质点动力学的基本方程、动量定理
物理-动量定理
定义:力
在 t 到t +dt 时间内的元冲量为:
在
有限长时间内,力
的冲量定义为各无穷
小时间间隔内的元冲量的矢量和(积分):
注意: 1.冲量是矢量,冲量表示力的时间累积效应。 2. 冲量的单位: N·m (与动量的单位相同)
二、质点的动量定理
给定时间间隔内,合外力作用在质点上的冲量,等于 该质点在此时间内动量的增量。
1987年,美国空军 的一架B-1轰炸机被鸟 撞毁,损失2.15亿美元。 ……
三、质点系的动量定理
设有N个质点构成质点系,质点系的总动量:
作用到第 i 个质点上的外力: Fi 第 j 个质点作用到第 i 个质点上
的内力: fij
则第 i 个质点的动力学方程
·
i·
பைடு நூலகம்
pi
·
· ·
·fi j
· fj i
·j
三、质点系的动量定理 (4)直角坐标系中的分量形式
(积分式)
三、质点系的动量定理
三、质点系的动量定理
逆风行舟的动量分析
航 向 风对帆的平均作用力
空气分子团 (质点系)
帆对风的平均作用力
三、质点系的动量定理
例2 总长为 l 、总质量为m 的软绳竖直提起上端,其
下端刚好触及一台秤平台表面,求放手后上端落下x 距
二、质点的动量定理 (4)平均冲力
在给定时间间隔
由动量定理:
内:
平均 冲力
二、质点的动量定理 • 平均冲力在直角坐标系中的计算式:
二、质点的动量定理
p 一定时 延长作用时间 减小平均冲力
二、质点的动量定理
p一定时 缩短作用时间 增大平均冲力
理论力学--动量定理
质心运动的思考与比较
F′
A F
B
两个相同的均质圆盘,放在光滑水平面上, 两个相同的均质圆盘,放在光滑水平面上,在圆盘的不 同位置上,各作用一水平力F 同位置上,各作用一水平力 和F′,使圆盘由静止开始运动 , ,设F = F′,试问哪个圆盘的质心运动得快? ,试问哪个圆盘的质心运动得快? (A).A盘质心运动得快 . 盘质心运动得快 (B).B盘质心运动得快 . 盘质心运动得快 (C).两盘质心的运动相同 . (D).无法判断 .
1 2 h = gt 2
r P
以接触工件时刻的锻锤为对象,由积分形式的动量定理: 以接触工件时刻的锻锤为对象,由积分形式的动量定理:
mv − mv0 = (P − F )t0
v 1 1 + 0 P = 1 + F = gt 0 t0 2h g
30° °
﹡ FN
P
Q
P ∗ v0 sin 30o − 0 = (FN − P −Q)t g
例:未固定偏心转子电机的分析 未固定偏心转子电机的分析 偏心转子
例:未固定偏心转子电机的分析 未固定偏心转子电机的分析 偏心转子
y1
ω
o2
y
r aO 2 = eω 2 ϕ o1 r m1 g FY
r x1 r aO1 m2 g
y1
r vO 2 o2
y
eω 2 ϕ o1 r m1 g FY
& r x m2 g
x1
x
外壳质心的速度, 轴正向: 其中 vO1 — 外壳质心的速度,沿 x 轴正向 vO2 — 转子质心的速度,且 转子质心的速度,
例:电机在水平方向的运动规律
(m v
动量定理
38
OA=AB=L ,OA AB均质杆质量m1 B质量m2。 y 1 计算质心C的坐标 A
B O 坐标原点必须为系统上一固定不变的点
列出每一个构件的 质量
建立坐标系
w
x
质心在坐标系中的坐标 L L y 曲柄OA 质量m1 质心位置 xc1 cos ......... c1 sin . 2 2 连杆AB 质量m1 质心位置
14
10-1动量与冲量
二 冲量 1 作用力与作用时间的乘积称为常力的冲量。
冲量是矢量,方向与力的方向一致。
常力的冲量
I Ft
2 变力的冲量-----元冲量
而力 F 在作用时间 t 内的冲量是矢量积分
d I F dt
0
t I F dt
15
10-2 动量定理
t mv mv0 F d t I
0
积分形式
在某一时间间隔内,质点动量的变化 等于作用于质点的力在此段时间内的冲量
17
10-2 动量定理
