同步发电机自动调节励磁装置 共18页

合集下载

同步发电机自动调节励磁装置

同步发电机自动调节励磁装置

同步发电机自动调节励磁装置
同步发电机是现代电力系统中一种非常常见的发电机类型,它能够与电网同步运行,保证了电网的稳定性和安全性。

同步发电机自动调节励磁装置是同步发电机控制系统中的关键部分,它能够根据电网的负荷变化自动调节发电机的励磁电流,保证了发电机的稳定运行。

同步发电机的励磁控制原理如下图所示:
图中,Vt是同步发电机的端电压,如果电网的负荷变化,会导致端电压的大小和相位发生变化。

为了保证发电机稳定运行,我们需要根据电网负荷的变化调节发电机的励磁电流,使得发电机的电功率与电网负荷匹配,保持端电压的稳定。

1、测量发电机的电流和电压信号;
2、计算发电机的无功功率和有功功率;
3、根据电网负荷变化计算出发电机的励磁电流应该调整的大小;
4、将计算出来的励磁电流值转换成控制信号,通过调节励磁装置来改变发电机的励磁电流。

同步发电机自动调节励磁装置通常采用PID控制算法,由比例、积分、微分三个环节组成。

具体来说,可以采用以下步骤实现控制:
同步发电机自动调节励磁装置的功能包括:稳定发电机的输出电压和频率、维护发电机的有功功率和无功功率平衡、提高电网稳定性和安全性。

在实际应用中,同步发电机自动调节励磁装置常常需要考虑到发电机的保护和故障处理,以确保电力系统的稳定和可靠运行。

同步发电机自动调节励磁装置

同步发电机自动调节励磁装置

励磁变压器
01
02
03
作用
将高电压转换为低电压, 为励磁装置提供所需电源。
工作原理
利用电磁感应原理,将输 入的高电压降为较低的电 压,为励磁装置提供稳定、 可靠的电源。
特点
具有高效率、低损耗、安 全可靠等优点,是励磁装 置中不可或缺的组成部分。
整流器
作用
将交流电转换为直流电, 为励磁绕组提供直流电流。
核能发电站的应用
核能发电站利用核反应产生的热 能驱动蒸汽轮机产生机械能,进
而通过发电机产生电能。
励磁装置在核电站中起到调节发 电机输出电压和频率的作用,确
保机组的稳定运行。
核电站对励磁装置的安全性和可 靠性要求极高,因为一旦励磁装 置出现故障,可能会影响整个电
站的安全运行。
其他领域的应用
励磁装置在风力发电、太阳能发 电等可再生能源领域也有广泛应
工作原理
利用二极管的单向导电性, 将交流电转换为直流电。
特点
具有高效率、低纹波、高 稳定性等优点,能够满足 励磁装置对直流电源的要 求。
灭磁电阻
作用
在发电机停机时,吸收励磁绕组 中的磁场能量,防止发电机出现
过电压。
工作原理
利用电阻的耗能作用,将励磁绕组 中的磁场能量转化为热能,从而消 耗掉磁场能量。
的电压稳定。
组的快速启停和有功、无功的快速调节。
火力发电站的应用
火力发电站利用化石燃料的化学能转 化为热能,进而驱动蒸汽轮机产生机 械能,最终通过发电机产生电能。
火电站中的励磁装置通常采用自动调 节系统,能够根据电网的实时需求自 动调整励磁电流,实现机组的自动控 制。
励磁装置在火电站中起到调节发电机 输出电压和无功功率的作用,确保机 组稳定运行。

第三章 同步发电机励磁自动控制系统

第三章 同步发电机励磁自动控制系统
励磁对静稳极限的影响,通过对功角 特性的改变提高Pm增大发电机的稳定 运行区域。这样可以提高发电机输送 的功率极限或提高系统的稳定储备。 要求所有运行发电机均装设励磁调节 器。
P G=
EU q XΣ
sinδ
静态稳定的;当δ>90°(b点)时→ 静态 不稳定的;当δ=90°时→ 稳定极限(裕度: 实际运行点总略低于极限值)。 最大传输功率极限:
9
UG随无功负荷的增大而下降。
图3-3 同步发电机的外特性
10
2.同步发电机的外特性与励磁调节过程

¾
(二)控制无功功率的分配

¾
¾
G
ϕ
IEF2
δ
IP IG
同步发电机的励磁自 动控制系统就是通过 不断地调节励磁电流 来维持端电压在给定 水平的。
UGN UG2
A
B
( a)
C IEF1 IQ1 IQ2
IQ
第三章 同步发电机励磁 自动控制系统

第三章 同步发电机励磁 自动控制系统


第一节 概述 第二节 同步发电机励磁系统 第三节 励磁系统中的整流电路 第四节 励磁控制系统调节特性和并 联机组间的无功分配 第五节 励磁调节原理

本章主要内容:励磁自动控制系统的任务;对励 本章主要内容:励磁自动控制系统的任务;对励 磁自动控制系统的基本要求、励磁调节装置的构 成原理;并列运行发电机组间的无功功率的分 配;同步发电机励磁系统的整流电路的种类、特 点。 本章重点内容:励磁自动控制系统的组成原理和 本章重点内容:励磁自动控制系统的组成原理和 它的运行特性。 本章难点: 励磁调节装置的构成原理,励磁调节 器的静态工作特性,并列运行发电机组间的无功 功率的分配及整流电路原理。

发电机的自动励磁调节装置及调节形式实习报告

发电机的自动励磁调节装置及调节形式实习报告

发电机的自动励磁调节装置及调节形式姓名:摘要Xxx年x月x日至x月x日,学校为我们组织了为期x天的电厂实习,地点是xxxxxxxxxxxx。

在实习期间,我们参观了电厂的每个部分,就比如:xxxxxxxxxxxxx,在这段期间我通过参观和向带队师傅的学习,认识了很多的生产设备,零件和工具,更加懂得了电厂的生产流程。

在那么多的学习中我选择了发电机的自动励磁调节装置及调节形式来写报告。

1自动励磁调节装置发电机励磁的原理:利用导线切割磁力线感应出电势的电磁感应原理. 自动励磁调节装置的工作原理:自动励磁装置根据发电机电压,负荷电流的变化,相应改变可控硅整流回路的可控硅导通角,使整流桥送入的电流发生变化。

