2019江西省高考数学试卷(理科)
2019年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)
![2019年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)](https://img.taocdn.com/s3/m/0f572c3f102de2bd97058830.png)
绝密★启用前2019年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1)C .(-3,-1)D .(3,+∞)2.设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限C .第三象限D .第四象限3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A .-3 B .-2C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R+=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差6.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .89.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │10.已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B.5C3D511.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为ABC .2D .512.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.14.已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________. 15.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。
2019年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)
![2019年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)](https://img.taocdn.com/s3/m/bc38634759fafab069dc5022aaea998fcc22401e.png)
2019年普通高等学校招生全国统一考试(全国Ⅰ卷)理科数学一、选择题1.已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N等于()A.{x|-4<x<3} B.{x|-4<x<-2}C.{x|-2<x<2} D.{x|2<x<3}答案 C解析∵N={x|-2<x<3},M={x|-4<x<2},∴M∩N={x|-2<x<2},故选C.2.设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1 B.(x-1)2+y2=1C.x2+(y-1)2=1 D.x2+(y+1)2=1答案 C解析∵z在复平面内对应的点为(x,y),∴z=x+y i(x,y∈R).∵|z-i|=1,∴|x+(y-1)i|=1,∴x2+(y-1)2=1.故选C.3.已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<bC.c<a<b D.b<c<a答案 B解析∵a=log20.2<0,b=20.2>1,c=0.20.3∈(0,1),∴a<c<b.故选B.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是()A.165 cm B.175 cm C.185 cm D.190 cm答案 B 解析若头顶至咽喉的长度为26 cm,则身高为26+26÷0.618+(26+26÷0.618)÷0.618≈178(cm),此人头顶至脖子下端的长度为26 cm,即头顶至咽喉的长度小于26 cm,所以其身高小于178 cm,同理其身高也大于105÷0.618≈170(cm),故其身高可能是175 cm,故选B.5.函数f(x)=在[-π,π]上的图象大致为()A. B.C. D.答案 D解析∵f(-x)==-=-f(x),∴f(x)为奇函数,排除A;∵f(π)==>0,∴排除C;∵f(1)=,且sin 1>cos 1,∴f(1)>1,∴排除B,故选D.6.我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“——”,如图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.答案 A解析由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为==20.根据古典概型的概率计算公式得,所求概率P==.故选A.7.已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为()A. B. C. D.答案 B解析设a与b的夹角为α,∵(a-b)⊥b,∴(a-b)·b=0,∴a·b=b2,∴|a|·|b|cos α=|b|2,又|a|=2|b|,∴cos α=,∵α∈[0,π],∴α=,故选B.8.如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+答案 A解析A=,k=1,1≤2成立,执行循环体;A=,k=2,2≤2成立,执行循环体;A=,k=3,3≤2不成立,结束循环,输出A.故空白框中应填入A=.故选A.9.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n-5 B.a n=3n-10C.S n=2n2-8n D.S n=n2-2n答案 A解析设等差数列{a n}的公差为d,∵∴解得∴a n=a1+(n-1)d=-3+2(n-1)=2n-5,S n=na1+d=n2-4n.故选A.10.已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1答案 B解析由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sin θ==.在等腰三角形ABF1中,cos 2θ==,因为cos 2θ=1-2sin2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1,故选B.11.关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数;②f(x)在区间上单调递增;③f(x)在[-π,π]上有4个零点;④f(x)的最大值为2.其中所有正确结论的编号是()A.①②④ B.②④ C.①④ D.①③答案 C解析f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),∴f(x)为偶函数,故①正确;当<x<π时,f(x)=sin x+sin x=2sin x,∴f(x)在上单调递减,故②不正确;f(x)在[-π,π]上的图象如图所示,由图可知函数f(x)在[-π,π]上只有3个零点,故③不正确;∵y=sin|x|与y=|sin x|的最大值都为1且可以同时取到,∴f(x)可以取到最大值2,故④正确.综上,正确结论的编号是①④.故选C.12.已知三棱锥P-ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8π B.4π C.2π D.π答案 D解析因为点E,F分别为P A,AB的中点,所以EF∥PB,因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面P AC,所以PB⊥平面P AC,所以PB⊥P A,PB⊥PC,因为P A=PB=PC,△ABC为正三角形,所以P A⊥PC,即P A,PB,PC两两垂直,将三棱锥P-ABC放在正方体中如图所示.因为AB=2,所以该正方体的棱长为,所以该正方体的体对角线长为,所以三棱锥P-ABC的外接球的半径R=,所以球O的体积V=πR3=π3=π,故选D.二、填空题13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.答案y=3x解析因为y′=3(2x+1)e x+3(x2+x)e x=3(x2+3x+1)e x,所以曲线在点(0,0)处的切线的斜率k=y′|x=0=3,所以所求的切线方程为y=3x.14.记S n为等比数列{a n}的前n项和.若a1=,=a6,则S5=________.答案解析设等比数列{a n}的公比为q,因为=a6,所以(a1q3)2=a1q5,所以a1q=1,又a1=,所以q=3,所以S5===.15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.答案0.18解析记事件M为甲队以4∶1获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P(M)=0.6×(0.62×0.52×2+0.6×0.4×0.52×2)=0.18.16.已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若=,·=0,则C的离心率为________.答案 2解析因为F1B·F2B=0,所以F1B⊥F2B,如图.因为=,所以点A为F1B的中点,又点O为F1F2的中点,所以OA∥BF2,所以F1B⊥OA,所以|OF1|=|OB|,所以∠BF1O=∠F1BO,所以∠BOF2=2∠BF1O.因为直线OA,OB为双曲线C的两条渐近线,所以tan∠BOF2=,tan∠BF1O=.因为tan∠BOF2=tan(2∠BF1O),所以=,所以b2=3a2,所以c2-a2=3a2,即2a=c,所以双曲线的离心率e==2.三、解答题17.△ABC的内角A,B,C的对边分别为a,b,c,设(sin B-sin C)2=sin2A-sin B sin C.(1)求A;(2)若a+b=2c,求sin C.解(1)由已知得sin2B+sin2C-sin2A=sin B sin C,故由正弦定理得b2+c2-a2=bc,由余弦定理得cos A==,因为0°<A<180°,所以A=60°. (2)由(1)知B=120°-C,由题设及正弦定理得sin A+sin(120°-C)=2sin C,即+cos C+sin C=2sinC,可得cos(C+60°)=-.由于0°<C<120°,所以sin(C+60°)=,故sin C=sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)sin 60°=.18.如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.(1)证明连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=B1C.又因为N为A1D的中点,所以ND=A1D.由题设知A1B1∥DC且A1B1=DC,可得B1C∥A1D且B1C=A1D,故ME∥ND且ME=ND,因此四边形MNDE 为平行四边形,MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.(2)解由已知可得DE⊥DA,以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(2,0,0),A1(2,0,4),M(1,,2),N(1,0,2),=(0,0,-4),=(-1,,-2),=(-1,0,-2),=(0,-,0).