19.比和比例的联系:
2020小学六年级数学(人教版)专题总复习讲解带训练附答案
2020 小学六年级数学(人教版)专题总复习讲解带训练附答案复习要点:(一)数与代数1、百分数的应用百分数的应用是在六年级(上册)认识百分数的基础上编排的,是本册教材的重点内容之一。
要联系实际解决一些求一个数比另一个数多(或少)百分之几的问题,解决较简单的有关纳税、利息、折扣的问题,解决已知一个数的百分之几是多少,求这个数的问题。
通过这些内容的教学,能让学生进一步理解百分数的意义,学会在日常生活中应用百分数。
2、比例的有关知识比例的知识有比例的意义、比例的基本性质和解比例。
这些知识有助于理解图形的放大与缩小,能用来解决有关比例尺的问题。
3、成正比例和成反比例的量教学正比例和反比例,着重理解正比例的意义和反比例的意义,让学生在现实的情境中作出相应的判断。
根据《标准》的精神,教材适当加强了正比例关系图像的教学,不再安排解答正比例或反比例的应用题。
(二)空间与图形1、圆柱和圆锥圆柱与圆锥是本册教材的又一个重点内容,包括圆柱和圆锥的形状特征,圆柱的表面积及计算方法,圆柱和圆锥的体积及计算方法等知识。
2、图形的放大或缩小图形的放大和缩小是小学数学新增加的教学内容,让学生初步了解图形可以按一定的比例发生大小变换。
这个内容安排在第三单元里,结合比例的知识进行教学。
3、确定位置等内容确定位置也是新增的教学内容,在初步认识方向的基础上,用"北偏东几度"" 南偏西几度"的形式量化描述物体所在的具体方向,还要联系比例尺的知识,用" 距离多少"的形式描述物体所在的位置。
知识点梳理(一)数与代数1、百分数的应用(1)求一个数比另一个数多(少)百分之几的实际问题①要点:一个数比另一个数多(少)百分之几= 一个数比另一个数多(少)的量÷另一个数②例题:六年级男生有180 人,女生有160 人,男生比女生多百分之几?女生比男生少百分只几?男生比女生多的人数÷女生人数= 百分之几(180 - 160 )÷ 160 = 12.5 %女生比男生少的人数÷男生人数= 百分之几(180 - 160 )÷ 180 ≈ 11.1%(2)纳税问题①要点:应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额= 收入× 税率②例题:张强编写的书在出版后得到稿费1400 元,稿费收入扣除800 元后按14% 的税率缴纳个人所得税,张强应该缴纳个人所得税多少元?(1400 - 800 )×14% = 84 (元)(3)利息问题①要点:存入银行的钱叫做本金,取款时银行除还给本金外,另外付给的钱叫做利息,利息占本金的百分率叫做利率。
人教版小学数学三年级上册总复习知识点归纳及专项练习
-人教版小学数学三年级上册【知识点】第1单元时分秒1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。
2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。
3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。
时针走1圈,分针要走(12)圈。
5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。
、6、时针从一个数走到下一个数是(1小时)。
分针从一个数走到下一个数是(5分钟)。
秒针从一个数走到下一个数是(5秒钟)。
7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。
8、公式。
(每两个相邻的时间单位之间的进率是60)1时=60分 1分=60秒半时=30分 60分=1时 60秒=1分 30分=半时9、简单经过时间计算:(1)可以用钟面的数格计数法,(2)用算式:经过时间=结束时间-开始时间第2、4单元万以内数的加法和减法^1、口算计算:一般先算整百加减整百数、整十加减整十数,一位数加减一位数,再把结果相加。
(注意进位与退位)2、估算:把加数看成接近它的整十、整百的数,再进行口算。
3、万以内的加法笔算:相同数位对齐,从个位算起,哪位满十就要向前进1.4、万以内的减法笔算:相同数位对齐,从个位算起,哪一位不够减,就要从前一位退1当10;如果要从十位退1,而十位上是0,就要从百位退1当10,再从这个退下的10中退1到个位当10,这时十位上的数是9。
5、加法的验算:(1)用交换两个加数的位置,和相.(2)用和减去一个加数等于另一个加数。
减法的验算:(1)用差加减数等于被减数。
(2)用被减数减去差等于减数。
6、识记以下关系式:]加数+加数=和验算(1)交换加数位置和不变(2)和-加数=加数被减数-减数=差验算(1)被减数-差=减数(2)差+减数=被减数7、解决问题:计算连加、连减、加减混合运算时(没有小括号),要从左往左依次计算,有小括号的要先算括号内的数。
人教版小学五年级上册数学总复习分类讲解题_
人教版小学五年级上册数学总复习分类讲解题单位换算一、方法:大单位到小单位,乘进率。
小单位到大单位,除以进率。
换算单位主要注意;(1)想清楚进率(2)判断清楚是“大到小”,还是“小到大”。
记忆进率的巧办法:首先记住长度单位间的进率,面积单位间的进率就是长度单位间进率的平方。
如果你忘记了面积单位间的进率,可以用这种方法找到正确的进率。
二、具体方法介绍:(1) 37厘米=( )米 小到大,除以进率 37÷100=0.37(2) 0.035千克=( )克 大到小,乘进率 0.035×1000=35(3) 求6千克50克=( )千克时,可以这样想:把千克数( 6 )写在整数部分,把( 50 )克改写成( 50÷1000=0.05 )千克,合起来就是( 6.05 )千克。
(4)求2.15小时=( )小时( )分,可以这样想:整数部分的2就表示( 2 )小时,把0.15时改写成( 0.15×60=9 )分三、练习:(每道题要在题后列出算式)3千克150克=( )千克10千米700米=( )千米13元4角8分=( )元6米5厘米=( )米=( )厘米3吨700千克=( )千克65米7厘米=( )米8平方米65平方分米=( )平方米2.06千克=( )克210分=( )小时( )分35.9公顷=( )公顷( )平方米4平方千米=( )公顷1800公顷=( )平方千米9平方厘米=( )平方分米32000000平方米=( )公顷0.86千克=( )克4公顷500平方米=( )公顷4.5平方分米 =( )平方分米( )平方厘米9000平方米 =( )公顷1吨20千克=( )吨7.2平方千米 =( )公顷=( )平方米13.5米=( )分米=( )厘米1.25吨=( )吨( )千克图形面积计算一、基本练习:1、一个平行四边形底是 2.8米,高是0.5米,与它等底等高的三角形的面积是( )平方米。
小学数学-有答案人教版四年级下册期末数学复习《小数的加减法》专题讲义(知识归纳 典例讲解 同步测试)
小学数学-有答案-人教版四年级下册期末数学复习《小数的加减法》专题讲义(知识归纳+典例讲解+同步测试)一、选择题1. 两个数相加,一个数增加1.4,另一个数减少0.7,和()。
A.增加2.1B.增加0.7C.减少0.7二、填空题皮皮在用竖式计算两个一位小数的加法时,把数位从前面对齐了,得到的结果是67.7,如图,正确的结果是(________)。
三、判断题小数加减法中,小数点对齐就是相同数位上的数对齐。
________四、其他计算列竖式计算.3.1−1.9= 5.6+2.3=7.8+4.3=9.4−6.5= 2.6+4.9= 6.1−5.3=五、连线题蜜蜂采蜜。
(连一连)六、选择题下列算式中,得数小于1的是()。
A.3.6−2.8B.0.6+0.9C.4.2−2.7下列各数中,与10最接近的是().A.9.98B.10.101C.9.99D.10.001甲−3.8=乙−0.8,则甲()乙.A.大于B.小于C.等于D.无法确定小明用竖式计算1.68加一个一位小数时,把数的末尾对齐了,结果得到2.2,正确的结果应该是()。
A.0.52B.3.88C.6.88D.1.16两个小数相加,一个加数增加1.2,另一个加数减少5.8,和()。
A.增加4.6B.增加7C.减少4.6D.减少7甲数比乙数多1.89,甲数是12.03,乙数是()A.13.92B.9.14C.10.14D.9.41甲数与乙数的和比甲数多4.3,比乙数多1.07,则甲数比乙数少().A.3.23B.5.37C.2.238.465−4.365的得数中的0()。
A.可以去掉B.不能去掉C.不能确定小华在计算1.39加一个一位小数时,错误地把数的末尾对齐,结果得到1.84,正确的得数应该是()A.5.89B.4.5C.0.45D.5.27计算3−2.75+时,比较合理的方法是()A.把小数化成分数计算B.把分数化成小数计算C.以上两种方法都可以七、填空题奇思在计算13.5+A时,把A的小数点向右移动了一位,得出的结果是19.3,正确的结果是(________)。
人教版小学数学总复习知识点归纳讲解及练习大全和答案
小学数学总复习归类讲解及训练(一)主要内容求一个数比另一个数多(少)百分之几、纳税问题学习目标1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
3、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。