为取得励磁调节的快速性主励磁机一般采用100---200Hz中频交流同步发电机,副励磁机采用400---500Hz中频发电机。

副励的励磁可用永磁机或自励恒压式。

自动调节励磁装置通常由测量单元、同步单元、放大单元、调差单元、稳定单元、限制单元及一些辅助单元构成。

被测量信号(如电压、电流等),经测量单元变换后与给定值相比较,然后将比较结果(偏差)经前置放大单元和功率放大单元放大,并用于控制可控硅的导通角,以达到调节发电机励磁电流的目的。

同步单元的作用是使移相部分输出的触发脉冲与可控硅整流器的交流励磁电源同步,以保证控硅的正确触发。

调差单元的作用是为了使并联运行的发电机能稳定和合理地分配无功负荷。

稳定单元是为了改善电力系统的稳定而引进的单元。

励磁系统稳定单元用于改善励磁系统的稳定性。

限制单元是为了使发电机不致在过励磁或欠励磁的条件下运行而设置的。

必须指出并不是每一种自动调节励磁装置都具有上述各种单元,一种调节器装置所具有的单元与其担负的具体任务有关。

自动励磁调节装置的作用:(1)电力系统正常运行时,能自动调节励磁装置,维持发电机或系统某点(如高压母线)电压水平。

大大提高电压调节质量以及减轻运行人员的劳动强度。

自动励磁调节装置的作用。

自动装置同步发电机自动调节

自动装置同步发电机自动调节

第五章同步发电机自动调节励磁第一节概述一、励磁系统1、概念:供给同步发电机励磁电流地电源及其附属设备2、组成:励磁机<或其它励磁供电设备)L<ZB、GLH)手调励磁装置RC自动电压调节器ZTL自动灭磁装置MK 自动调节励磁装置强行励磁装置QLC强行减磁装置QJC二、自动调节励磁装置地作用<略讲)1、保持端电压于定值<f独立运行)⊿P↑→ U↓→ iL↑→ U↑U恒定负反馈2、维持系统电压,实现无功分配<f联网运行)Ux↓→ iL↑→ Q↑→ Ux↑Ux恒定合理分配<Kdc)3、利于系统静态稳定<小扰动)功角特性:Pe=sinδ其中:Pe——发电机传送有功功率δ——与<系统母线电压)相位差或各发电机转子空间位置=+j有励磁调节:=Ed不变,<<xd,dPe/dδ<整步功率系数)↑,Pemax<功率极限)↑4、提高系统暂态稳定<大扰动)如图:1——事故前2——事故中3——事故后<无励磁)——事故后<有励磁)abcd——加速面积s1def——减速面积s2——减速面积s3s1>s2 失步s1=s3 稳定运行在新地平衡点i5、机组甩负荷,强行减磁,限制过压机组内部故障,迅速灭磁三、组成自动电压调节器<ZTL)、强励、强减、灭磁四、对ZTL地基本要求第二节小型水轮发电机地励磁方式一、励磁方式1、分类:↗相复励<移相电抗分流)<1)自励→自并励、自复励<可控硅)↘谐波励磁<三次谐波)特点:由发电机本身提供励磁电流优点:运行维护简单缺点:受系统影响大↗直流励磁机<2)它励↘交流励磁机特点:由发电机本身以外地电源供电优点:可靠性高,受系统影响小缺点:造价高,运行维护复杂2、常用励磁方式:<1)直流励磁机励磁系统<它励)iL=iZTL+iZL励磁电源:L调节方法:手调RC;自动调节iZTL<⊿U)优点:励磁电源可靠缺点:碳刷、换向器维护麻烦,调节速度慢,容量受限制<100MW 以下机组),机组长度增加<2)交流励磁机励磁系统<它励)a、静止整流器励磁系统励磁电源:L调节方法:ZTL优点:维护简单,无换向器缺点:仍有滑环、碳刷b、旋转整流器励磁系统<无刷励磁)如上图,红色虚框为旋转部分优点:无碳刷、换向器,维护简单缺点:励磁回路无法监测;整流装置需承受较大离心力;灭磁慢3、自并励可控硅静止励磁系统励磁电源:ZB调节方法:ZTL优点:无碳刷、换向器磨损及环火缺点:强励性能取决于机端电压4、直流侧并联地自复励可控硅静止励磁系统励磁电源:ZB<电压源);GLH<电流源)复励电流取决于:定子电流i;iZTL空载:i=0<GLH无输出),由ZB提供iL负载:ZB ↘→iLGLH ↗短路:Id↑GLH提供强励iL开机:ZB、GLH无输出,设起励装置优点:强励电流大;两个励磁电源互为备用,避免失励5、交流侧串联自复励可控硅静止励磁系统励磁电源:ZB;GLH——铁芯带气隙地电抗变压器合成电势→可控硅整流→iL<反映Uf、If、cosφ大小,相复励特性)优点:相复励特性<相位补偿)——cosφ↓→Uf↓补偿<IL↑)缺点:GLH激磁电抗大,效率低6、三次谐波<自励恒压)励磁系统励磁电源:发电机定子槽中一组独立谐波绕组优点:自动调节性能<P↑→谐波电压U↑→iL↑→U↑);强励性能<短路→谐波电压U↑→iL↑→U↑)复习提问:1、励磁系统概念、作用对象及组成2、自励、它励区别3、自并励、自复励区别4、相复励箱位补偿含义第三节继电强行励磁和强行减磁一、强励地作用概念:系统电压急剧下降时迅速将发电机励磁电流增至最大值地自动装置作用:P79二、强励性能地衡量指标1、励磁电压上升速度定义:强励时第一个0.5s时间内测得地强励电压上升平均速度,用额定励磁电压倍数表示υ=<一般υ=0.8~1.2 1/s)2、强励顶值电压倍数定义:强励时最高励磁电压与额定励磁电压之比KQ=ULm/ULe<一般KQ =1.8~2倍)3、强励允许时间1min左右三、继电强行励磁装置1、原理接线图a、组成:1YJ、2YJ、1YZJ、2YZJ、XJ、QLC<QLC接点为常开,图中有误)b、原理:UF↓80~85%Ue 强励动作RC短接;发信号UF恢复强励复归c、接线特点:1YJ、2YJ串接:防1YH<2YH)熔断器熔断,强励误动作DL1辅助触点:F起动、事故跳闸时闭锁QLC<退出)BK切换开关:投切QLCd、保证最大动作机率并列运行各机组,其低压元件接于不同地相间电压上<而每台机中地两个低压元件应接于同一相间电压上)e、与复励调节器配合考虑ZTL对某些故障丧失强励能力,依靠继电强励f、采用正序滤过器提高强励装置灵敏度——可反映各种不对称短路g、确保低电压继电器动作两YH箱位不同时,应确保两YJ反映同一故障四、继电强行减磁装置<仅用于水轮发电机)1、减磁地作用a、机组甩负荷b、机组内部故障,灭磁引起地励磁机甩负荷2、强减地取得方式a、ZTL负反馈b、继电器、直流接触器等<同强励)c、灭磁开关辅助触点<MK跳开,自动接入强减电阻)3、继电强行减磁装置地原理接线图与强励地区别:<1)接线强减强励1YJ、2YJ YJ<低电压继电器) <过电压继电器)<2)强励:↓R↑IL强减:↑R↓IL相同之处:改变励磁回路阻值改变励磁大小原理:U>1.15Ue 强减动作Rjc接入;发信号U Ue 返回第四节复式励磁和相位复式励磁复习:发电机外特性曲线:iL恒定,Uf=f<If)<比较cosφ=0.9,0.8,0.7曲线特点>发电机调节特性曲线:Uf恒定,iL=f<If)<比较cosφ=0.9,0.8,0.7曲线特点>一、复式励磁1、特点:根据发电机定子电流If地变化而自动调节励磁2、接线:P85图4-16组成元件:电流互感器LH复励变压器FZB<变压、隔离交、直流)复励整流桥FZL复励调节电阻Rft复励开关FK3、原理:iL=iZL+ifL<1)ifL=0ifL=0iL=iZL<调节Rc地大小来满足空载额定电压地需要)<2)ifL≤10~20%Ie<ifL较小)ifL=0iL=iZL<整流桥地输出电压被“封锁”)<3)ifL>10~20%IeiL=iZL+ifL<If↑→ifL↑)复励特性及装有复励地发电机外特性如图4-17所示只有A、B两点能保持Uf=Ue4、功率因数cosφ地影响iL只反映If大小,不反映cosφ大小cosφ↓Uf↓<复励特性与调节特性偏移较大)5、手动调节RftRft作用:If、cosφ变化时,维持Uf恒定;平滑退出复励Rft对发电机外特性地影响见图4-19<b)另:调节Rc也可维持Uf恒定,但Rc位置在使用复励时一般不变Rc对发电机外特性地影响见图4-19<a)6、短路时地工作情况Id↑→ifL↑具有一定强励特性<但受铁芯饱和限制)二、相位复式励磁1、接线P87图4-20XFB:相复励变压器2、原理:==<其中:)取||、||为定值,以为cosφ地函数作出矢量图P88图4-213、特点:<1)相复励地输出电流与、和cosφ三者有关<2)cosφ↓→||↑相位补偿<cosφ=1→||最小cosφ=0→||最大)<3)电压互感器YH断开复式励磁<4)空载或负荷电流较小“电压源”保证一定地电流输出<5)DK作用:正常运行或靠近机端短路时,限制“电流源”在WV 回路中地汲出电流,增加在W2回路中地输出电流b5E2RGbCAP三、小结1、复励与相复励均能反映定子电流地变化自动调节励磁,并有一定地强励性能;但前者仅反映定子电流绝对值,而后者则反映定子电流绝对值及端电压和cosφ,具有较好地补偿特性.2、单独使用复励与相复励均不能维持端电压恒定,须与电压校正器配合.3、相复励必须采用DK,若无DK,则正常运行时复励环节作用甚微;且机端短路将失去强励能力.复习提问:1、复励装置中下列元件地作用:FZB、FK2、Rft、RC作用3、复励特点,与相复励相同与不同之处介绍复励与相复励地工作特点:复励:If↑→Uf↓——If↑→IL↑→Uf↑补偿相复励:If↑→Uf↓——If↑→IL↑→Uf↑cosφ↓→Uf↓补偿——cosφ↓→IL↑→Uf↑结论:单独使用均不能保证Uf恒定与可控硅静止励磁装置地比较:可控硅励磁:Uf-Ue=⊿U→调节IL调节效果好,考虑了引起⊿U变化地各种因素影响,包括If、cosφ等复习提问:1、强励性能地两个衡量指标、意义2、继电强励、强减相同与不同之处3、继电强励接线特点<同一机组、不同机组)4、继电强励接线DL辅助接点作用第五节可控硅静止励磁装置地基本电路一、可控硅静止励磁装置地组成<结合框图讲解)<一)基本工作单元:测量变压器 Ue 测量比较 If、Uf、cosφ→⊿U电流调差综合放大⊿U→UK移相触发UK→Ug<α)励磁电源功率输出可控硅桥式整流 Ug<α)→UL<iL)保护附加回路<二)辅助工作单元:起励手动、自动切换低励<最小励磁限制)过励<电流限制)二、种类TKL型:适用1000~10000KW水轮发电机TKL-11:自并列 ZTL<ZB)小型机组TKL-21:自复励复励+ZTL 大型机组<GLH)<ZB)三、可控硅静止励磁装置功率输出电路励磁电源可控硅整流电路保护附加回路<一)励磁电源1、自并列TKL-11:ZBUL=1.35U其中:U——半控桥三相对称线电压<ZB副边)α——控制角2、自复励TKL-21:ZB 30~40%ILeGLH 60~70%ILe空载:IL0=IZTL负载:IL1=IZTL1+IFL1如图:复励太强——调节器失去作用复励太弱——调节器负担过重复习提问:1、可控硅静止励磁装置地组成及作用2、TKL-11、TKL-21励磁电源地差别<二)可控硅整流电路1、三相半控桥式整流电路三只可控硅——共阴极组;三只二极管——共阳极组可控硅导通条件:阳极电位高于阴极<正向阳极电压)控制极加入正触发脉冲可控硅截止条件:阳极与阴极间加反向电压<或通过电流小于维持电流)整流二极管导通条件:阴极电位最低控制角:可控硅在正向电压下不导通地角度范围α<未加触发脉冲地角度)α=0——可控硅在刚进入正向电压瞬间加触发脉冲导通角:可控硅在正向电压下导通地角度范围β自然换向点:三相瞬时电压地交点移相:改变加入触发脉冲地时刻以改变控制角α,称触发脉冲地移相α地变化范围称移相范围<α=0~1800,且α=0对应本相相电压300)<课堂练习:画出三相交流电压波形,并画出α=300、900时地各相触发脉冲位置)<1)三相半控桥触发脉冲地移相要求P106<2)输出电压波形<略)介绍方法:分析每一区间哪个KGZ、GZ导通该区间输出电压值a、α=0 三相桥式全波整流阳极电位最高地可控硅触发导通阴极电位最低地二极管触发导通ωt1~ωt2:Ud=UABUA最大——1KGZ导通 UB最小——6GZ导通。