二 质点系的动量定理
dv d ma m (mv ) F dt dt
设由n个质点组成的质点系。其中第i个质点的 动量为mivi, 作用在该质点上的外力与内力的合力为 (e) (i) , Fi 由质点的动量定理有 Fi
动力学概述
一 内容以及研究对象
1
2
是研究物体运动与作用力之间的关系的科学
质点和质点系
3
至少有一个自由度的质点(质点系)
十 十一 十二章 质点动力学基本方程
1
Байду номын сангаас
二 重点内容 三 基础内容
大学物理第二章质点动力学PPT课件
•若物体与流体的相对速度接近空气中的声速时,阻 力将按 f v3 迅速增大。
•常见的正压力、支持力、拉力、张力、弹簧的恢复 力、摩擦力、流体阻力等,从最基本的层次来看, 都属于电磁相互作用。
2021
12
五、牛顿定律的应用
•应用牛顿运动定律解题时,通常要用分量式:
如在直角坐标系中:
在自然坐标系中:
Fn
man
mv2
2021
6
三、牛顿第三定律
物体间的作用是相互的。两个物体之间的作用
力和反作用力,沿同一直线,大小相等,方向相反,
分别作用在两个物体上。
F21F12
第三定律主要表明以下几点:
(1)物体间的作用力具有相互作用的本质:即力总 是成对出现,作用力和反作用力同时存在,同时消 失,在同一条直线上,大小相等而方向相反。
(4)由于力、加速度都是矢量,第二定律的表示式 是矢量式。在解题时常常用其分量式,如在平面直 角坐标系X、Y轴上的分量式为 :
2021
5
Fx mxamddxvtmdd22xt Fy myamddyvtmd d22yt
在处理曲线运动问题时,还常用到沿切线方向 和法线方向上的分量式,即:
Ft
mat
mdv dt
2021
27
1983年第17届国际计量大会定义长度单位用真空中 的光速规定:
c = 299792458 m/s
因而米是光在真空中1299,792,458秒的时间间 隔内所经路程的长度。
❖其它所有物理量均为导出量,其单位为导出单位
如:速度 V=S/ t, 单位:米/秒(m/s)
加速度a=△V/t,单位:米/秒2(m/s2)
•摩擦力:两个相互接触的物体在 沿接触面相对运动时,或者有相对 运动趋势时,在接触面之间产生的
基础物理学 第四章(2)
一、质点的动量定理 dv 牛顿第二定律表述为: ma m F
dt
式中F为质点所受合力,由于质量m为常量,所以有
d (mv ) F dt
d义质点的动量:
p mv
动量是矢量,方向与质点的速度同向。 定义Fdt为dt时间内力F对质点的元冲量,用dI表示,即
14
普 通 物理学
三、质点动量定理的积分形式
对动量定理表达式两边同乘 dt,积分: p2 t2 t2 p1 dp t1 Fdt t1 dI t2 p2 p1 Fdt I t1 t2 右边称合力的冲量,表示为: I Fdt t1 t 于是有: Fdt mv mv0
dI 1 dI 2 dI n
即合力对质点的元冲量等于各分力对质点元冲量的矢 量和。
13
普 通 物理学
二、质点的动量守恒定律
若在某一过程中,质点所受合力恒为零,即F=0,则在 该过程中质点的动量守恒,即P=C(常矢量)。
d pl Fl dt
ˆ 质点动量沿 el 方向的分量守恒
t0
质点动量定理:质点所受的外力冲量,等于 质点动量的增量。
15
普 通 物理学
动量定理的分量式:
I x Fx dt mvx mv0 x
t t0
I y Fy dt mvy mv0 y
t t0
t
I Z FZ dt mv Z mv 0 Z
t0
16
普 通 物理学
1
ˆ (5 N s ) ˆ (7 N s)i j
19
普 通 物理学
由动量定理
mv2 mv1 I
第二章质点运动学(2)
F
F
t1
t2 t
例 质量M=3t的重锤,从高度h=1.5m处自由落 到受锻压的工件上,工件发生形变。如果作用 的时间 (1) =0.1s, (2) =0.01s 。试求锤对工件 的平均冲力。 解法一利用动量定理,取竖 直向上为正。