4、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
5、培养和解决简单的实际问题的能力,体会生活中处处有数学。
考点分析1、一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量÷另一个数。
2、应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额 = 收入×税率典型例题例1、(解决“求一个数比另一个数多百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
实际比计划多生产百分之几?分析与解:要求“实际比计划多生产百分之几”,就是求实际比计划多生产的辆数占计划产量的百分之几,把原计划产量看作单位“1”。
两者之间的关系可用线段图表示。
计划产量5000辆实际比计划多的实际产量5500辆解答:方法1:5500 – 5000 = 500(辆)……实际比计划多生产500辆500 ÷ 5000 = 0.1 = 10%……实际比计划多生产百分之几方法2:5500 ÷ 5000 = 110%……实际产量相当于原计划的110%110% - 100% = 10%……实际比计划多生产百分之几答:实际比计划多生产10%。
例2、(解决“求一个数比另一个数少百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
计划比实际少生产百分之几?分析与解:要求“计划比实际少生产百分之几”,就是求计划比实际少生产的辆数占实际产量的百分之几,把实际产量看作单位“1”。
精选人教版小学数学总复习归类讲解及训练
小学数学总复习归类讲解及训练(一)主要内容求一个数比另一个数多(少)百分之几、纳税问题学习目标1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
3、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。
4、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
5、培养和解决简单的实际问题的能力,体会生活中处处有数学。
考点分析1、一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量÷另一个数。
2、应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额 = 收入×税率典型例题例1、(解决“求一个数比另一个数多百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
实际比计划多生产百分之几?分析与解:要求“实际比计划多生产百分之几”,就是求实际比计划多生产的辆数占计划产量的百分之几,把原计划产量看作单位“1”。
两者之间的关系可用线段图表示。
例2、(解决“求一个数比另一个数少百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
计划比实际少生产百分之几?分析与解:要求“计划比实际少生产百分之几”,就是求计划比实际少生产的辆数占实际产量的百分之几,把实际产量看作单位“1”。
两者之间的关系可用线段图表示。
点评:想一想,在分数乘法应用题中的最基本的数量关系式:“单位1 ×分率 = 分率对应的量”,如果和百分数应用题结合起来,求一种量比另一种量多(少)百分之几,实际上就是求分率。
就用“多(少)的量÷单位1”。
例3、(难点突破)一筐苹果比一筐梨重20%,那么一筐梨就比一筐苹果轻20%分析与解:苹果比梨重20%,表示苹果比梨重的部分占梨的20%,把梨的质量看作单位“1”;而梨比苹果轻20%则表示梨比苹果轻的部分占苹果的20%,把苹果的质量看作单位“1”,两个单位“1”不同,切忌将两个问题混为一谈。
人教版六年级上册数学总复习知识点和典型例题
小学六年级上册数学复习资料第一单元:位置与方向(一)用数对表示位置 如:第三列第二行 表示为(3,2)。
一般情况下表示为(列,行) 位置与方向(二)用方向和距离表示位置同一方向的不同描述:小明在小华的东偏北30°方向上,距离15米。
也可以说成:小明在小华的 方向上,距离 。
相对位置:小明在小华的东偏北30°方向上,距离15米。
小华在小明的 方向上,距离 。
第二单元:分数乘法1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
(如:75×4表示4个75是多少或75的4倍是多少。
) 2、一个数乘分数的意义就是求这个数的几分之几是多少。
(如:6×53表示6的53是多少; 65×52表示65的52是多少。
) 分数乘法的计算法则:分子相乘的积作分子,分母相乘的积作分母。
(能约分的先约分) 4、 小于1的数,积小于这个数,一个数(0除外) 乘 等于1的数,积等于这个数, 大于1的数,积大于这个数。
5、乘积是1的两个数互为倒数。
1的倒数是1,0没有倒数。
[典型练习题](1)38 +38 +38 +38 =( )×( )=( ) (2)12个 56 是( );24的 23 是( )。
(3)边长 12 分米的正方形的周长是( )分米。
第三单元:分数除法1、分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
2、分数除法的计算法则:被除数除以除数(0除外)等于被除数乘除数的倒数。
3、一个数除以真分数,商大于这个数(如:4÷21﹥4); 一个数除以大于1 的假分数,商小于这个数 (如:3÷ 23﹤3)。
4、两个数相除又叫做两个数的比。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比 的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数或整数表示。
人教版小学数学1-6年级总复习知识点
人教版小学数学一至六年级复习资料【目录】第一部分常用的数量关系---------------------------1第二部分小学数学图形计算公式---------------------1第三部分常用单位换算-----------------------------1第四部分基本概念------------------------------2第一章数和数的运算--------------------------------2第二章度量衡--------------------------------------8第三章代数初步知识--------------------------------9第四章空间与图形----------------------------------11第五章简单的统计---------------------------------14【常用的数量关系】1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数2、1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几倍数÷倍数=1倍数3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度4、单价×数量=总价;总价÷单价=数量;总价÷数量=单价5、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;6、加数+加数=和;和-一个加数=另一个加数7、被减数-减数=差;被减数-差=减数;差+减数=被减数8、因数×因数=积;积÷一个因数=另一个因数9、被除数÷除数=商;被除数÷商=除数;商×除数=被除数【小学数学图形计算公式】1、正方形(C:周长,S:面积,a:边长)周长=边长×4;C=4a面积=边长×边长;S=a×a2、正方体(V:体积,a:棱长)表面积=棱长×棱长×6;S表=a×a×6体积=棱长×棱长×棱长;V= a×a×a3、长方形(C:周长,S:面积,a:边长,b:宽)周长=(长+宽)×2;C=2(a+b)面积=长×宽;S=a×b4、长方体(V:体积,S:面积,a:长,b:宽,h:高)(1)表面积=(长×宽+长×高+宽×高)×2;S=2(ab+ah+bh)(2)体积=长×宽×高;V=abh5、三角形(S:面积,a:底,h:高)面积=底×高÷2 ;S=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高6、平行四边形(S:面积,a:底,h:高)面积=底×高;S=ah7、梯形(S:面积,a:上底,b:下底,h:高)面积=(上底+下底)×高÷2;S=(a+b)×h÷28、圆形(S:面积,C:周长,π:圆周率,d:直径,r:半径)(1)周长=π×直径π=2×π×半径;C=πd=2πr(2)面积=π×半径×半径;S= πr29、圆柱体(V:体积,S:底面积,C:底面周长,h:高,r:底面半径)(1)侧面积=底面周长×高=Ch=πdh=2πrh(2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(V:体积,S:底面积,h:高,r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式:已知两数的和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题。