设m=(x,y,z)为平面A1MA的一个法向量,则所以可得m=(,1,0).设n=(p,q,r)为平面A1MN的一个法向量,则所以可取n=(2,0,-1).于是cos〈m,n〉===,所以二面角A-MA1-N的正弦值为.19.已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.解设直线l:y=x+t,A(x1,y1),B(x2,y2).(1)由题设得F,故|AF|+|BF|=x1+x2+,由题设可得x1+x2=.由可得9x2+12(t-1)x+4t2=0,令Δ>0,得t<,则x1+x2=-.从而-=,得t=-.所以l的方程为y=x-.(2)由=3可得y1=-3y2,由可得y2-2y+2t=0,所以y1+y2=2,从而-3y2+y2=2,故y2=-1,y1=3,代入C的方程得x1=3,x2=,即A(3,3),B,故|AB|=. 20.已知函数f(x)=sin x-ln(1+x),f′(x)为f(x)的导数,证明:(1)f′(x)的区间上存在唯一极大值点;(2)f(x)有且仅有2个零点.证明(1)设g(x)=f′(x),则g(x)=cos x-,g′(x)=-sin x+.当x∈时,g′(x)单调递减,而g′(0)>0,g′<0,可得g′(x)在有唯一零点,设为α.则当x∈(-1,α)时,g′(x)>0;当x∈时,g′(x)<0.所以g(x)在(-1,α)上单调递增,在上单调递减,故g(x)在上存在唯一极大值点,即f′(x)在上存在唯一极大值点.(2)f(x)的定义域为(-1,+∞).①当x∈(-1,0]时,由(1)知,f′(x)在(-1,0)上单调递增.而f′(0)=0,所以当x∈(-1,0)时,f′(x)<0,故f(x)在(-1,0)上单调递减.又f(0)=0,从而x=0是f(x)在(-1,0]上的唯一零点;②当x∈时,由(1)知,f′(x)在(0,α)上单调递增,在上单调递减,而f′(0)=0,f′<0,所以存在β∈,使得f′(β)=0,且当x∈(0,β)时,f′(x)>0;当x∈时,f′(x)<0.故f(x)在(0,β)上单调递增,在上单调递减.又f(0)=0,f=1-ln>0,所以当x∈时,f(x)>0.从而,f(x)在上没有零点;③当x∈时,f′(x)<0,所以f(x)在上单调递减.而f>0,f(π)<0,所以f(x)在上有唯一零点;④当x∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在(π,+∞)上没有零点.综上,f(x)有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(ⅰ)证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列;(ⅱ)求p4,并根据p4的值解释这种试验方案的合理性.(1)解X的所有可能取值为-1,0,1.P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β),P(X=1)=α(1-β).所以X的分布列为(2)(ⅰ)证明由(1)得a=0.4,b=0.5,c=0.1.因此p i=0.4p i-1+0.5p i+0.1p i+1,故0.1(p i+1-p i)=0.4(p i-p i-1),即p i+1-p i=4(p i-p i-1).又因为p1-p0=p1≠0,所以{p i+1-p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列.(ⅱ)解由(ⅰ)可得p8=p8-p7+p7-p6+…+p1-p0+p0=(p8-p7)+(p7-p6)+…+(p1-p0)=p1.由于p8=1,故p1=,所以p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)=p1=.p4表示题干中的实验方案最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=≈0.003 9,此时得出错误结论的概率非常小,说明这种试验方案合理.22.[选修4-4:坐标系与参数方程]在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcos θ+ρsin θ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.解(1)因为-1<≤1,且x2+2=2+=1,所以C的直角坐标方程为x2+=1(x≠-1).l的直角坐标方程为2x+y+11=0.(2)由(1)可设C的参数方程为 (α为参数,-π<α<π).C上的点到l的距离为=. 当α=-时,4cos+11取得最小值7,故C上的点到l距离的最小值为.23.[选修4-5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)++≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,且abc=1,故有a2+b2+c2≥ab+bc+ca==++.所以++≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3=3(a+b)(b+c)(a+c)≥3×(2)×(2)×(2)=24.所以(a+b)3+(b+c)3+(c+a)3≥24.祝福语祝你考试成功!。
2019年全国高考统一招生【江西卷】【理科】数学试卷
![2019年全国高考统一招生【江西卷】【理科】数学试卷](https://img.taocdn.com/s3/m/22db3235581b6bd97f19ea6b.png)
小题给出的四个选项中,只有一项是符合题目要求的
.
5 分 . 在每
11(1). (不等式选做题)对任意 x, y R , x 1 x y 1 y 1 的最小值为( )
A. 1
B.