( N Mg ) Mv Mv0
初状态动量为 M 2 gh , 末状态动量为 0。
第二章 质点动力学
(2) 动量守恒定律 火箭运动 质心运动定律
2-3 冲量‧动量定理
1、冲量
dp 把牛顿第二定律的微分形式 F dt 改写为 F d t d p
考虑一过程,力对质点的作用时间从t1 — t2, t2 p2 两端积分 Fdt dp p 2 p1 mv2 mv1
mi ri
d vi mi d vc dt ac dt mi
由牛顿第二定律得
mi ai
m
i
m1a1 m2 a2 mn an
d v1 m1 F1 f12 f13 f1n dt d v2 m2 F2 f 21 f 23 f 2 n dt d vn mn Fn f n 2 f n 3 f n ( n 1) dt
x g v x g 2 gx 3x g 所以桌面受的压力 N N 3x g
2
例 2 一柔软链条长为 l ,单位长度的质量为。 链条放在桌上,桌上有一小孔,链条一端由小孔稍 伸下,其余部分堆在小孔周围。由于某种扰动,链 条因自身重量开始落下。求链条下落速度与落下距 离之间的关系。设链与各处的摩擦均略去不计,且 认为链条软得可以自由伸开。 解 以竖直悬挂的链条 m2 和桌面上的链条为一系统, O 建立如图坐标。 则 F m1 g yg 动量定理 m1
10第十章动量定理
设 FN FN FN
FN 为静约束力
FN 为附加动约束力
qV r(vb va ) G Fa Fb FN FN
G Fa Fb FN 0
Fa a a1
得附加动反力为
FN qV r(vb va )
va a a1
FN
G
b b1
m1
l 2
m1
3l 2
2m1 m2
2m2l
cos w t
y
w
A
2(m1 m2 ) l coswt
2m1 m2
Oj
x
yC
2m1
l 2
2m1 m2
sin
wt
m1 2m1
m2
l sin
wt
B
消去t 得轨迹方程
[
xC
]2 [
yC
]2 1
2(m1 m2 )l /(2m1 m2 ) m1l /(2m1 m2 )
则 px 为恒量
例 质量为m1的机车,以速度v1撞接质量为m2的静止车厢。 不计轨道摩擦。试求撞接后这一列车的速度。
解: 取机车和车厢为质点系。 由于撞接过程中,水平方向没有外力作用,故有
Px=常量
撞接前 px1 m1v1 0 撞接后 px2 (m1 m2 )v
故有 m1v1 (m1 m2 )v
§10-2 动量定理
1、质点的动量定理 质点动力学基本方程:
ma mdv F dt
将m放入微分号内,得 d(mv) F dt
称为微分形式的质点动量定理,即质点动量对时间的导数 等于作用于质点上的所有力的合力矢。
质点系动量定理
一、质点系动量定理
一个由n个质点组成的质点系,对于每个质点有
n d F1 f1i m1v1 dt i 1 n d F2 f 2i m2 v2 dt i2
n d Fn f ni mn vn dt in
yc 0
下面只要求 xc 上面腰的直线方程为:
yx
在薄板上任意选择一个面积微元,微元上每一点 的水平坐标值都为x,微元的面积为:
ds 2 ydx 2 xdx
设薄板质量面密度为
,则微元质量为:
dm ds 2 xdx
整个薄板的水平质心坐标为:
xc
xdm dm
mL 。 M m
人走船动
法2:利用质心运动定理
xC
M L m
O
m
L M + mL 2 初始状态 xC = M +m
末状态
xC
M
L M( + l ) + ml 2 xC = M +m
l
x
比较得
mL l= M +m
人走船动
法3:利用动量守恒定律
v人地
m
0 m v人地 M v船地
M L m
t
此式表明,外力矢量和在某一方向的冲量等于在 该方向上质点系动量分量的增量。
二、质心 n个质点组成的质点系的质心位置为
m r m r m r 2 2 n n rC 1 1 m1 m2 mn mi ri
i 1 n n
mi
i 1
由于质心位置不变
任意时刻质心 坐标:
4-1 动量定理与动量守恒定律