人教版小学数学六年级下总复习专题讲解及训练【含答案】
模拟试题一、基本训练:1、找出下列各题中的单位“1”。
①男生人数占女生人数60%。
②男生人数比女生人数多20%。
③女生人数比男生人数少25%。
④加工一批零件,已完成了80%。
⑤今年的猪肉单价比去年上涨了80%。
2、根据所给信息,说出数量间的相等关系①一条路,已修了全长的60%②一种彩电,现价比原价降低10%③松树的棵数比柏树多133、看图列式。
用去30% ? 只灰兔比灰兔多25%用去? 吨还剩28吨白兔30只4、列式计算:(1)一个数的75%比30的25%多1.5,求这个数。
(2)一个数的25%比它的75%少30,求这个数。
二、解决问题:1、对比练习(1)某工厂六月份用煤60吨,六月份比五月份少用煤25%,五月份用煤多少吨?(2)某工厂六月份用煤60吨,五月份比六月份多用煤25%,五月份用煤多少吨?2、一张课桌比一把椅子贵10元,如果椅子的单价是课桌单价的60%,课桌和椅子的单价各是多少元?3、果园里的梨树和苹果树共有360棵,其中的苹果树的棵树是梨树的棵树的20%。
苹果树和梨树各有多少棵?4、一套桌椅的价格是78元,其中椅子的价格是桌子的30%。
桌子和椅子的价格各是多少元?5、一条绳子,第一次剪去全长的25%,第二次剪去全长的35%,两次共剪去6米,这条绳子共长多少米?6、一条绳子,第一次剪去全长的25%,第二次剪去全长的35%,第二次比第一次多剪了1米,这条绳子长多少米?7、根据问题列式。
平山茶场去年原计划种茶20公顷,实际种茶25公顷,________?①实际种茶的公顷数是原计划的百分之几?②计划种茶的公顷数是实际的百分之几?③实际种茶的公顷数比原计划多百分之几?④计划种茶的公顷数比实际少百分之几?8、根据算式填条件果园里有苹果树200棵,,梨树有多少棵?①200÷20%②200×20%③200÷(1+20%)④200÷(1-20%)⑤200×(1-20%)⑥200×(1+20%)参考答案:一、基本训练:1、找出下列各题中的单位“1”。
小学数学总复习教案知识点+习题
小学数学总复习教案知识点+习题一、数的认识1. 知识点:整数、分数、小数、百分数的认识及运用。
2. 重点:理解整数、分数、小数、百分数之间的相互转化。
3. 习题:(1) 请将下列分数化为小数:1/2, 3/4, 7/8。
(2) 请将下列小数化为百分数:0.25, 0.5, 0.75。
二、数的运算1. 知识点:加、减、乘、除、乘方、开方的运算及运算定律。
2. 重点:掌握运算顺序,运用运算定律进行简便计算。
3. 习题:(1) 计算:3 + 4 ×2, 8 ÷2 + 1 ×3。
(2) 计算平方根:9, 25。
三、几何图形1. 知识点:平面几何图形的性质及分类,如三角形、四边形、圆形等。
2. 重点:掌握各类图形的性质,进行相关计算。
3. 习题:(1) 等边三角形的周长是多少?(2) 一个圆的半径为5厘米,求其面积。
四、计量单位与测量1. 知识点:长度、面积、体积、质量、时间的计量单位及换算。
2. 重点:熟悉各种计量单位,进行单位换算。
3. 习题:(1) 1米等于多少厘米?(2) 5升等于多少毫升?五、解决问题的方法1. 知识点:整数四则混合运算、列式计算、比例尺、实际应用等。
2. 重点:运用所学的数学知识解决实际问题。
3. 习题:(1) 小明买了3个苹果和2个香蕉,共花费9元。
请问一个苹果和一个香蕉各多少元?(2) 一辆汽车行驶100千米,每小时60千米,行驶2小时后离目的地还有多远?六、方程与代数1. 知识点:简单方程的解法,代数式的运用。
2. 重点:理解方程的解法,能够运用代数式解决简单问题。
3. 习题:(1) 解方程:2x + 5 = 15。
(2) 表达式:计算3x 7的结果。
七、统计与概率1. 知识点:图表的种类(如条形图、折线图、饼图等),概率的基本概念。
2. 重点:能够根据数据绘制相应的图表,理解概率的计算方法。
3. 习题:(2) 抛掷一个公平的六面骰子,计算出现偶数的概率。
人教版小学数学五年级上册第8单元《总复习》说课稿
人教版小学数学五年级上册第8单元《总复习》说课稿一. 教材分析《人教版小学数学五年级上册第8单元总复习》的教材内容主要分为三个部分。
第一部分是数的运算,包括加法、减法、乘法和除法的运算方法以及运算定律。
第二部分是几何图形的认识,主要包括平面图形的性质和分类,以及立体图形的认识。
第三部分是统计与概率,主要包括统计图表的绘制和数据分析。
在数的运算部分,学生需要掌握各种运算方法,并能熟练地进行计算。
同时,他们还需要理解运算定律,并能够运用运算定律简化计算过程。
在几何图形的认识部分,学生需要了解各种图形的性质和分类,并能够运用这些知识解决实际问题。
在统计与概率部分,学生需要学会绘制统计图表,并能对数据进行分析。
二. 学情分析在五年级上册的学生中,他们已经具备了一定的数学基础,对于数的运算、几何图形的认识和统计与概率有一定的了解。
然而,他们在这些领域的掌握程度各不相同,有的学生可能对这些知识掌握得比较扎实,而有的学生可能还存在一些困惑。
因此,在教学过程中,我们需要关注学生的个体差异,针对不同学生的学习情况,进行有针对性的教学。
三. 说教学目标根据教材内容和学情分析,本节课的教学目标分为三个方面。
首先,学生需要掌握数的运算方法,并能熟练地进行计算。
其次,学生需要了解几何图形的性质和分类,并能够运用这些知识解决实际问题。
最后,学生需要学会绘制统计图表,并能对数据进行分析。
四. 说教学重难点本节课的重难点主要包括两个方面。
一方面是学生对于数的运算定律的理解和运用。
学生需要理解运算定律的含义,并能够运用运算定律简化计算过程。
另一方面是学生对于几何图形性质和分类的掌握。
学生需要了解各种图形的性质和分类,并能够运用这些知识解决实际问题。
五. 说教学方法与手段在教学过程中,我将采用讲授法、问答法、讨论法、案例分析法和实践活动法等多种教学方法。
同时,我还将利用多媒体课件、实物模型、统计图表等教学手段,帮助学生更好地理解和掌握知识。
人教版数学:小学数学总复习归类讲解及训练
小学数学总复习归类讲解及训练(一)主要内容求一个数比另一个数多(少)百分之几、纳税问题学习目标1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
3、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。
4、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
5、培养和解决简单的实际问题的能力,体会生活中处处有数学。
考点分析1、一个数比另一个数多(少)百分之几= 一个数比另一个数多(少)的量÷另一个数。
2、应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额= 收入×税率典型例题例1、(解决“求一个数比另一个数多百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
实际比计划多生产百分之几?分析与解:要求“实际比计划多生产百分之几”,就是求实际比计划多生产的辆数占计划产量的百分之几,把原计划产量看作单位“1”。
两者之间的关系可用线段图表示。
例2、(解决“求一个数比另一个数少百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
计划比实际少生产百分之几?分析与解:要求“计划比实际少生产百分之几”,就是求计划比实际少生产的辆数占实际产量的百分之几,把实际产量看作单位“1”。
两者之间的关系可用线段图表示。
点评:想一想,在分数乘法应用题中的最基本的数量关系式:“单位1 ×分率= 分率对应的量”,如果和百分数应用题结合起来,求一种量比另一种量多(少)百分之几,实际上就是求分率。
就用“多(少)的量÷单位1”。
例3、(难点突破)一筐苹果比一筐梨重20%,那么一筐梨就比一筐苹果轻20%分析与解:苹果比梨重20%,表示苹果比梨重的部分占梨的20%,把梨的质量看作单位“1”;而梨比苹果轻20%则表示梨比苹果轻的部分占苹果的20%,把苹果的质量看作单位“1”,两个单位“1”不同,切忌将两个问题混为一谈。
人教版小学数学总复习知识点归纳讲解及练习大全和复习资料
(一)
主要内容
求一个数比另一个数多(少)百分之几、纳税问题
学习目标
1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
答:一筐苹果比一筐梨重20%,那么一筐梨就比一筐苹果轻16.7%
点评:在求一个数比另一个数多(少)百分之几的百分数应用题中,关键还是要找准单位“1”的量。从结论可以得出“一个数比另一个数多百分之几,另一个数就比一个数少百分之几。”这句话是错的。为什么呢?把两个百分之几比较一下,就可以得出这两个百分之几对应的量是一个数比另一个数多的量或另一个数比一个数少的量,而这两种说法是相同的,也就表示的是同一个量;而单位“1”一个是梨,一个是苹果,所以这两个百分之几是不可能相等的。
答:实际每天比原计划多修25%。
点评:找准解决问题的数量关系式是解答好这一题的关键,题目中要求的是每天完成的任务量,而不能用10和8去求,因为10和8是工作时间,在解答时容易发生错误。
例6、(应纳税额的计算方法)
益民五金公司去年的营业总额为400万元。如果按营业额的3%缴纳营业税,去年应缴纳营业税多少万元?