同步发电机励磁自动控制系统1讲课文档

同步发电机励磁自动控制系统1讲课文档

1 静态不稳定性 2 动态不稳定性 3 暂态不稳定性
功角过大而失步(滑行失步)
1974年美国学者拜金 利及金巴克主编论文
大小扰动引起的振荡失步
集《大规模电力系统
稳定性》
大扰动后发电机在第一摇摆失步
静态/动态稳定性定义及理解出现了混乱
1981年在IEEE电力系统分会的冬季会议上重新对电力系统稳定性进行定 义
North China Electric Power University
11
电力系统稳定性的定义与分类
2004年8月,IEEE发表了CIGRE第38委员会与IEEE系统动态行为委员会 联合小组制定的电力系统稳定性分类及定义
电力系统稳定性
功角稳定性 频率稳定性 电压稳定性
小干扰功角 稳定性
大干扰功角 稳定性
1 静态稳定性/小扰动稳定性
所加干扰足够小,可以用系统的线 性化方程来描述系统过渡过程
当系统受到小的干扰后,系统会达到与受干扰前相同或接近的运行状态
2 暂态稳定性/大扰动稳定性
所加的干扰使得不能用系统的线性化方程 来描述系统过渡过程
2第0112页2,/共22/82页1。
当系统遭受到干扰后,系统可以达到一个可以接受的稳定运行状态
静态稳定性——小扰动稳定性 暂态稳定性——大扰动稳定性 动态稳定性
动态稳定性 —— 电力系统受到小扰动时,考虑调节 器及元件动态,并分析它在暂态过程后能否趋于或者 接近原来稳定工况的能力。
2第1062页,2共/228/页2。1 North China Electric Power University
大干扰电压稳定性
小干扰电压稳定性
系统在大干扰后维持可接受稳态电压的能力 系统在小干扰后维持可接受稳态电压的能力

同步发电机的励磁调节模式

同步发电机的励磁调节模式

同步发电机的励磁调节模式一、引言同步发电机是发电厂的核心设备之一,其稳定运行对电网的可靠性和稳定性至关重要。

而励磁系统作为同步发电机的重要组成部分,其调节模式对发电机的稳态和动态特性影响深远。

因此,对同步发电机的励磁调节模式进行深入研究,对保障电网的安全稳定运行具有重要意义。

二、同步发电机励磁系统的基本原理同步发电机的励磁系统是通过调节励磁电流来控制发电机的磁通,从而控制发电机的输出电压。

励磁系统通常是由稳压器、励磁电流限制器、励磁电源和励磁绕组等部分组成。

稳压器通过对励磁绕组的励磁电压进行控制,控制发电机的输出电压。

三、同步发电机励磁调节模式的分类同步发电机的励磁调节模式主要包括手动调节、自动调节和自动跟踪调节三种模式。

1.手动调节手动调节模式是指操作人员通过手动调节稳压器的设定值,来控制发电机的输出电压。

这种模式需要操作人员具有一定的经验和技术,并且在实际运行中容易出现误操作,影响发电机的稳定运行。

2.自动调节自动调节模式是通过采用PID控制器控制稳压器,根据发电机的输出电压信号和设定值之间的误差来调节稳压器的设定值,从而实现对发电机输出电压的自动调节。

这种模式能够有效提高发电机的稳态性能,并且可以根据实际需要进行参数优化,提高调节的精度和速度。

3.自动跟踪调节自动跟踪调节模式是在自动调节的基础上,加入了对电网频率和无功功率的跟踪控制。

通过对发电机输出的电压和频率进行跟踪调节,从而实现对电网功率因数的控制,保证发电机在并网运行中能够稳定输出所需要的有功功率和无功功率。

四、同步发电机励磁调节模式的应用实例在实际应用中,不同励磁调节模式会根据具体的运行条件和要求进行选择和应用。

1.在小型发电机组中,一般采用手动调节模式,通过操作人员进行手动调节来控制发电机的输出电压,这种模式操作简单,适用于运行较为稳定的情况。

2.在大型发电厂中,通常采用自动调节模式,通过PID控制器来实现发电机输出电压的自动调节,这种模式能够保证发电机在不同的运行状态下都能够保持稳定的输出电压,并且能够进行参数优化,提高调节的精度和速度。