2
C.
3
D.
11(2). (坐标系与参数方程选做题)若以直角坐标系的原点为极点,
4 x 轴的非负半轴为极轴建立极坐标系,则
线段 y 1 x 0 x 1 的极坐标为( )
A. 1 B. 2 C. 3 D. -1
4. 在 ABC 中,内角 A,B,C 所对应的边分别为 a, b, c, ,若 c2 (a b)2 6,C
, 则 ABC 的面积(
)
3
A.3 B.
9 3 C. 3 3 D. 3 3
2
2
5. 一几何体的直观图如右图,下列给出的四个俯视图中正确的是(
)
6. 某人研究中学生的性别与成绩、视力、智商、阅读量这
A.
1
,0
cos sin
2
B.
1
,0
cos sin
4
C. cos sin ,0
D.
2
三 . 填空题:本大题共 4 小题,每小题 5 分,共 20 分 .
cos sin ,0 4
12.10 件产品中有 7 件正品, 3 件次品,从中任取 4 件,则恰好取到 1 件次品的概率是 ________.
13. 若曲线 y
2019 年普通高等学校招生全国统一考试(江西卷)
一.选择题:本大题共 求的。
数学(理科) 10 小题,每小题 5 分,共 50 分 . 在每小题给出的四个选项中,只有一项是符合题目要
1. z 是 z 的共轭复数 . 若 z z 2 ,( ( z z)i 2 ( i 为虚数单位) ,则 z ( )
2019年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)
![2019年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)](https://img.taocdn.com/s3/m/4c9b7d5783c4bb4cf7ecd19f.png)
绝密★启用前2019年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1)C .(-3,-1)D .(3,+∞)2.设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限C .第三象限D .第四象限3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A .-3 B .-2C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R+=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差6.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .89.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │10.已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B.5C3D511.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为ABC .2D .512.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.14.已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________. 15.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。
2019年江西高考理科数学试卷及答案
![2019年江西高考理科数学试卷及答案](https://img.taocdn.com/s3/m/11e5f95584868762cbaed57f.png)
绝空★启用前2019年普通高等学校招生全国统一考试理科数学本试世共S页・23題(含选丙JS〉<全卷滿分150分.考试用时I2Q分钟.注意寧项:★祝考试顺利★1・答雄的・先将自己的姓名、准珈证兮填写在试卷和答舷斤仁井将准考证兮条形旳帖姑铉衿懸R上的捋定2.选畀题的作答:毎小理选出答衆后,用2B铅宅把答題口上对应題•的答案标仍涂丐在试卷、罕稿抵和答題E上的非芥畋区域均无效•3・IhiSWK的作答:用黑色签字笔H接答在答紘卡上对应的签魏区域内.可在试卷、哉播纸和答題卡•上的非答題区域均无效.4,选考题的作??:先把所选題口的理号在答題卡上指定的位址用2B钳屯涂熬.答案写在答題卡上对应的答題区域内.片在试卷、◎祸址和筈題E上的非答題区域均无效.5・考试站束后,谄将本试卷和»gp一井上交.