5000辆实际比计划多的
实际产量
5500辆
解答:方法1:
5500 – 5000 = 500(辆)……实际比计划多生产500辆
500÷5000 = 0.1 = 10%……实际比计划多生产百分之几
方法2:
5500÷5000 = 110%……实际产量相当于原计划的110%
人教版小学数学六年级下总复习专题讲解及训练【含答案】
模拟试题一、基本训练:1、找出下列各题中的单位“1”。
①男生人数占女生人数60%。
②男生人数比女生人数多20%。
③女生人数比男生人数少25%。
④加工一批零件,已完成了80%。
⑤今年的猪肉单价比去年上涨了80%。
2、根据所给信息,说出数量间的相等关系①一条路,已修了全长的60%②一种彩电,现价比原价降低10%③松树的棵数比柏树多133、看图列式。
用去30% ? 只灰兔比灰兔多25%用去? 吨还剩28吨白兔30只4、列式计算:(1)一个数的75%比30的25%多1.5,求这个数。
(2)一个数的25%比它的75%少30,求这个数。
二、解决问题:1、对比练习(1)某工厂六月份用煤60吨,六月份比五月份少用煤25%,五月份用煤多少吨?(2)某工厂六月份用煤60吨,五月份比六月份多用煤25%,五月份用煤多少吨?2、一张课桌比一把椅子贵10元,如果椅子的单价是课桌单价的60%,课桌和椅子的单价各是多少元?3、果园里的梨树和苹果树共有360棵,其中的苹果树的棵树是梨树的棵树的20%。
苹果树和梨树各有多少棵?4、一套桌椅的价格是78元,其中椅子的价格是桌子的30%。
桌子和椅子的价格各是多少元?5、一条绳子,第一次剪去全长的25%,第二次剪去全长的35%,两次共剪去6米,这条绳子共长多少米?6、一条绳子,第一次剪去全长的25%,第二次剪去全长的35%,第二次比第一次多剪了1米,这条绳子长多少米?7、根据问题列式。
平山茶场去年原计划种茶20公顷,实际种茶25公顷,________?①实际种茶的公顷数是原计划的百分之几?②计划种茶的公顷数是实际的百分之几?③实际种茶的公顷数比原计划多百分之几?④计划种茶的公顷数比实际少百分之几?8、根据算式填条件果园里有苹果树200棵,,梨树有多少棵?①200÷20%②200×20%③200÷(1+20%)④200÷(1-20%)⑤200×(1-20%)⑥200×(1+20%)参考答案:一、基本训练:1、找出下列各题中的单位“1”。
(完整)小学数学总复习专题讲解及训练全套,推荐文档
小学数学总复习专题讲解及训练(一)一、圆柱体积1、求下面各圆柱的体积。
(1)底面积 0.6 平方米,高 0.5 米(2)底面半径是 3 厘米,高是 5 厘米。
(3)底面直径是 8 米,高是 10 米。
(4)底面周长是 25.12 分米,高是 2 分米。
2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的 4/7。
第一个圆柱的体积是 24 立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米?3、在直径 0.8 米的水管中,水流速度是每秒 2 米,那么 1 分钟流过的水有多少立方米?4、牙膏出口处直径为 5 毫米,小红每次刷牙都挤出 1 厘米长的牙膏。
这支牙膏可用 36 次。
该品牌牙膏推出的新包装只是将出口处直径改为 6 毫米,小红还是按习惯每次挤出 1 厘米长的牙膏。
这样,这一支牙膏只能用多少次?5、一根圆柱形钢材,截下 1.5 米,量得它的横截面的直径是 4 厘米。
如果每立方厘米钢重 7.8 克,截下的这段钢材重多少千克?(得数保留整千克数。
)6、把一个棱长 6 分米的正方体木块,削成一个最大的一圆柱体,这个圆柱的体积是多少立方分米?7、右图是一个圆柱体,如果把它的高截短 3 厘米,它的表面积减少 94.2 平方厘米。
这个圆柱体积减少多少立方厘米?二、圆锥体积1、选择题。
(1)一个圆锥体的体积是a 立方米,和它等底等高的圆柱体体积是( )1① a 立方米②3a 立方米③9 立方米3(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6 立方米,圆锥体体积是( )立方米① 6 立方米②3 立方米③2 立方米2、判断对错。
(1)圆柱的体积相当于圆锥体积的3 倍………()(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1 ………()(3)一个圆柱和圆锥等底等高,体积相差21 立方厘米,圆锥的体积是7 立方厘米………()3、填空(1)一个圆柱体积是18 立方厘米,与它等底等高的圆锥的体积是()立方厘米。
人教版三年级下册数学总复习知识点重点难点归纳以及题目训练
一三五七八十月 三十一天永不差 四六九月三十整 二月二八或二九
1999 ÷ 4=499 …… 3 2000÷4=500 1998 ÷ 4=499 …… 2 1996÷4=499 1997 ÷ 4=499 …… 1 1992÷4=498 1995 ÷ 4=498 …… 3 1988÷4=497 1994 ÷ 4=498 …… 2 1984÷4=496 1993 ÷ 4=498 …… 1 …… …… 公历年份是4的倍数的一般都是闰年
电脑屋
气象馆 展 厅 环保屋 天文馆 生物馆
大门
航模馆
第二单元
除数是一位数的除法
1. 只要是平均分就用(除法)计算。 2. 注意:① 71÷8,把71看成72,用口诀估算。 ② 378÷5,把378看成400更接近准确数。 ③ 应用题中如果有大约等字,一般是要求估算的。 3、被除数末尾有几个0,商的末尾不一定就有几个0。 (如:30÷5 = 6) 4、笔算除法: (1) 余数一定要比除数小。 (2)除法验算:→用乘法 ① 没有余数:商×除数=被除数;② 有余数:商×除数+ 余数=被除数 → 验算时别忘了加余数。 (3)0除以(任何不是0的)数都得0。→ 0不能做除数, 如:0÷( )=0括号里只有( 0 )不能填。
12分=( 720 )秒 144时=( 6 )日 1时20分= ( 80 )分 60分=(1 )时 5年=(60 )月 48个月=( 4 )年 12日=( 288 )时 1星期=( 168 )时
一年有 12 个月一个月有31或30、28 天 有31天的月份叫大月 有30天或28 天的月份叫小月 一日有24小时
看谁最认真!