第三章 同步发电机励磁自动控制系统

第三章 同步发电机励磁自动控制系统
(五)水轮发电机组要求实行强行减磁
二、对励磁系统的基本要求
励磁系统由励磁功率单元和励磁调节器两部分组成。
(一)对励磁调节器的要求
励磁调节器主要任务是检测和综合系统运行状态的信 息,以产生相应的控制信号,经放大后控制励磁功率 单元以得到所要求的发电机励磁电流。
励磁 功率单元
G 发电机
电力系统
励磁调节器 输入信息
一、同步发电机励磁控制系统的任务
优良的励磁控制系统不仅可以保证发电机可靠运行,提供可靠的电 能,而且可以有效地提高系统的技术指标。
电压控制
控制无功功率的分配 提高同步发电机并联运行的稳定性 改善电力系统的运行条件
静态稳定 暂态稳定
水轮发电机组要求实行强行减磁
(一)、电压控制
电力系统运行时,负荷波动引起电压波动,需要对励磁电流进 行调节以维持机端电压在给定水平。励磁自动控制系统担负了 维持电压水平的任务。
1. 自励交流励磁机静止可控整流器励磁系统
AE
VS
G
滑环
TR
TV
电压 启励元件
自动恒压元件
启励电源
AVR
2. 自励交流励磁机静止整流器励磁系统
AE
V
G
滑环
TR
TV
电压 启励元件
启励电源
励磁调节器
图3-19 静止励磁系统原理接线
§3.3 励磁系统中的整流电路
交流电压
整流
直流电压
大型发电机的转子励磁回路通常采用三相桥 式不可控整流电路,在静止励磁系统中采用三相 桥式全控整流电路;励磁机励磁回路通常采用三 相桥式半控整流或三相桥式全控整流电路。
0
ωt
(b) 输出电压波形(α=1200)

工学微机电力自动装置原理课件第3章同步发电机励磁控制系统.ppt

工学微机电力自动装置原理课件第3章同步发电机励磁控制系统.ppt

(1)发电机的有功功率特性(前面已经知道)
PG
EqU X
sin
第3章 指令系统及汇编语言程序设计
以上发电机有功功率公式和其曲线。可知:改变励磁电流的大小,就能改变感电动 势Eq的大小,从尔改变发电机功率角δ的大小。当功率角δ从0度变化到90度时PG 就从0变化到最大Pm值。称为发电机的内角特性。 但是当功率角δ大于90度后, PG就又从最大Pm值往小的方向变化,称为发 电机的外角特性。它带来静态特性不稳定的问题。我们希望功率角δ大于90度后, 提高Pm值,在很宽的范围内维持Pm值的稳定性? 其办法就是使励磁调节器起作用,改变励磁电流的大小,来达到,见图3-7
第3章 指令系统及汇编语言程序设计
B、 关系说明: 励磁电流IEF增加或减小: 发电机感应电动势Eq也随着增加或减小,
因此发电机的输出电压UG和电流IG 、IP、无功电流IQ、无功功率 PQ 都将改变。
它们的关系可用下式表示:
Eq I EF
Eq c os U G IQ X d
当cos很小时:Eq U G IQ X d
第3章 指令系统及汇编语言程序设计
(4)系统能否处于动态稳定实质上是由励磁电流IEF决 定的。只要增加励磁电流IEF就能使F点上面的阴影面 积大于下面阴影面积,而使系统进入动态稳定。
(1)正常情况下,发电机输出功率为PG0,在图2-8中的a点运行。
(2)电网受干扰后,功率工作点下降到b点,此时转子因有过剩转矩 而加速,使PG上升达到F点。
(3)达到F点后P>PG0转子上出现制动转矩,转子减速.。PG下降,能 否稳定在PG0,处决于F点上下阴影区的面积是否相等。若上面的面积大 于下面的面积系统处于动态稳定,否则系统不能处于动态稳定。

同步发电机励磁自动调节系统设计毕业设计论文

同步发电机励磁自动调节系统设计毕业设计论文

绪论1 绪论1.1 题目来源来源于生产/社会实际1.2 研究目的和意义近年来,随着电力系统的发展,大机组的出现,要求励磁调节器具有更高的技术经济指标、更加完善的控制功能。

早期的机电型调节器、电磁型调节器、半导体调节器都越来越不能适应当今同步发电机励磁自动调节系统的发展。

目前,由于大规模集成电路和微机技术的迅猛发展,由硬件和软件组成的微机调节器己成为今后的发展方向。

优良的励磁调节系统有能提高系统的静稳定储备,防止励磁过分降低,提高继电保护灵敏度,快速灭磁等功能,能较好地使电力系统在稳定状态下运行并有较强的抗干扰能力。

本系统采用MSP4300F149单片机为主控芯片,设计的微机励磁调节器将会作为励磁自动调节系统发展的一个新的方向。

1.3 国内外现状和发展趋势1.3.1 励磁功率系统的发展50年代初期,汽轮发电机的励磁主要是采用直流励磁机系统。

直流励磁机的容量受机械强度和换向电压等电气参数的影响,其最大功率取决于 nP=1.8 X 106 (1-1)式中 P——直流励磁机的最大功率,kW;n——直流励磁机的转速,r/min。

由于直流励磁机与汽轮发电机同轴旋转,即n=3000 r/min,则励磁机的最大功率P为600kW。

对于励磁功率大于600kW的汽轮发电机,无法采用同步直流励磁机系统。

后来,交流励磁系统逐渐发展起来。

同步发电机励磁自动调节系统设计在交流励磁系统的发展过程中,先后出现了他励交流励磁机系统,自励和自复励静止励磁系统。

图1-1他励旋转硅整流励磁系统图1-1所示为交流励磁机系统,其励磁功率电源可靠,不受电力系统或发电机端短路故障的影响,即励磁功率电源取自发电机以外的独立的并与其同轴旋转的交流励磁机,故称为他励。

他励交流励磁机系统比起直流机励磁系统,容量增大了,能提供较大功率。

在直流励磁系统之后很长一段时间内,他励交流励磁机系统占有很重要的地位。

由于他励交流励磁机系统仍有转动部分,维护不方便,且与发电机同轴,增大了发电机和厂房体积,使投资大大增加,不利于今后的发展,于是自励和自复励静止励磁系统便发展起来。