( 1 ) 为 -2mv , 因为速度方向 变了; (2)为零,因 为速度、质量 均没变。
不变,则小球的动
量变化
(请点击你要选择的项目)
4-1 动量定理与动量守恒定律
例 m=10 kg木箱,在水平拉力作用下由静止开始运 动,拉力随时间变化如图。已知木箱与地面摩擦系 数为 =0.2,求:
(1) t=4 秒时刻木箱速度;
3 质点系的动量定理 第 i 个质点的动力学方程
Fi
j i
dpi f ij dt
Fi
· · · ·
i fi j
Pi
共有N个方程 对所有质点求和
N N
· ·
fj i
j ·
·
Pj
N dpi d N Fi i fij dt dt pi i 1 i 1 j i1 i 1
p p1 p2 p N 质点系总动量: dr mi vi mi i dt i i
mN
y
i
pi
2 质点系的内力和外力
内力:质点系内各质点之间的相互作用, fi j 外力:质点系外质点对内各质点的作用, Fi
第4章 动量和角动量
4-1 动量定理与动量守恒定律
例 炮车的质量为M,炮弹的质量为m。若炮车与地面
有摩擦,摩擦系数为μ , 炮弹相对炮身的速度为u, 求 炮身相对地面的反冲速度 v 。
θ
u
第4章 动量和角动量
4-1 动量定理与动量守恒定律
解:选取炮车和炮弹组成系统 内、外力分析。 水平的动量守恒吗? 运用质点系的动量定理:
N
f
Mg
理论力学课件 第九章动量定理,质点和质点系动量定理
x
m1g
Fx
M O Fy
Fx = −m2ω2e cosωt Fy = −m2ω 2e sin ωt + (m1 + m2 )g
由主动力直接引起的静约束力
Fx静 = 0
Fy静 = (m1 + m2 )g
由质点系运动引起的动约束力
vy
ω
O2
e
O1 θ m2 g
x
m1g
Fx
M O Fy
Fx动 = −m2ω 2e cosωt
5、解方程。
ω
O2
e
O1 θ
例9-3 如图所示,电动机外壳固
定在水平基础上,定子、转子的
质量分别为m1、m2。设定子质心 位 于 转 轴中 心 O1 , 由 于 制 造 误 差,转子质心O2 到O1的距离为
e,已知转子以匀角速度ω 转
动。求: 基础对电机总的水平和
铅垂反力
偏心转子
解:1、研究对象
9.1 质点和质点系动量定理
思考题:两个相同的均质杆 AB 和 AD 用铰链连接,每个杆的质量为m ,长
为L,在屏幕面内运动。已知铰链A的速度为u,两个杆的角速度为ω(转向
如图),求该瞬时系统的动量。
p = 2mu ?
u
B
C2
ω
A
C1
D
ω
9.1 质点和质点系动量定理 思考:己知:车身质量m1,车轮总质量m2,履带总质量m3,车身 的速度为v。求其动量。
9.1 质点和质点系动量定理
∑ dpv =
dt
v Fi
e
微分形式的投影式
∑ ∑ p& x = F x p& y = F y
∑ p& z = F z
10第十章动量定理
C
A
vC
mg
dp x dt FOx dp y F mg Oy dt
FOx ml ( sin 2 cos ) 2 FOy mg ml ( cos sin )
第十章 动量定理
第十章 动量定理
第四节 动量定理的应用
例10-1 求质点系的动量。
【解】 vA v,
p A mv A
vB 0
M R
C
v
M
R
B
pB 0 pC Mv
A
θ
vA
m
p
px Mv cos p y mv Mv sin
2 x 2 y
p p
t2点的动量在某一时间间隔内的改变等于
作用于该质点的力在同一时间内的冲量。
第十章 动量定理
第二节 动量定理
二、质点系的动量定理
e ( i ) d mi vi Fi Fi dt
n n d mi vi F (e) i Fi (i ) dt i 1 i 1 i 1 n
对于质量不变的质点系,上式可写为:
n dvC m Fi ( e ) dt i 1
这就是质心运动定理:
质点系的质量与质心加速度的乘积等于质点系所受 外力的矢量和。
第十章 动量定理
n maC Fi ( e ) i 1