横式:
23×34= 23 ×34 92 69 782
小学数学总复习专题讲解及训练
⼩学数学总复习专题讲解及训练⼩学数学总复习第⼀部分数与代数(⼀)认识整数、分数、⼩数、百分数1、认识整数(1)数与数字数:千百年来,⼈类在⽣产⽣活实践中产⽣了数.数⽤来表⽰事物的多少或顺序. 数字:⽤来记数的符号叫数字.⽬前,我们主要使⽤以下三种数字表⽰数.123456789015X 1050100500中国汉字数字:⼤写数字:零、壹、貮、叁、肆、伍、陆、柒、捌、玖、拾、佰、仟、萬等⼩字数字:⼀、⼆、三、四、五、六、七、⼋、九、⼗、百、千、万等阿拉伯数字:,,,,,,,,,(现今世界通⽤数字,起源于印度传到阿拉伯)罗马数字:有七个基本符号:I(表⽰),V (表⽰),(表⽰),L (表⽰),C (表⽰) D (表⽰)1000234678I 9XI 11XII 12XIII 13XIV 14XX 20XXX 30,M (表⽰).另外,II (),III (),IV (),VI (),VII ()),VIII (), X (),(),(),(),(),...(),()... 数字只是⼀种符号,⽽数是由数字与数位组合成的,表⽰事物的多少或顺序,如888,个位上的8表⽰8个,⼗位上的8表⽰8个⼗,百位上的8表⽰8个百,由此可知,同⼀个数字8,在不同的数位上,表⽰的数值不同.如4376,千位上的4表⽰4千,百位上的3表⽰3百,⼗位上的7表⽰7⼗,个位上的6表⽰6.(2)数的分类:数分为复数和实数,实数分为有理数和⽆理数,有理数分为整数和分数(分数?⼩数),整数可分为正整数、0、负整数,⾃然数包括0和正整数.⼩学阶段,主要学习有理数即整数和分数(⼩数是分数的另⼀种形式). ⾃然数的含义:表⽰物体数量的叫基数,如25个学⽣表⽰物体次序的叫序数,如教室顺数第6排最⼩的⾃然数是0,最⼤的⾃然数没有.⾃然数数列:从0起,把⾃然数按从⼩到⼤顺序依次排列,得到⾃然数列,如0,1,2,3,4,5,6,7....⾃然数列的性质:有始(从1开始)、有序(每⼀个⾃然数有且只有⼀个先⾏⾃然数)、⽆限(没有最后⼀个⾃然数). 0和1的含义:0的含义:0是⼀个整数,是最⼩的⾃然数,表⽰“没有”或者某种数量的分界限,如数轴和坐标系⾥的原点,表⽰正负数的分界限.0是⼀个偶数,0乘任何数,积等于0.0除以任何⾮0的数(或者说0被⾮0的数除),商为0.0不能做除数,象a(0a ≠)(a 代表任何⾮0的数)的式⼦没有意义 0既不是正数也不是负数 0的绝对值等于0即|0|=0如果0a ≠(a 代表任何⾮0的数),那么01a =1的含义:1可以表⽰成⼀个单位如:可以表⽰“10”,也可以表⽰“20”等等,如果把10⽶作为⼀个单位,那么它的12就是5⽶. (3)整数计数单位和数位计数单位:计数时⽤到的单位叫计数单位. 数位:⼀个数中,每个数字所占的位置整数数位和计数单位如下表:我国读数原则采取“四位分级制”(从个位起每四位为⼀级)⾼位与低位:在⼀个数⾥,左边的数位⾼,右边的数位低,左边相对于右边是⾼位,右边相对左边是低位.⾼位与低位是相对⽽⾔的.最⾼位与最低位:⼀个数左起第⼀位即该数的最⾼位,⼀个数右起第⼀位即该数的最低位. 例:96 7315 1234 亿级万级个级(4) ⼗进制与其他进制计数法⼗进制计数法:如果每相邻的两个计数单位之间的进率都是10,如万与⼗万之间进率是10,那么,这样的计数⽅法称为⼗进制计数法.遵循“满⼗进⼀”的原则.⼗进制数:⽤⼗进制计数法表⽰的数叫⼗进制数. 除了⼗进制计数法和⼗进制数外,还有“⼋进制”、“七进制”(满7天为⼀星期)、⼗⼆进制(满⼗⼆个⽉为⼀年)、⼆进制(计算机处理图⽂信息)等其他进制的计数法,这些进制计数法都遵循“满⼏进⼀”原则.n 进制数常表⽰成123(...)k n a a a a 的形式,其中123,,...k a a a a 表⽰各数位上的数字,n 表⽰n 进制.n 进制与⼗进制计数法的相互转换①n 进制数转换成⼗进制数:把n 进制数各数位上的数字与n 的各次幂分别相乘,再相加求和即得.如:把⼋进制数转换成⼗进制数,⽅法是:21810(130)183808(88)=?+?+?=②⼗进制数转换成n 进制数:⽤“n 除取余”法,⽤n 连除⼗进制数,然后把各次得到的余数按反顺序排列.如102(11) (1011)=(步聚是:第⼀步,2除11,得商5,余数1;,第⼆步,2除5,得商2,余数1;第三步,2除2,得商1,余数0;第四步,2除1,得商0,余数1.然后把四次运算所得余数按反顺序排列2(1011))(5) 整数的读法与写法读法:我国采⽤的是“四位⼀级”的读数法则先按“四位⼀级”原则每四位为⼀级给数分级,读数时,按先⾼级后低级、每⼀级先⾼位后低位顺序读.读亿级、万级,读完后末尾加“亿”或“万”字,每级中间不管有多少个0都只读⼀个零,每级末尾的0不读.如:83 17623637 读作⼋⼗三亿⼀千七百六⼗⼆万三千六百三⼗七写法:按从⾼级到低级⼀级⼀级,从⾼位到低位⼀位⼀位的数位顺序写..每⼀级要写全,每⼀位要写准. 如:七⼗五亿三千万零五⼗,写作7530000050 (6) 整数的改写把⼀个整数改写成⽤“万”或“亿”作单位的数,⽅法是:从最末⼀个数字起往左数四位或⼋位,点上⼩数点,⼩数点后⾯部分最末⼀个或⼏个0要去掉,加上万字或亿字如435800000=4.358万, 678903680=6.7890368亿 (7) 准确数与近似数准确数:表⽰⼀个量的真实数值的数(计算结果与实际完全相等)叫做准确数.近似数:⼜叫近似值,凡与⼀个准确数很接近的数叫做这个数的近似数(计算结果与真实数值相近但有⼀些误差),近似数(值)⽤≈表⽰. 求近似数的⽅法:有三种 555 1.1.600 7866007=85......5÷???四舍五⼊法:如果被指定舍去部分(除了保留的就是要舍去的)的⾸位数字⼩于,就舍去这些数字如果被指定舍去部分的⾸位数字是或⼤于,将保留部分的末位数字加进⼀法:把⼀个数的末尾省略后,向它的前⼀位进如千克贷物装箱,每箱装千克,⾄少要个箱⼦(因为)去尾法:把⼀个数的末尾省略掉改写整数与省略尾数的对⽐(8) 有关符号等号:=,读作“等于”不等号:≠,读作“不等于”约等号:≈,读作“约等于”⼤于号:>,读作“⼤于”,⼤于号的性质:①若a>b,b>c,a>c;②a>b,b=c,a>c.⼩于号:<,读作“⼩于”“⼩于等于”号(也称不⼤于号):≤,“⼤于等于”号(也称不⼩于号):?恒等号:≡,读作“恒等于”(9)整数⼤⼩的⽐较①位数不同,位数多的数⼤于位数少的数②位数相同,最⾼位数字⼤的数⼤,最⾼位数字⼩的数⼩;如果最⾼位相同,⽐较次⾼位数字,次⾼位数字⼤的数⼤,依次类推.如⽐较8476与8524的⼤⼩,最⾼位相同,但次⾼位不同,因为4<5,所以,8542>84762、认识⼩数(1)⼩数的概念把整体1平均分成10份、100份、1000份...的分数改写成不带分母形式的数叫做⼩数.如:7117==,由此可见,⼩数包括整数部分(⼩数点前⾯的部分)和⼩数部分(⼩0.07,1717.1171001000数点后⾯的部分).(2)⼩数位数、数位及计数单位⼩数位数:⼀个数的⼩数部分中有⼏个数字就叫做⼏位⼩数.如:3.516表⽰三位⼩数,10.65表⽰两位⼩数,6.9表⽰⼀位⼩数.⼩数数位:⼩数点右边第⼀位、第⼆位、第三位、第四位.......依次是⼗分位、百分位、千分位、万分位......等等.⼩数计数单位有:⼗分之⼀、百分之⼀、千分之⼀......分别写作0.1,0.01,0.001......如:6.0219,⼩数部分上的0、2、1、9分别表⽰0个⼗分之⼀、2个百分之⼀、1个千分之⼀、9个万分之⼀,或者分别表⽰0个0.1、2个0.01、1个0.001、9个0.0001.(3)⼩数的读法与写法读法:整数部分按整数读法读,⼩数部分直接读出每位数字或.按分数读法(⼜叫间接读法)读,18如:.168,直接读作⼗⼋点⼀六⼋.也可按分数读法读作⼗⼋⼜千分之⼀百六⼗⼋.