同步发电机的励磁调节模式

同步发电机的励磁调节模式

同步发电机的励磁调节模式一、引言发电机是将机械能转换为电能的装置,而励磁是保证发电机正常运行的重要环节。

励磁调节模式是为了保证发电机的稳定运行而设计的一种控制模式。

本文将从励磁的基本原理入手,分析励磁调节模式的设计原则和调节方法,以及在实际应用中需要注意的问题。

二、励磁的基本原理1.励磁的作用励磁是通过给发电机的励磁绕组通电,使发电机产生磁场,从而实现从机械能到电能的转换。

正常的励磁可以保证发电机的电压和频率稳定,同时也可以提高发电机的功率因数。

2.励磁系统的组成励磁系统主要由励磁机、励磁绕组、励磁电源和励磁调节器组成。

励磁机通常采用直流发电机或交流发电机,励磁绕组是通过控制励磁电流来改变发电机的磁场强度,励磁电源则提供励磁机的供电,而励磁调节器则是用于控制励磁电流的设备。

3.励磁调节的原理励磁调节是通过改变发电机的磁场强度来调节其输出电压和频率的一种方法。

通常情况下,增加励磁电流可以提高发电机的电压,减小励磁电流则可以降低发电机的电压。

在实际应用中,需要根据负荷变化和电网情况来动态调节励磁电流,以保证发电机的稳定运行。

三、励磁调节模式的设计原则和调节方法1.励磁调节模式的设计原则(1)稳定性原则励磁调节模式应该具有良好的稳定性,能够在负荷变化和电网扰动的情况下保持发电机的电压和频率稳定。

(2)快速性原则励磁调节模式应该具有快速的响应速度,能够在最短的时间内完成对发电机电压的调节,以适应电网的变化。

(3)精确性原则励磁调节模式应该具有较高的控制精度,能够根据实际负荷和电网情况来精确控制发电机的电压和频率。

2.励磁调节的常用方法(1)PID控制PID控制是一种常用的励磁调节方法,通过比例、积分和微分三个参数来控制励磁电流的变化,以实现对发电机电压的稳定控制。

(2)模糊控制模糊控制是一种能够适应复杂系统的控制方法,通过模糊规则来调节励磁电流,以实现对发电机电压的精确调节。

(3)神经网络控制神经网络控制是一种利用人工神经网络来对励磁电流进行学习和调节的方法,通过不断调整神经网络的权重来实现对发电机电压的快速调节。

同步发电机励磁自动调节

同步发电机励磁自动调节

同步发电机励磁自动调节在现代电力系统中,同步发电机扮演着至关重要的角色。

而励磁自动调节系统则是保障同步发电机稳定运行、提高电力系统性能的关键技术之一。

要理解同步发电机励磁自动调节,首先得知道什么是励磁。

简单来说,励磁就是给同步发电机的转子绕组提供直流电流,从而产生磁场。

这个磁场与定子绕组中的交流电流相互作用,实现电能的转换和传输。

那为什么需要自动调节励磁呢?这是因为电力系统的运行状态是不断变化的。

比如,负荷的突然增加或减少、系统故障等,都会导致发电机端电压的波动。

如果不及时调整励磁电流,就可能影响发电机的输出功率和电能质量,甚至威胁到电力系统的稳定运行。

同步发电机励磁自动调节系统主要由测量单元、比较单元、放大单元和执行单元等组成。

测量单元负责监测发电机的端电压、电流等参数,并将其转换为电信号。

比较单元将测量值与给定值进行比较,得出偏差信号。

放大单元将偏差信号放大,以驱动执行单元。

执行单元则根据放大后的信号调整励磁电流的大小。

在实际运行中,同步发电机励磁自动调节系统有多种调节方式。

常见的有恒机端电压调节、恒无功功率调节和恒功率因数调节等。

恒机端电压调节是最基本的调节方式。

其目标是保持发电机端电压在给定值附近。

当系统负荷增加导致端电压下降时,调节系统会增大励磁电流,增强磁场,从而提高端电压;反之,当负荷减少时,端电压升高,调节系统会减小励磁电流,使端电压恢复到给定值。

恒无功功率调节则主要用于无功功率的分配和控制。

在多台发电机并联运行的系统中,通过恒无功功率调节,可以实现各台发电机之间无功功率的合理分配,提高系统的稳定性和经济性。

恒功率因数调节则是使发电机的功率因数保持在给定值。

这种调节方式在一些特定的场合,如需要保证功率因数符合要求的工业用户中得到应用。

除了上述调节方式,同步发电机励磁自动调节系统还具有一些重要的功能。

例如,它可以提高发电机的静态稳定性。

静态稳定性是指发电机在受到小干扰后,能够自动恢复到原来的运行状态的能力。

同步发电机励磁调节原理精选全文

同步发电机励磁调节原理精选全文

精选全文完整版(可编辑修改)
同步发电机励磁调节原理
同步发电机励磁调节原理是通过对励磁系统的电流、电压进行调节,控制发电机的励磁电压和励磁电流,从而控制发电机的输出电压和输出功率。