一、选择K2:本題共12小Si.毎小題5分,共60分・在毎小鬆给出的四个选项中,只有一项是符合眩目要求的.1.已知集«// ={x|-4<x<2}. AT=(x|jr-x-6<0}»则A/HX =A. {x|-4<x<3}B. {x|-4<x<-2}C.何一2<«2}2.设复数二满足|r-i|-K二在复平曲内对应的点为(jr.y). MlD・ x3+(y+l)3 = l3・ B知a = 1og:0.2・“丹.c = 0.2°\ MA. a<b<cB. a<c<bC. c<a<bD.4.占希Bfl时期.人们认为处臾人体的头顶至肚筋的K搜与肚flff至足底的K:废之比是丢二1 ({也金0.618,称为黃金井割叱例人岔名的“断仰维纳斯”便处如此.此外.駁灸人体的头顶至臥枚的X 发9咽联至肚脐的长度Z比也韭竺二•若某人满足上述购个员金分割比例,MJtt怏A105cm.头顶至狞子下瑞的长灰为26cm.可徒她A. 165cmB. 175 cmC. 185cmD.b<c<a 190 cm5, 的敕/(町二竺上二在卜匚引的图像人致为6. ----------------------------------------------------------------------------------------------------------- 我国占代典箱(周易》用“扑”描述万物的变化.每一 “霓好”山从下 二二 到上并列的6个爻组成,爻分为用爻"和阴爻“--3右用就址 ---------------------------- 一讹此血斫有鉞』十中前机取一虫幷・则该虫甘恰奋3个阳爻的概率是 ---------7.己知菲零向娥—b 満足|a|・2|町恥-6)1*. 的夹如为A A~Z 7A9-记£为竽短数列血}的前打顶和.已知&吕0・WA, Q . = 2R -5 B” 孔=3打-10C ・ S … = 2n* -8/JD ・ S^ =-n* -2rr2A.5!6 II 322K•D.5兀T8•血图她求一的円序框图.图中空白框中应坝入B.卅 尸io. B 知橢関c 的你点为斤(—hon. st 斥的H 线与c 交y B 网虑•若ii. ①/V )是偶曲故②/(好在区何(?的玳调通增 ③/(X )在卜儿刃冇4个零点 ④f (x ) tfjAJAW 为2跌中所有正确结论的褊兮葩12.已知三檄HI 初C 的四个顶点在球。
2019高考数学(理)试题精校精析(江西卷)(纯word书稿)
![2019高考数学(理)试题精校精析(江西卷)(纯word书稿)](https://img.taocdn.com/s3/m/b69007b88762caaedd33d452.png)
2019高考数学(理)试题精校精析(江西卷)(纯word 书稿)1、[2018·江西卷] 假设集合A ={-1,1},B ={0,2},那么集合{z |z =x +y ,x ∈A ,y ∈B }中的元素的个数为( )A 、5B 、4C 、3D 、21、C [解析] 考查集合的含义与表示;解题的突破口为列出所有结果,再检验元素的互异性、当x =-1,y =0时,z =-1,当x =-1,y =2时,z =1,当x =1,y =0时,z =1,当x =1,y =2时,z =3,故集合{z |z =x +y ,x ∈A ,y ∈B }中的元素个数为3,应选C.2、[2018·江西卷] 以下函数中,与函数y =13x定义域相同的函数为( )A 、y =1sin xB 、y =ln xxC 、y =x e xD 、y =sin xx2、D [解析] 考查函数的定义域解不等式等;解题的突破口为列出函数解析式所满足的条件,再通过解不等式达到目的、函数y =13x 的定义域为{x |x ≠0}、y =1sin x 的定义域为{x |x ≠k π},y =ln xx 的定义域为{x |x >0},y =x e x 的定义域为,y =sin xx 的定义域为{x |x ≠0},应选D.3、[2018·江西卷] 假设函数f (x )=⎩⎨⎧x 2+1,x ≤1,lg x ,x >1,那么f (f (10))=( )A 、lg101B 、2C 、1D 、03、B [解析] 考查分段函数的定义对数的运算分类讨论思想;解题的突破口是根据自变量取值范围选择相应的解析式解决问题、∵10>1,∴f (10)=lg10=1≤1,∴f (f (10))=f (1)=12+1=2,应选B.4、[2018·江西卷] 假设tan θ+1tan θ=4,那么sin2θ=( ) A.15 B.14 C.13 D.124、D [解析] 考查同角三角函数的关系二倍角公式,以及“1”的代换及弦切互化等方法、解题的突破口是通过“1”的代换,将整式转化为齐次分式,再通过同除以cos θ达到化切目的、∵tan θ+1tan θ=tan 2θ+1tan θ=4,∴sin2θ=2sin θcos θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=24=12,应选D.A 、存在四边相等的四边形不.