写法:整数部分按整数写法写,是零的写作“0”,⼩数点写在个位的右下⾓,⼩数点后依次写出⼩数部分各数位上的数字.如⼋点五六,写成8.56(4)⼩数的基本性质⼩数的末尾添上“0”或去掉“0”,⼩数的⼤⼩不变.注意:给⼩数取近似值时,在保留的⼩数数位⾥,末⼀位或末⼏位的“0”不能去. (5)⼩数的⼤⼩与⼩数点的位置(1)⼩数点位置的移动引起⼩数⼤⼩变化⼩数点向右移,⽐原数扩⼤,右移⼀位扩⼤10倍,右移两位扩⼤100倍...;向左移,⽐原数缩⼩,左移⼀位缩⼩10倍,左移两位缩⼩100倍.... (2)⽐较⼩数的⼤⼩:先⽐整数部分,再⽐⼩数部分;整数部分相同,⽐⼩数部分.依次⽐较⼗分位、百分位上、千分位、万分位...上的数字..如:⽐较8.7474与8.7475⼤⼩,8.7474<8.7475 (6)改写单、复名数名数:带有单位名称的数叫名数单名数:只含有⼀个单位名称的名数叫单名数.复名数:含有两个或两个以上单位名称的名数叫复名数. 单、复名数之间可以相互转化.改写单、复名数:应⽤⼩数点位置移动引起⼩数⼤⼩变动的规律,可以把单名数按进率从⾼级改写成低级,如:79000克=79千克,可以从低级改写成⾼级,如:9.4平⽅⽶=940平⽅分⽶;也可以把复名数按进率改写成⾼级单名数,如6⽶2分⽶=6.2⽶,把⾼级单名数改写成复名数.如果5.8吨=5吨800千克(7)⼩数的分类根据⼩数部分位数,可将⼩数分为有限⼩数和⽆限⼩数.根据⼩数整数部分是否为0,可将⼩数分为纯⼩数和带⼩数; 010.8790126.519.656565... 纯⼩数:整数部分是的⼩数,纯⼩数⽐⼩.如有限⼩数:⼩数部分的位数是有限的.带⼩数:整数部分不为的⼩数,带⼩数⽐⼤.如⽆限⼩数:⼩数部分的位数是⽆限的,如⽆限循环⼩数:⼩数部分从某⼀位起,⼀个数字或⼏个数字依次不地重复出现纯循环⼩数:循环节从⼩数部分第⼀位开始,(这重复出现的⼀个或⼏个数字叫循环节)包括.......1.0.0.656.318.7465926...2656553如,纯循环⼩数可以写成混循环⼩数,如混循环⼩数:循环节不是从⼩数部分的第⼀位开始,如⽆限不循环⼩数:⼩数部分的数字排列没有循环变化的规律,这样的⼩数叫⽆限不循环⼩数.如:例:把下列各数分类:.7.263...,7.4343,4.53838,..5.4...1,8.7465926...,3.1414解:有限⼩数:7.4343,3.1414,4.53838 ⽆限⼩数:.7.263...,..5.4...1,8.7465926...循环⼩数:..5.4...1,.7.263...纯循环⼩数:..5.4...1 混循环⼩数:.7.263...⽆限不循环⼩数:8.7465926...⼩结:实数的分类12140010224610098...3572079按⾃然数约数个数的不同质数:除了和它本⾝外,不能被别的数整除的数.是最⼩的质数⾃正整数分为三类合数:除了和它本⾝外,还能被别的数整除的数.是最⼩的合数正整数整数然既⾮质数也⾮合数:,负整数数按能否被整除可分为偶数和奇数. 如:、、、为偶数,、、、有理数实数数...00.70.61...126.51 (7511)为奇数.纯⼩数(整数部分是)如:、有限⼩数:⼩数部分是有限的带⼩数(整数部分⼤于)如:正分数假分数(整数和带分数):分⼦⼤于分母如分数⼩数⽆限循环⼩数:⼩数部分⽆限且是循环的负分数真分数:分⼦为,分母⼤于纯循环⼩数:循环节从⼩数部分第⼀位开始 ...2.2.666666...1.90632π如表⽰混循环⼩数:循环节不从⼩数部分第⼀位开始如,表⽰1.9302302...⽆理数:如,2.1045679...+a bi如果⽤⼩数表⽰即为⽆限不循环⼩数如复数:如3、认只分数(1)分数的概念及产⽣把单位“1”平均分成若⼲份,表⽰这样的⼀份或⼏份的数叫做分数.分数⽤mn表⽰,m 是⾃然数,n 是⾮零⾃然数,读作n 分之m ,m 是分⼦,n 是分母.如1815,, (4917)都是分数.(分数产⽣的背景:⼈们在度量和计算中,度量或计算的结果有时不能⽤整数表⽰时,就产⽣了分数)分数的补充定义:当分⼦为0时,分数值为0;当分母为1时,分数值就是分⼦.从这个意义上讲,整数是特殊的分数. ?(2)单位“1”的含义1)⼀个物体、⼀个计量单位可以看成单位“1”在分数中,单位“1”表⽰可以平均分的任何事物.把谁平均分,谁就是单位“1”.如:⼀个苹果,⼀张纸、⼀⽶布、⼀⼩时...在没有平均分之前,都是⼀个完整的单位,数学上叫单位“1”.2)由⼀些物体组成的⼀个群体(整体)也可以看成单位“1”如把⼀堆苹果(8个)看成⼀个整体,平均分成8份,1个苹果就是这个整体的18(3)分数的组成分数由分⼦、分数线、分母组成.(分⼦与分母之间的横线叫分数线,分数线上⾯的数叫分⼦,分数线下⾯的数叫分母)1可以化成分⼦分母相同的分数.(4)分数的单位把单位“1”平均分成若⼲分,表⽰其中⼀份的数叫分数单位.如,45的分数单位是15,78的分数单位是18,表⽰78是由7个18组成的.(决定分数单位的是分母,分母是⼏,分数单位就是⼏分之⼀;分⼦是⼏,这个分数就有⼏个分数单位)(5)分数的读写:读先读分母再读分⼦,写先画分数线,再写分母,后写分⼦;写带分数时,先写整数部分,再写分数部分,零分数:分母不为0⽽分⼦为0的分数叫零分数(6)分数的相等对于两个分数,a c b d ,如果ad cb =,那么这两个分数相等.如39,515,因为31559?=?,所以39515= (7)分数⼤⼩的⽐较1)分母相同,分⼦⼤的分数⼤; 2)分⼦相同,分母⼩的分数⼤;3)分⼦分母都不同,先化成同分母(通分)或同分⼦,再⽐较分⼦或分母,分⼦⼤或分母⼩的分数⼤;(8)分数的基本性质分⼦分母同乘以或同除以相同的⾮零的数,分数的⼤⼩不变.b b m b m a a m a m ?÷==?÷(0m ≠)利⽤这⼀性质,可以把⼀个分数化成分母不同但⼤⼩相等的分数如520832=(9)分⼦、分母变化引起分数值变化分母(除数)不变,分⼦(被除数)扩⼤或缩⼩m 倍,分数值(商)扩⼤或缩⼩m 倍分⼦(被除数)不变,分母(除数)扩⼤或缩⼩m 倍,分数值(商)就缩⼩或扩⼤m 倍. (10)分数与除法的关系分数是⼀个数,⽽除法是⼀种运算,但两者有联系(0)aa b b b÷=≠. (11)约分把分数的分⼦分母同除以它们的公约数或最⼤公约数,得到可约分数(还有其他公约数)或最简分数(分⼦与分母互质)的过程.(12) 通分把⼏个异分母的分数化成与原分数相等的同分母(⼜叫公分母,最好化成最⼩公分母)分数的过程(这个相同的分母应是这⼏个异分母分数的最⼩公倍数即最⼩公分母),同分母分数的分数单位相同,异分母分数的分数单位不同.(13) 通分⼦把分⼦不同的分数化成分⼦相同但不改变每个分数⼤⼩的分数的过程叫通分⼦.如把467,11化成通分⼦即为:412612,7211122==(14)分数种类111341*********??真分数:分⼦⽐分母⼩的分数如:分⼦是分母倍数的假分数——整数分数分⼦不是分母倍数的假分数——带分数假分数:分⼦⽐分母⼤或相等的分数如,(⼀个正整数和⼀个真分数合并⽽成的分数,如)近似分数⼀个分数的分⼦分母经四舍五⼊后变成整⼗、整百、整千...的数后,再通过约分化简,得到的新分数与原分数的值很接近,这个新分数叫原分数的近似分数.4991000≈5001=10002繁分数⼀个分数的分⼦或分母⾥含有分数,或者分⼦分母⾥都含有分数,这样的分数叫繁分数如:1247读繁分数时,先读分⼦,再读分母,如上⾯的繁分数可读作七分之四分之⼆分之⼀. 繁分数化简⽅法:①把繁分数的分⼦部分和分母部分分别看成⼀个数,然后⽤分⼦除以分母即可,如3353394===54345203÷?②将分⼦部分和分母部分同时扩⼤相同的倍数,如33159455===111551533当繁分数中既有分数⼜有⼩数时,要么都化成分数,要么都化成⼩数,然后约分化简.4、认识百分数(1)百分数的概念:表⽰⼀个数是另⼀个数的百分之⼏的数叫百分数.或者说,分母是100的分数叫百分数.⽤百分符号“%”表⽰.