第三节 质心运动定理
在直角坐标轴上的投影式为:
ma Cx X , maCy Yi , maCz Z
第十章 动量定理
第二节 动量定理
(e) dp Fi dt
质点动力学知识点总结
质点动力学知识点总结质点动力学是物理学中的一个重要分支,研究的是质点在外力作用下的运动规律。
在学习质点动力学的过程中,我们需要掌握一些基本的知识点,这些知识点对于理解质点的运动规律和解决相关问题非常重要。
本文将对质点动力学的一些重要知识点进行总结,希望能够帮助大家更好地理解和掌握这一部分内容。
1. 质点的运动方程。
质点的运动方程是描述质点在外力作用下的运动规律的基本方程。
根据牛顿第二定律,质点所受的合外力等于质点的质量乘以加速度,即。
\[ F = ma \]其中,F表示合外力,m表示质点的质量,a表示质点的加速度。
根据质点的运动状态不同,可以得到质点的运动方程,包括匀速直线运动、变速直线运动、曲线运动等。
2. 动量和动量定理。
质点的动量是描述质点运动状态的重要物理量,动量的大小等于质点的质量乘以速度,即。
\[ p = mv \]动量定理则描述了质点所受外力作用下动量的变化规律,即。
\[ F\Delta t = \Delta p \]其中,F表示外力,Δt表示时间间隔,Δp表示动量的变化量。
动量定理对于分析质点的碰撞、反冲等问题非常有用。
3. 动能和动能定理。
质点的动能是描述质点运动状态的另一个重要物理量,动能的大小等于质点的质量乘以速度的平方再乘以1/2,即。
\[ K = \frac{1}{2}mv^2 \]动能定理描述了质点所受外力作用下动能的变化规律,即。
\[ W = \Delta K \]其中,W表示外力所做的功,ΔK表示动能的变化量。
动能定理对于分析质点的机械能守恒等问题非常重要。
4. 势能和势能曲线。
质点的势能是描述质点在外力场中的势能状态的物理量,势能的大小与质点所处位置有关。
势能曲线描述了质点在外力场中势能随位置的变化规律,通过势能曲线可以分析质点的稳定平衡、振动、受力情况等问题。
5. 角动量和角动量定理。
质点的角动量是描述质点绕某一轴旋转运动状态的物理量,角动量的大小等于质点到轴的距离与质点的动量的乘积,即。
动量定理、变质量质点动力学方程
在生物学中,细胞分裂、细菌繁殖等现象也可以用动量 定理和变质量质点动力学方程来描述。通过这些理论, 我们可以更深入地理解生命运动的本质。在化学反应动 力学中,爆炸、燃烧等现象也可以用变质量质点动力学 方程来描述,这有助于我们更好地理解和控制化学反应 过程。同时,随着计算机技术的发展,我们可以通过数 值模拟来更精确地研究这些理论的数学结构和物理意义 ,这将有助于我们更好地应用这些理论来解决实际问题 。
动量定理的应用实例
总结词
动量定理的应用实例包括碰撞、火箭推进、车辆加速 等。
详细描述
动量定理在物理学、工程学和天文学等领域有着广泛 的应用。例如,在碰撞过程中,两个物体在接触时会 发生相互作用,根据动量定理可以计算出碰撞后物体 的速度;在火箭推进中,燃料燃烧产生的气体通过喷 嘴喷出,根据动量定理可以计算出火箭的推力;在车 辆加速过程中,发动机产生的力作用在车辆上,根据 动量定理可以计算出车辆的加速性能。
THANKS
谢谢
02
CHAPTER
变质量质点动力学方程
变质量质点的定义与特点
定义
变质量质点是指质量随时间变化的质 点。
特点
在运动过程中,质点的质量可能会发 生变化,如燃烧、蒸发等过程。
变质量质点动力学方程的推导过程
牛顿第二定律
$F=ma$,其中$F$是力,$m$是质量, $a$是加速度。
考虑变质量情况
由于质点的质量随时间变化,需要将质量的 变化纳入考虑范围。
动量定理指出,一个物体动量的变化率等于作用在其上的力。这个定理可以用于分析各种力学系统,如弹簧振荡器、行星运 动等。变质量质点动力学方程则考虑了物体质量随时间变化的情形,如火箭燃烧、爆炸等过程,通过这个方程可以更准确地 描述物体的运动规律。
第2章_质点动力学
重点掌握变力的问题!