具体原理如下:
1. 励磁电压调节:通过调节励磁电压的大小,可以控制发电机的输出电压。

一般情况下,发电机的励磁电压是由励磁系统中的励磁电源提供的。

调节励磁电压的大小可以通过调节励磁电源的电压来实现,如使用电位器或自动电压调节器(AVR)来调节发电机的输出电压。

2. 励磁电流调节:通过调节励磁电流的大小,可以控制发电机的输出功率。

励磁电流一般由励磁系统中的励磁电源提供,并且通过励磁电阻进行调节。

通过增大或减小励磁电阻的阻值,可以调节励磁电流的大小,从而控制发电机的输出功率。

同时,还需要根据发电机输出的电压和功率信号,通过控制回路,将励磁系统的电压和电流进行反馈控制,使发电机的输出能够稳定在设定值。

综上所述,发电机的励磁调节原理是通过对励磁电压和电流进行调节,控制发电机的输出电压和输出功率。

三相同步发电机励磁调节

三相同步发电机励磁调节

三相同步发电机励磁调节三相同步发电机励磁调节是电力系统中的重要环节,它能够保证发电机的稳定运行和电力质量的提高。

在电力系统中,发电机是负责将机械能转化为电能的设备,而励磁调节则是控制发电机输出电压和励磁电流的过程。

在三相同步发电机中,励磁系统的调节是为了使发电机输出电压稳定在额定值,同时保证电力系统的稳定运行。

励磁系统通过调节励磁电流来控制发电机的输出电压。

当电网负荷变化时,励磁系统能够及时调整发电机的励磁电流,以保持电压的稳定性。

励磁调节的过程可以分为两个阶段:静态调节和动态调节。

静态调节主要是在发电机运行之前进行的,它通过调整励磁电流的大小和相位来控制发电机的输出电压。

动态调节主要是在发电机运行过程中进行的,它能够根据电网负荷的变化及时调整励磁电流,以保持电压的稳定。

在励磁调节过程中,需要根据电网负荷的变化来调整励磁电流的大小。

当电网负荷增加时,励磁电流需要增加,以提高发电机的输出电压。

相反,当电网负荷减少时,励磁电流需要减小,以保持发电机输出电压的稳定。

为了实现励磁调节,通常会使用自动励磁调节装置来监测发电机的输出电压,并根据设定值进行调整。

自动励磁调节装置通过与发电机的励磁系统连接,能够实时监测发电机的输出电压,并根据设定值进行调整。

除了自动励磁调节装置外,还可以使用励磁控制器来进行励磁调节。

励磁控制器通常由调节器、比例放大器和执行器等组成,能够根据发电机输出电压的变化来控制励磁电流的大小和相位,以实现励磁调节的目的。

三相同步发电机励磁调节是电力系统中的重要环节,它能够保证发电机的稳定运行和电力质量的提高。

励磁调节通过调节励磁电流的大小和相位来控制发电机的输出电压,以适应电网负荷的变化。

励磁调节可以使用自动励磁调节装置或励磁控制器来实现,以保证电力系统的稳定运行。

第三章 同步发电机励磁自动控制系统

第三章 同步发电机励磁自动控制系统

第三章同步发电机励磁自动控制系统在现代电力系统中,同步发电机扮演着至关重要的角色,而励磁自动控制系统则是确保其稳定运行和高效发电的关键组件。

首先,让我们来了解一下什么是同步发电机的励磁。

简单来说,励磁就是给同步发电机的转子绕组提供直流电流,从而产生磁场。

这个磁场与定子绕组中的磁场相互作用,实现了电能的转换和传输。

那么,为什么需要一个自动控制系统来管理励磁呢?这是因为在电力系统的运行中,各种因素会导致系统的电压和无功功率发生变化。

例如,负载的突然增加或减少、电网故障等。

如果没有有效的励磁控制,发电机的输出电压可能会不稳定,无功功率分配也会不合理,这将对整个电力系统的运行造成不良影响。

同步发电机励磁自动控制系统主要由励磁功率单元和励磁调节器两大部分组成。

励磁功率单元负责向转子绕组提供直流励磁电流,它的性能直接影响到励磁系统的输出能力和可靠性。

而励磁调节器则是根据测量到的发电机运行参数,如端电压、无功功率等,按照预定的控制规律来调节励磁功率单元的输出,以实现对发电机励磁的自动控制。

在实际运行中,励磁自动控制系统具有多种功能。

其一,它能够维持发电机端电压在给定水平。

当电力系统中的负载变化时,通过及时调整励磁电流,使发电机的输出电压保持稳定,从而保证电力设备的正常运行和电能质量。

其二,合理分配并列运行机组之间的无功功率。

在多台发电机并联运行的情况下,励磁系统可以根据各机组的容量和运行状态,自动分配无功功率,提高电力系统的运行效率和稳定性。

其三,提高电力系统的静态和动态稳定性。

通过快速响应系统的变化,励磁系统可以增强系统抵御干扰的能力,减少电压波动和功率振荡的发生。

为了实现这些功能,励磁调节器通常采用不同的控制规律和算法。

常见的有比例积分微分(PID)控制、模糊控制、自适应控制等。

PID控制是一种经典的控制方法,它具有结构简单、易于实现的优点,但对于复杂的系统可能效果不够理想。

模糊控制则能够处理一些不确定性和模糊性的问题,具有较强的鲁棒性。

同步发电机励磁自动调节

同步发电机励磁自动调节

第四章:同步发电机励磁自动调节较、综合放大单元因发生故障,而退出工作,所以属于一种非正常工作方式。

当稳压电源出故障时,工作在“手控闭环”运行方式;当稳压电源无故障时,工作在“手控开环”运行方式。

感应调压器—交流主励磁机—发电机的运行方式,由于需要由运行人员手动调节感应调压器,改变发电机的励磁,所以是一种“手动”运行方式。

此时,发电机励磁系统无自动调节的功能。

所以,只有在励磁系统进行切换或副励磁机、自动调节器故障以及进行发电机升压试验时才使用。

备用励磁机—发电机的运行方式是在发电机的主副励磁机、励磁调节器以及励磁整流柜因故都退出运行,由备用励磁机直接供给发电机励磁的一种运行方式,此时,备用励磁机的调节由运行人员手动进行。

第九节微机型励磁调节器本节的内容包括微机型励磁调节器的构成和主要性能特点。

本节的学习路线:借助本章第四节学过的模拟型半导体励磁调节器的构成和工作原理,计算机控制系统的构成,理解微机型励磁调节器的硬件电路和软件框图及性能特点。

学习微机型励磁调节器硬件电路构成时,根据计算机控制系统主要是由模拟量输入回路、开关量输入/输出回路、主机、人机接口四部分构成,可知微机型励磁调节器的硬件电路也应该包括这四部分,但考虑到对于执行原件是大功率的晶闸管整流电路,微机型励磁调节器的输出应该是触发脉冲,所以微机型励磁调节器的硬件还包括脉冲输出通道,图4-37示出了微机型励磁调节器框图。

学习微机型励磁调节器硬件电路各部分作用时,结合励磁调节器的作用和调节过程去考虑,如:模拟量输入通道需要输入的模拟量有:发电机的端电压、负荷电流和励磁电流;开关量输入/输出通道需要输入的开关量有:发电机的主开关(保证发电机只有与系统并联运行时,励磁调节器才能实现强励作用)、灭磁开关(确保发电机故障时实现自动灭磁),需要输出的开关量主要有:灯光、音响等信号。