是正方形 B 、z 1,z 2∈,z 1+z 2为实数的充分必要条件是z 1,z 2互为共轭复数 C 、假设x ,y ∈,且x +y >2,那么x ,y 至少有一个大于1D 、对于任意n ∈*,C 0n +C 1n +…+C nn 都是偶数 5、B[解析]考查命题的真假的判断含量词命题真假的判断组合数性质以及逻辑推理能力等;∵菱形四边相等,但不是正方形,∴A 为真命题;∵z 1,z 2为任意实数时,z 1+z 2为实数,∴B 为假命题;∵x ,y 都小于等于1时,x +y ≤2,∴C 为真命题;∵C 0n +C 1n +C 2n +…+C n n =2n ,又n ∈*,∴D 为真命题、应选B.6、[2018·江西卷]观察以下各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,那么a 10+b 10=()A 、28B 、76C 、123D 、1996、C[解析]考查归纳推理,以及观察能力;解题的突破口是通过观察得到后一项与前两项结果之间的关系、由于a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,通过观察发现,从第三项起,等式右边的常数分别为其前两项等式右边的常数的和、因此,a 6+b 6=11+7=18,a 7+b 7=18+11=29,a 8+b 8=29+18=47,a 9+b 9=47+29=76,a 10+b 10=76+47=123,应选C.7、[2018·江西卷]在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,那么|PA |2+|PB |2|PC |2=() A 、2B 、4C 、5D 、107、D[解析]考查向量基本定理向量的线性运算向量的数量积及其应用,考查化归转化能力、解题的突破口是建立平面直角坐标系转化为平面向量坐标运算问题求解,或利用平面向量基本定理,将问题转化为只含基底的两个向量的运算问题求解、方法一:∵D 是AB 中点,∴CD →=12(CA →+CB →)、∵P 是CD 中点,∴CP →=14(CA →+CB →),∴AP →=CP →-CA →=-34CA →+14CB →,BP →=CP →-CB →=14CA →-34CB →.∵CA →·CB →=0,∴AP →2=916CA →2+116CB →2,BP →2=116CA →2+916CB →2,CP →2=116CA →2+116CB →2, ∴|PA |2+|PB |2|PC |2=10. 方法二:∵D 是AB 中点,∴PA →+PB →=2PD →,PA →-PB →=BA →,∴PA →2+2PA →·PB →+PB →2=4PD →2,PA →2-2PA →·PB →+PB →2=BA →2,∴2(|PA |2+|PB |2)=4|PD |2+|AB |2.∵D 是AB 的中点,∴2|CD |=|AB |.∵P 是CD 中点,∴|CD |=2|PC |,∴|PA |2+|PB |2=10|CP |2,故|PA |2+|PB |2|PC |2=10. 方法三:以C 为坐标原点,AC ,BC 所在的直线为x 轴,y 轴,建立平面直角坐标系,设A (a,0),B (0,b ),那么D ⎝ ⎛⎭⎪⎫a 2,b 2,P ⎝ ⎛⎭⎪⎫a 4,b 4,|PA |2+|PB |2=9a 216+b 216+9b 216+a 216=10a 2+b 216,而|PC |2=a 2+b 216,故|PA |2+|PB |2|PC |2=10. 