百分数⼜叫百分⽐或百分率,它是分数的⼀种特殊形式.百分数表⽰的是两个数的倍数关系,所以百分数后⾯不带计量单位名称.百分数的单位是1%(2) 百分数的读法写法:先读分母,再读分⼦,如9%读作百分之九,18%读作百分之⼀⼗⼋写百分数时,先写分⼦,再写百分号“%”如百分之七⼗六写作76%(3)分数与百分数、⼩数的联系:分数表⽰⼀个数是另⼀个数的⼏分之⼏的数,百分数表⽰⼀个数是另⼀个数的百分之⼏的数.⼩数表⽰的是⼗进制分数.(4)常⽤百分率:百分率就是百分数,指部分占总体的百分之⼏发芽率:发芽率=100%?发芽种⼦数播种种⼦数成活率:成活率=100%?树森或花草成活棵数种植棵数出粉率:出粉率=100%?碾出的⾯粉重量加⼯的⼩麦或薯类重量出油率:出油率=100%?油料作物(花⽣、⼤⾖、油菜籽)榨出油的重量油料作物总重量出⽶率:出⽶率=100%?稻⾕碾出⼤⽶的重量加⼯的稻⾕总重量出勤率:出勤率=100%?实际出勤⼈数应出勤⼈数合格率:合格率=100%?合格产品数产品总数及格率:及格率=100%?及格⼈数参考⼈数出⽣率:出⽣率=某地区某⼀时期内出产婴⼉数某地区某⼀时期内⼈⼝总数1000?死亡率:死亡率=某地⼀年内死亡⼈数某地同期平均⼈⼝数1000增长率:增长率(增产率)=-100%?增长数(现在数原来数)原来基数提⾼率:提⾼率=-100%?提⾼数量(现在量原来量)原来量(5) 成数:通常农作物的收成常⽤“成数”来表⽰,“⼏成”就是⼗分之⼏ (6) 定价:定价=成本?(1+期望利润的百分数) (7) 折扣:折扣是商家销售⽤语,“⼏折”表⽰⼗分之⼏,即百分之⼏⼗,如某⾐服出售打⼋折,是指按原价的80%出售,也就是减价20%.5、数的互化(1) ⼩数与分数的互化有限⼩数化分数:如0.35=357=10020带⼩数化分数:整数部分不变,只把⼩数部分化成分数纯循环⼩数化分数:把⼀个循环节的数字组成的数做分⼦,分母的各位数字是9,9的个数等于⼀个循环节数字的个数如..4550.991154== 混循环⼩数化分数:第⼆个循环节以前的数字组成的数减去不循环的数字组成的数得到的差做分⼦,循环节以前⼏位是9,后⼏位是0(9的个数等于⼀个循环节数字个数,0的个数等于与不循环部分的数字个数)组成的数做分母,最化化简分数. 如.(232)217 0.2909030 3-===分数化⼩数:①分母是整百的,直接⽤分⼦除以分母化成⼩数如1560.156 1000=②运⽤分数基本性质化如:7560.056 1251000==③如果不能化成有限⼩数,可以⽤循环⼩数来表⽰如.10.33=≈0.333(保留三位⼩数)★(2) ⼀个最简分数能否化成有限⼩数的辩别⽅法最简分数的分母除了2和5以外,不含有其他质因数,能化成有限⼩数.如果含有2和5以外的质因数,就不能化成有限⼩数.(3) 百分数与分数、⼩数的互化分数化百分数:先把分数化成⼩数,再化成百分数百分数化分数:把百分数化成分数形式,再约分化成最简分数分数化⼩数:⽤分⼦除以分母.所得结果只有两种情况:有限⼩数或⽆限循环⼩数判断⼀个分数可否化成⼀个有限⼩数的⽅法:分母中如果只含质因数2和5,能化成有限⼩数,如果含有不是2和5的其他质因数,就不能化成有限⼩数.⼩数化分数:如果是有限⼩数,可直接写成以10、100、1000.....作分母的分数;如果是纯循环⼩数,⽤⼀个循环节的数字作分⼦,⽤与循环节的位数相等的数字9作分母(分母各位数字都是9,9的个数与⼀个循环节的数字个数相等)如果是混循环⼩数,⽤⼩数点右边第⼀位数字到第⼀个循环节的末位数字所组成的数字减去不循环部分的数字所组成的数所得的差做分⼦,分母的头⼏位数字是9,末⼏位数字是0,9的个数与⼀个循环节数字的个数相同,0的个数与不循环部分的数字的个数相同..98980.989006-=,.79827980.79890002-=如果是⽆限不循环⼩数,不能化成分数.百分数化⼩数:先去掉百分号,再把⼩数点向左移两位,位数不够时⽤0补⾜如果分数不能化成有限⼩数,那么百分数分⼦要保留⼀位⼩数如:.133=≈33.3%有时把分数化成分母是100的分数,再写成百分数.如71414% 50100==⼩数化百分数:先把⼩数点向右移两位,位数不够时⽤0补⾜,再添上百分号%⽐较分数和⼩数的⼤⼩:根据题⽬具体情况,可把分数化成⼩数,与⼩数⽐,也可把⼩数化成分数,与分数⽐.⽐较分数⼤⼩:分母相同,⽐分⼦,分⼦⼤的分数⼤;分⼦相同,⽐分母,分母⼤的分数反⽽⼩,分母⼩的分数反⽽⼤;分⼦分母都不同,先通分化成同分母或化成相同的分⼦,再⽐较.练习题“数”的认识1.在2、6、0、1.2、5、-78、51、32%、-21、7100 、31这些数中,⾃然数有(),负数有(),奇数有(),偶数有(),素数有(),合数有().2.王伯伯⽤20分钟读了⼀张29800字的报纸,平均每分钟⼤约读()字,3.分钟读了这张报纸的()(),也就是()%. 4.百万位上的2表⽰(),⼗位上的2表⽰(),百分位上2表⽰(),千分位上的2表⽰().5.⼀件⽺⽑衫标价a 元,打⼋折出售,这件⽺⽑衫的售价是()元.6.9和6的最⼩公倍数是(),最⼤公约数是()。
新人教版二年级下册数学总复习知识点及练习.
人教版二年级下册数学复习要点1、表内除法(一)6、盖住的数字是几?45÷ =5 ×8 =24 2× =18 ÷4 =9 6× =18 ×3 =15检查方法:盖住积,再次进行计算,看看计算出的结果与等号后的数字是否一样。
方法:根据给出的数实际,就想几的乘法口诀。
2、表内除法(二)类型主要内容举例重点说明一、乘加、乘减混合运算1、看图列式一共有多少个蘑菇?× = ()乘加、乘减混合运算,先算乘法,再算加法或减法。
注意:1、运算顺序2、运算符号2、口算18-6×3= 7×9+7= 4×9-6=14+2×3= 25÷5+15= 10-9÷3=二、乘、除混合运算1、摆一摆、算一算练习:用5根小棒可以摆一个用这些小棒摆,可以摆几个?= ( )乘、除混合运算,按照从左到右的顺序进行计算。
注意:运算符号2、口算3×2×8= 2×4÷8= 48÷6÷4=三、拓展训练1、填空5×4 = 5×3 +()2×2 +()= 2 × 3 = 2×4 -()3×6 -()= 3 × 5 = 3×7 -()可以根据乘法的意义计算,也可以先计算出一个算式的结果,再根据结果进行计算。
3、乘、除法意义三、综合练习1、看图列式,体会乘、除法含义及关系。
2、解决实际问题1、看图写出两个乘法算式、两个除法算式。
2、 21个(1)如果小白兔每天吃3个,可以吃几天?(2)如果这些萝卜吃了一个星期,小白兔平均每天吃几个?(3)如果每天吃5个,吃了4天后,剩多少个?(4)如果每天吃4个,小白兔要吃6天,够吗?4、实际问题类型主要内容举例重点说明4、混合运算和实际问题5、万以内数的认识7、千克与克的认识(10)三看结果(对照我们知道的洗衣粉1千克,海苔1克,比一比,检查一下)2、在括号里填上适当的数3 kg =()g 2000 g =()kg6000克 =()千克()kg = 7000 g6千克>()克 7000 g <()kg4千克<()克 3000 g >()kg注意符号:看清是“=”还是“>”或“<”,符号不同,填的数不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学总复习专题讲解及训练主要内容比例尺、面积变化、确定位置学习目标1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺。
会求一幅图的比例尺,能按给定的比例尺求相应的实际距离或图上距离,会把数值比例尺与线段比例尺进行转化。
2、使学生在经历“猜想-验证”的过程中,自主发现平面图形按比例放大后面积的变化规律。
3、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。
4、使学生在具体情境中初步理解北偏东(西)、南偏东(西)的含义,初步掌握用方向和距离确定物体位置的方法,能根据给定方向和距离在平面图上确定物体的位置或描述简单的行走路线。