11
例:一根长为L,质量为M的柔软的链条,开始时链条 静止,长为L-l 的一段放在光滑的桌面上,长为l 的一段 铅直下垂。(1)求整个链条刚离开桌面时的速度;(2)求 链条由刚开始运动到完全离开桌面所需要的时间。 M dv dv dx dv xg 解: F xg Ma , a v L dt dt dx L dx
(1) F合 ma (2) a a a0
在加速平动参照系中: F惯 ma0 此时,F F惯 ma (4)
(4)式就在形式上与牛顿第二定律保持一致。
18
在加速平动参照系中:F惯 ma0
惯性力大小: 运动质点的质量m与非惯性系加速度 a的乘积。
*2.1.4 非惯性系 惯性力 非惯性系:相对于惯性系做加速运动的参考系。
在非惯性系内牛顿定律不成立。 1.平动加速系
设有一质点质量为m,相对于某一惯性系S,根据 牛顿第二定律,有: (1) F ma
合
设有另一参照系S/,相对于惯性系S以加速度
动,在S/参照系中,质点的加速度为
由运动的相对性,有:a a a0
2
牛顿第二定律:物体受到外力作用时,它所获得的加 速度的大小与合外力的大小成正比,与物体的质量成 反比,加速度的方向与合外力的方向相同。
数学形式:F ma 或 F m dv dt
在直角坐标系Oxyz中: 在自然坐标系中 :
Fix max Fiy ma y Fiz maz
在匀角速转动参考系中应用牛顿定律, 必须设想物体又受到另外一个与拉力大小相 等但方向相反的惯性力的作用,
2 Fi mω r
质点运动学和动力学习题课-文档资料
dt
2
0
0
2
x 4sin t
2
2-11 一质点由静止沿半径R=3m的圆周运动,切向加速度为
a 3ms2 ,问:
(1)经过多少时间它的总加速度与径向成450? (2)在上述时间内,质点所经过的路程为多少?
解:(1)因a 3ms2 为常量,故由任一时刻的速率v at,得
由质点运动轨迹方程
x 2 y 2 3 ( 2c o s 2 4 t s in 2 4 t) 3 2
可知质点作半径 R3m
的圆周运动,故切向加速度 a 和 法 向 加 速 度 a n 分 别 为 a d d v t 0 a nv R 2 ( 1 2 3 ) 24 ( 8m s 2)
an
v2 R
a2t 2 R
解:(1)
vx
ddxt 12sin4t,vy
dy12cos4t dt
ax
dvx dt
48cos4t,ay
dvy dt
48sin4t
故任一时刻速度和加速度分别为
v12sin4ti12cos4t( j SI) a48cos4ti48sin4t( j SI)
(2)速度
v 的大小为 v vx2vy21( 2ms1)
表示速度, a 表示加速度,a 表示切向加速度,下列表
达式:( D )
(1) d v a
dt
(2) d r v
dt
(3)
ds v dt
(4)
dv dt
Hale Waihona Puke a(A)只有1、4是正确的; (B)只有2、4是正确的;
(C)只有2是正确的;
(D)只有3是正确的。
解(1)中的dv/dt是切向加速度,不是 a的大小。(2)中
质点动力学-动量及动量定理
t I t F d t
2 1
分量式:
Fx
Ix Iy Iz
t2 t1 t2 t1 t2 t1
Fx dt F y dt Fz dt
t I t F d t
2 1
+
0 t1 t2 t
(注意可取 + -号)
冲量的几何意义:冲量
I x 在数值上等于
Fx ~ t 图线与坐标轴所围的面积。
物体状态的改变不仅与所受到的力 F 有关, 还与力作用的延续时间 t有关 冲量
(例:推车)
有关,还与 物体状态的改变不仅与速度 v
物体的质量 m 有关 动量
(例:木、铁锤敲钉子) 显然,我们必须把注意力从力和运动的 瞬时关系转向力和运动的过程关系
冲量
质点动量定理 方向:速度的方向
1、动量 (描述质点运动状态,矢量)
解: 车和煤为系统,向下为Y正向, 向左为X正向,建立坐标系。 v2 tt+dt时刻,dm = dt
X
v1
Y
P (t ) ( m0 t )v 2 dt v1 P ( t d t ) ( m0 t d t ) v 2 dP P (t dt ) P (t ) (v 2 v1 )dt
P= m v 大小:mv
2、冲量 (力的作用对时间的积累,矢量)
I
方向:速度变化的方向
(1) 常力的冲量
I Ft
(2) 变力的冲量 F2 t 2 F1 t 1
Fi t i Fn t n
I
I F1t1 F2t2 Fntn
注意:冲量 I 的方向和瞬时力 F 的方向不同!