8、[2018·江西卷]某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过那么黄瓜和韭菜的种植面积(单位:亩)分别为()A 、50,0B 、30,20C 、20,30D 、0,50 8、B[解析]考查二元一次不等式组表示的平面区域线性规划的实际应用数形结合思想,以及阅读理解和数学建模能力;解题的突破口是按照线性规划解决实际问题的步骤求解,即①设出xyz ;②列出约束条件,确定目标函数;③画出可行域;④判断最优解;⑤求出目标函数的最值,并回到原问题中作答、设种植黄瓜x 亩,种植韭菜y 亩,因此,原问题转化为在条件⎩⎨⎧x +y ≤50, 1.2x +0.9y ≤54,x ≥0,y ≥0下,求z =0.55×4x +0.3×6y -1.2x -0.9y =x +0.9y 的最大值、画出可行域如图、利用线性规划知识可知,当x ,y 取⎩⎨⎧x +y =50,1.2x +0.9y =54的交点(30,20)时,z 取得最大值、应选B.9、[2018·江西卷]样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y n )的平均数为y (x ≠y )、假设样本(x 1,x 2,…,x n ,y 1,y 2,…,y n )的平均数z =αx +(1-α)y ,其中0<α<12,那么n ,m 的大小关系为()A 、n <mB 、n >mC 、n =mD 、不能确定9、A[解析]考查平均数的计算不等式的性质等;解题的突破口是利用样本平均数的计算公式,建立m ,n ,α之间的关系后求解、∵z =1n +m (n x +m y )=n n +m x ⎝ ⎛⎭⎪⎫1-n n +m y ,∴n n +m =α,∵0<α<12,∴0<n n +m <12,∴n <m ,应选A.10、[2018·江西卷]如图1-2,正四棱锥S -ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上下两部分,记SE =x (0<x <1),截面下面部分的体积为V (x ),那么函数y =V (x )的图像大致为()图1-210、A[解析]考查空间中的线面位置关系的转化空间几何体体积的计算函数的表示法导数的几何意义等,考查分类讨论思想化归转化思想数形结合思想函数与方程思想等;解题的突破口是将所求几何体的体积通过“割补法”求解、设AC ,BD 交于O ,当E 为SC 中点时,∵SB =SD =BC =CD ,∴SE ⊥BE ,SE ⊥DE ,∴SE ⊥面BDE .当x =12时,截面为三角形EBD .又∵SA =SC =1,AC =2,SO =22.当12≤x <1时,设截面交CD 于H ,交CB于I ,∴V (x )=V E -CHI =13⎣⎢⎡⎦⎥⎤12×2-2x 222(1-x )=23(1-x )3;当0<x <12时,设截面交SD 于F ,交SB 于G ,交AD 于H ,交AB 于I ,连接SH ,SI ,由于S 五边形EFHIG =S 三角形EFG +S 矩形FHIG =2x 2+22x (1-2x )=22x -32x 2,V (x )=V S -CDHIB -V S -EFHIG=26(1-2x 2)-13(22x -32x 2)x =2x 3-2x 2+26,应选A.11、[2018·江西卷]计算定积分⎠⎛1-1(x 2+sin x)d x =________. 11.23[解析]考查定积分的计算诱导公式,以及运算能力;解题的突破口是通过基本初等函数的导数公式的逆向使用确定被积函数的原函数.⎠⎛1-1(x 2+sin x)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x 33-cos x 1-1=13-cos 1-⎝ ⎛⎭⎪⎫-13+cos (-1)=23.12、[2018·江西卷]设数列{a n },{b n }都是等差数列、假设a 1+b 1=7,a 3+b 3=21,那么a 5+b 5=________.12、35[解析]考查等差数列的定义性质;解题的突破口是利用等差数列的性质,将问题转化为研究数列的项与项数之间的关系求解、方法一:设c n =a n +b n ,∵{a n },{b n }是等差数列,∴{c n }是等差数列,设其公差为d ,那么c 1=7,c 3=c 1+2d =21,解得d =7,因此,c 5=a 5+b 5=7+(5-1)×7=35.故填35.方法二:设c n =a n +b n ,∵{a n },{b n }是等差数列,∴{c n }是等差数列, ∴2(a 3+b 3)=(a 1+b 1)+(a 5+b 5),即42=7+(a 5+b 5),因此a 5+b 5=42-7=35.