5、使学生在用方向和距离确定物体位置的过程中,进一步培养观察能力、识图能力和有条理的进行表达的能力。
发展空间观念。
6、使学生积极参与观察、测量、画图、交流等活动,获得成功的体验,体会数学知识与生活实际的联系,拓展知识视野,激发学习兴趣。
考点分析1、图上距离和实际距离的比,叫做这幅图的比例尺。
2、比例尺 = 实际距离图上距离,比例尺有两种形式:数值比例尺和线段比例尺。
3、把一个平面图形按照一定的倍数(n )放大或缩小到原来的几分之一(n 1)后,放大(或缩小)后与放大(或缩小)前图形的面积比是n ²:1(或1:n ²)。
4、知道 了物体的方向和距离,就能确定物体的位置。
5、根据物体的位置,结合比例尺的相关知识,可以在平面图上画出物体的位置。
画的时候先按方向画一条射线,在根据图上距离找出点所在的位置。
6、描述行走路线要依次逐段地说,每一段都应说出行走的方向与路程。
典型例题:例1、(认识比例尺)王伯伯家有一块长方形的菜地,长40米,宽30米。
把这块菜地按一定的比例缩小,画在平面图上长4厘米,宽3厘米。
你能分别写出菜地长、宽的图上距离和实际距离的比吗?分析与解:图上距离和实际距离的单位不同,先要统一成相同的单位,写出比后再化简。
40米 = 4000厘米 3厘米 = 0.03米40004 = 10001 3003.0 = 30003 = 10001 图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离 : 实际距离 = 比例尺或实际距离图上距离 = 比例尺 图上距离和实际距离的比是1:1000,这幅图的比例尺是1:1000,也可写成10001,仍读作1比1000。
点评:求一幅地图的比例尺是一种比较简单的题目。
做的时候唯一要注意的就是末尾0的问题:一是米、千米化成厘米的时候要在米、千米那个数的末尾加上2、5个0;二是在求比例尺的结果时要注意0的个数。
多数一数、想一想,是不会有错的。
例2、(对比例尺的理解及比例尺的两种表示方法)比例尺1:1000表示图上距离是实际距离的几分之几?实际距离是图上距离的多少倍?图上1厘米表示实际距离多少米?分析与解:比例尺1:1000表示图上距离是实际距离的10001,实际距离是图上距离的1000倍,图上1厘米的距离代表实际距离1000厘米,即10米。
像形如1:1000这样的比例尺叫做数值比例尺。
比例尺1:1000还可以这样表示0 10 20 30米 ,这是线段比例尺,它表示图上1厘米的距离代表实际距离10米。
例3、一个手表零件长2毫米,画在一幅图上长4厘米,这幅图的比例尺是多少? 错误解法:4厘米 = 40毫米 2 : 40 = 1 : 20思路分析:无论什么样的图纸,比例尺始终是图上距离与实际距离的比,根据比例尺的定义,用“图上距离 : 实际距离 = 比例尺”去求。
正确解答:4厘米 = 40毫米 40 : 2 = 20 : 1点评:比例尺通常情况下都应该写成前项是1的比。
但比例尺的作用除了把实际距离缩小,还可以把实际距离扩大,这样比例尺的前项就比后项大,这时后项通常化成1。
在解答时,只要坚持好“图上距离 : 实际距离 = 比例尺”,图上距离在前就可以了。
例4、(根据比例尺求图上距离或实际距离)在比例尺是600001的地图上,量得甲、乙两地的距离是2.5厘米。
两地的实际距离是多少米? 分析与解:方法1:比例尺是600001,说明实际距离是图上距离的60000倍。
2.5×60000 = 150000(厘米)150000(厘米)= 1500米方法2:比例尺是600001,也就是图上1厘米的距离代表实际距离60000厘米,即600米。
2.5×600 = 1500(米)方法3:根据 实际距离图上距离 = 比例尺,可以用“图上距离 ÷ 比例尺”或“解比例”的方法来求实际距离。
2.5 ÷600001 = 2.5×60000 = 150000(厘米)= 1500米 解:设两地的实际距离是ⅹ厘米。
χ5.2 = 600001 1ⅹ = 2.5 × 60000ⅹ = 150000150000(厘米)= 1500米答:两地的实际距离是1500厘米。
例5、(平面图形按照一定的比放大后,面积扩大了比的平方倍)下面的大长方形是由一个小长方形按比例放大后得到的图形。
分别量出它们的长和宽,算算大长方形与小长方形面积的比是几比几。
分析与解:量得小长方形的长是2.5厘米,宽是1厘米;大长方形的长是7.5厘米,宽是3厘米。
大长方形与小长方形长的比是7.5 : 2.5 = 3 : 1,宽的比是3 : 1。
小长方形的面积大长方形的面积 = 15.235.7⨯⨯ = 5.25.7 × 13 = 9 : 1 = 3² : 1 答:大长方形与小长方形面积的比是9 : 1。
例6、(认识北偏东(西)若干度、南偏东(西)若干度等方向)如图,一辆汽车向正北方向行驶,你能说出商场和书店分别在汽车的什么方向吗?N商场北45º60º书店0 3 6 9千米汽车分析与解:从图上可以看出,以汽车为中心,书店在汽车的东北方向,商场在汽车的西北方向。
怎样才能更准确地表示它们的位置呢?东北方向也叫做北偏东方向,书店在汽车的北偏东60º方向。
西北方向也叫做北偏西方向,商场在汽车的北偏西45º方向。
答:书店在汽车的北偏东60º方向,商场在汽车的北偏西45º方向。
例7、(知道了物体的方向和距离,才能确定物体的具体位置)量出上图中书店到汽车的图上距离,根据比例尺算一算,书店在汽车北偏东60º方向的多少千米处?商场呢?分析与解:从图中量得书店和商场到汽车的图上距离分别是1.2厘米和2.3厘米,根据比例尺,图上距离1厘米代表实际距离3千米,分别算出实际距离。
1.2 × 3 = 3.6(千米)┄┄┄书店2.3 × 3 = 6.9(千米)┄┄┄商场答:书店在汽车北偏东60º方向的3.6千米处,商场在汽车北偏西45º方向的6.9千米处。
点评:只有在方向词的后面添上角的度数,才能准确描述物体所在的位置。
确定方向时,一定要先确定好南或北,再看是偏东还是偏西,如果图中没有画线,要先连线。
算实际距离就根据前面比例尺的相关知识去求。
例8、(辨析)书店在汽车的北偏东60º方向,表示汽车也在书店的北偏东60º方向。
分析与解:书店在汽车的北偏东60º方向,是以汽车为中心,由北向东旋转60º;而以书店为中心,汽车在书店的西南方向,即南偏西60º方向。
书店在汽车的北偏东60º方向,表示汽车在书店的南偏西60º方向。
例9、(根据给定的方向和距离,有序地确定物体的具体位置)海面上有一座灯塔,灯塔北偏西30º方向30千米处是凤凰岛。
N北W西东E千米南S你能在图上指出凤凰岛大约在什么位置吗?分析与解:(1)先确定北偏西30º的方向,画一条射线。
(2)再算出灯塔到凤凰岛的图上距离是多少厘米。
30 ÷ 10 = 3(厘米)点评:在表示凤凰岛的具体位置时,先要画出表示方向的射线,再确定灯塔到凤凰岛的图上距离。
且在画表示方向的射线时,应从表示灯塔的点开始画起,并注意正确摆好量角器。
例10、(用方向和距离描述简单的行走路线)下图是某市旅游1号车行驶的线路图,请根据线路图填空。
(1)旅游1号车从起点站出发,向()行驶到达青水公园,再向()偏()()的方向行()千米到达抗战纪念碑。
(2)由绿博园向南偏()()的方向行()千米到达购物中心,再向北偏()()的方向行()千米到达人民公园。
分析与解:先找准方向,再说出具体的路程。
(1)旅游1号车从起点站出发,向(东)行驶到达青水公园,再向(北)偏(东)(40º)的方向行(1.8 )千米到达抗战纪念碑。
(2)由绿博园向南偏(东)(60º)的方向行(1.7)千米到达购物中心,再向北偏(东)(70º)的方向行(1.5)千米到达人民公园。
点评:在进行描述的时候,一定要先说清楚方向再说路程。
说方向的时候为了说清楚,通常情况下不用东北、西北、东南、西南等说法,而用南偏东、南偏西、北偏东、北偏西多少度的说法更为准确。