根据励磁调节器的工作原理和计算机控制系统的特点,容易理解微机型励磁调节器的软件框图主要由两大部分组成,即主程序和中断服务程序,如图4-38所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、调节无功功率
当发电机输出的有功功率保持不变时,调节励磁电流的大小, 发电机输出的无功功率也会变化。
当输出有功不变,并且发电机机端电压恒定时,
有 PUGIGcos常数 所以, IGcos 常数
PEGUGsin 常数
Xd
EGsin 常数
U 形 曲 线
3、提高电力系统的稳定性 自动调节励磁系统可以提高系统的静态稳定,当其励磁系统 响应速度快,又有高强励倍数时,可以改善电力系统的暂态 稳定性。
对整流性能要求较弱,响应随度较慢。 (2)交流主励磁机带晶闸管整流系统 交流主励磁机输出电压经过晶闸管整流装置后,通过炭刷供给 发电机励磁电流。 响应速度快,一般用于对稳定性要求较高的电力系统,并可用 来灭磁。
交流励磁机系统
(3)旋转硅整流励磁系统 交流主励磁机的交流绕组和整流设备随着主轴一起旋转。这样 省去了炭刷,可以用于励磁电流超过8000~10000A的大型同步 发电机。 可以分成2种: (1)交流励磁机带旋转静止二极管整流励磁系统 (2)交流励磁机带旋转可控晶闸管整流励磁系统
12.2、半导体自动励磁调节器
一、励磁系统中的整流电路 在交流励磁机系统和静止励磁系统中都采用了三相桥式
整流电路,将交流电源转换为直流电源,给发电机(或励磁 机)转子绕组提供励磁电流。
励磁系统中的整流电路可以分成三种: (1)三相桥式不可控整流电路; (2)三相半控桥式整流电路; (3)三相全控制整流电路。
(1)直流励磁机励磁系统 励磁电流由与发电机同轴的直流发电机供给。 可以分成2种: (1)自励直流励磁机系统; 直流励磁机的励磁绕组由励磁机本身供给。 (2)他励直流励磁机系统。 直流励磁机的励磁绕组由另外一直流励磁机(副励磁机)供给。 这种励磁方式只应用于小容量Uav2.3U 4ph1c2os,其中的α是晶闸管的导通控制角。
(3) 三相全控桥式整流电路
三相全控桥式整流电路的输入为三相对称电源电压,输出为 可控的波动直流电压。输出的波动直流电压的平均值Uav和 输入三相对称电源的相电压Uph呈可控比例关系。
Uav2.3U 4phcos,其中的α是晶闸管的导通控制角。
三、励磁系统的分类
励磁系统的分类主要是对励磁功率单元进行分类。励磁功率 单元可以分为4类。 (1)直流励磁机励磁系统; (2)交流励磁机系统; (3)旋转硅整流励磁系统; (4)静止励磁系统。
励磁机:给同步发电机提供 励磁电流的发电机,既可以 是直流发电机(直流励磁机) ,也可以是交流发电机(交流 励磁机)
Uav2.34Uph 如果 U p h2V 2 , 0 U a 则 v2 .3U p 4 = h 5.8 1 V4
(2) 三相半控桥式整流电路
三相半控桥式整流电路的输入为三相对称电源电压,输出为 可控的波动直流电压。输出的波动直流电压的平均值Uav和 输入三相对称电源的相电压Uph呈可控比例关系。
二、自动调节励磁装置原理
(1)自动调节励磁装置的构成
自动调节励磁装置装置由基本控制和辅助控制两大部分 组成。基本控制实现励磁电流的自动调节,以便维持电压水 平和合理分配机组间的无功功率。辅助控制主要为了满足发 电机不同工况要求,以改善电力系统稳定性和励磁系统动态 性能。
自动调节励磁系统包括同步发电机和励磁系统。
自动调节励磁系统的作用(自动调节励磁电流的作用): (1)调节电压; (2)调节无功功率; (3)提高电力系统运行的稳定性; (4)改善电力系统运行条件。
1、调节电压 当励磁电流不变时,发电机机端电压与发出的无功功率关 系紧密。发电机发出的无功功率增大时,机端电压下降。
4、改善电力系统运行条件 自动调节励磁系统自动增加励磁电流,多发无功功率,加速 电网电压恢复,改善系统工作条件。 在电力系统内部故障时,自动调节励磁装置进行强励,使短 路电流增大,提高了继电保护的灵敏度。
二、对自动调节励磁系统的基本要求 (1)有足够的调节机端电压范围(0.8~1.2UG.N); (2)系统故障时能够迅速进行强励; (3)可靠性高。
以上三种整流电路中,第(1)种三相桥式不可控整流 电路是不可控的。第(2)、(3)种三相半控桥式整流电路 和三相全控制整流电路的输出电流大小可以控制。
(1) 三相桥式不可控整流电路
三相桥式不可控整流电路的输入为三相对称电源电压,输出 为波动的直流电压。输出的波动直流电压的平均值Uav和输 入三相对称电源的相电压Uph呈规定比例关系。
同步发电机自动调节励磁装置
概述
同步发电机励磁系统:由励磁功率单元和自动调节励磁装置 组成,实现向发电机励磁绕组提供直流励磁电流,并对励磁 电流进行调节的功能。
所以发电机励磁系统的作用可总结为: (1)提供励磁电流;
励磁功率单元完成 (2)调节励磁电流。 自动调节励磁装置 完成。
一、自动调节励磁系统的作用
励磁电流由与交流发电机供给。大容量发电机的励磁功率单元 采用交流励磁机和半导体整流元件组成的交流励磁机系统。交 流主励磁机的整流单元静止不动,是有刷励磁。
可以分成2种: (1)交流主励磁机静止硅整流励磁系统 交流主励磁机通过静止二极管(死硅)整流系统整流后供给励 磁电流,自动励磁调节装置通过控制晶闸管的导通角来调节交 流副励磁机提供给主励磁机的励磁电流。适用于励磁电流小于 8000~10000A的同步发电机。
(4)静止励磁系统
励磁电流取自发电机本身,采用励磁变压器作为电压源,励磁 变流器作为电流源。
可以分成2种: (1)自励静止励磁系统 同步发电机励磁电流由励磁变压器TVE经过可控硅整流电路后 供给,是一种较简单的励磁系统。 (2)自复励静止励磁系统 同步发电机励磁电流同时取自励磁变流器TAE和励磁变压器 TVE。励磁变流器TAE和励磁变压器TVE在交流侧和直流侧可以 有不同的连接。分为2种: (a)交流侧串联自复励励磁系统 (b)直流侧并联自复励励磁系统 复励:励磁电流同时取自励磁变流器TAE和励磁变压器TVE,励 磁变流器TAE并联在发电机机端,励磁变压器TVE串联在发电机 机端引出线上。
相关文档
最新文档