第十章 动量定理
N = m3 g cosθ
R YO = (m1 + m2 + m3 )g − m3 g cos θ + m3 g a sin θ − m2 a r
2
a X O = m3 R cosθ + m3 g cosθ sin θ r
电动机的外壳固定在水平基础上, 定子质量为 m1 ,转子质量为 m2 。设定子的质 心位于转轴的中心 O1 ,但由于制造误差,转 子的质心O2 到O1 的距离为e 。已知转子匀速 转动,角速度为 ω 。求基础的支座反力。
F = q ρ (v2 − v1 )
Fx = q ρ (v2 cos θ − (−v1 )) Fx = q ρ (v1 + v2 cos θ )
例 已知:P(平台)、Q(小车)、Vr,(铰车C重 量不计,平台与地面光滑接触),静止开始。 求:平台速度 解:1、研究对象: 平台、绞车、小车、绳系统 2、受力图: 受力特征: A N Q Vr P B
aC C FS mg C FN
(1)因没有摩擦,所以水平方向的外力为零。因此,由质心 运动定理可知,质心在铅垂线上做直线运动。 (2)因为有足够大的 摩擦,所以半圆柱做纯滚动。圆心(选 做基点)的运动为水平直线运动,质心相对基点做往复摆动, 因此,其运动轨迹为曲线(实际上是一种称为内摆线的曲 线)。
mi (vi+ − vi− ) = I i mi (vi+ − vi− ) = I i
Δ(∑ mi vi ) = ∑ I ie + ∑ I ii ΔQ = S e
例 以速度v飞行的炮弹在空气中炸 为质量相等的两块,第一块弹片的 速度与初始运动方向成α角,其速 度大小为2v,求第二块弹片的速度.
1 mv1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10-1、一质量为m的物体放在匀速转动的水平转台上,它与转轴的距离为r,
f
如图所示。
设物体与转台表面的摩擦系数为,求当物体不致因转台旋转而
滑出时,水平台的最大转速。
10-2、图示套管的质量为,受绳子牵引沿铅直杆向上滑动。
绳子的另一端绕过离杆距离为l 的滑车A m B 而缠在鼓轮上。
当鼓轮转动时,其边缘上各点的速度大小为。
求绳子拉力与距离0v x
之间的关系。
10-3、质量为的滑块在力Kg 2F 作用下沿杆运动,杆在铅直平面内绕转动。
已知AB AB A t s 4.0=,t 5.0=ϕ(的单位为s m ,ϕ的单位为,t 的单位为),滑块与杆的动滑动摩擦系数为0.1。
求rad s AB s 2=t 时力F
的大小。
11-1、图示水平面上放一均质三棱柱,在其斜面上又放一均质三棱柱
A B。
A
两三棱柱的横截面均为直角三角形。
三棱柱的质量为三棱柱
m B的质量为
A
的三倍,其尺寸如图示。
设各处摩擦不计,初始时系统静止。
求当三棱柱m
B
A A
B沿三棱柱滑下接触到水平面时,三棱柱移动的距离。
11-2、图示坦克的履带质量为,两个车轮的质量均为。
车轮被看成均质圆盘,半径为1m 2m R 。
设坦克前进速度为v ,试计算此质点系的动量。
11-3、图示圆规尺的质量为,曲柄的质量为,而滑块和AB 12m OC 1m A B 的质量均为。
已知:2m l CB AC OC ===,曲柄和尺的质心分别在其中点上;曲柄绕轴转动的角速度O ω为常量。
当开始时,曲柄水平向右,求此时质点系的动量。
11-4、图示质量为、半径为m R 的半圆形板,受力偶M 作用,在铅垂面内绕轴转动,转动的角速度为O ω,角加速度为α。
C 为半圆板的质心,当OC 与
水平线成任意角ϕ时,求此瞬时轴的约束反力(O π34R OC =)。