故填35.13、[2018·江西卷]椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别是A ,B ,左右焦点分别是F 1,F 2,假设|AF 1|,|F 1F 2|,|F 1B |成等比数列,那么此椭圆的离心率为________、13.55[解析]考查椭圆的定义和性质等比数列的性质等;解题的突破口是建立关于a ,c 的齐次等式,然后转化为离心率e 的方程求解、由椭圆的定义知,|AF 1|=a -c ,|F 1F 2|=2c ,|BF 1|=a +c ,∵|AF 1|,|F 1F 2|,|BF 1|成等比数列,因此4c 2=(a -c )(a +c ),整理得5c 2=a 2,两边同除以a 2得5e 2=1,解得e =55.14、[2018·江西卷]如图1-3为某算法的程序框图,那么程序运行后输出的结果是________、图1-314、3[解析]考查算法框图诱导公式特殊角的三角函数值;解题的突破口是列出每一次循环后各变量的结果、当k =1时,此时sin π2=1>sin0=0成立,因此a =1,T =0+1=1,k =1+1=2,k <6成立,再次循环;因sin π=0>sin π2=1不成立,因此a =0,T =1+0=1,k =2+1=3,此时k <6成立,再次循环;因sin 3π2=-1>sin π=0不成立,因此a =0,T =1+0=1,k =3+1=4,此时k <6成立,再次循环;因sin2π=0>sin 3π2=-1成立,因此a =1,T =1+1=2,k=4+1=5,此时k <6成立,再次循环;因sin 5π2=1>sin2π=0成立,因此a =1,T =2+1=3,k =5+1=6,此时k <6不成立,退出循环,此时T =3.15、[2018·江西卷](1)(坐标系与参数方程选做题)曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,那么曲线C 的极坐标方程为________、(2)(不等式选做题)在实数范围内,不等式|2x -1|+|2x +1|≤6的解集为________、15、(1)ρ=2cos θ[解析]考查极坐标方程与普通方程的转化;解题的突破口是利用点P 的直角坐标(x ,y )与极坐标(ρ,θ)的关系转化、由于ρ2=x 2+y 2,ρcos θ=x ,因此x 2+y 2-2x =0的极坐标方程为ρ=2cos θ.(2)⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-32≤x ≤32[解析]考查绝对值不等式的解法,以及分类讨论思想;解题的突破口是利用零点讨论法去掉绝对值符号,将不等式转化为一般不等式(组)求解、当x >12时,原不等式可化为2x -1+2x +1≤6,解得x ≤32,此时12<x ≤32;当x <-12时,原不等式可化为-2x +1-2x -1≤6,解得x ≥-32,此时-32≤x <-12;当-12≤x ≤12时,原不等式可化为1-2x +2x +1≤6,解得x ∈,此时-12≤x ≤12.综上,原不等式的解集为⎣⎢⎡⎦⎥⎤-32,32. 16、[2018·江西卷]数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈*),且S n的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫9-2a n 2n的前n 项和T n . 16、解:(1)当n =k ∈+时,S n =-12n 2+kn 取最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,因此k =4,从而a n =S n -S n -1=92-n (n ≥2),又a 1=S 1=72,所以a n =92-n .(2)因为b n =9-2a n 2n =n2n -1,T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n2n -1,所以T n =2T n -T n =2+1+12+…+12n -2-n 2n -1=4-12n -2-n 2n -1=4-n +22n -1.17、[2018·江西卷]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .A =π4,b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a .(1)求证:B -C =π2;(2)假设a =2,求△ABC 的面积、17、解:(1)证明:由b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a ,应用正弦定理,得sin B sin ⎝ ⎛⎭⎪⎫π4+C -sin C sin ⎝ ⎛⎭⎪⎫π4+B =sin A , sin B ⎝ ⎛⎭⎪⎫22sin C +22cos C -sin C ⎝ ⎛⎭⎪⎫22sin B +22cos B =22. 整理得sin B cos C -cos B sin C =1, 即sin(B -C )=1,由于0<B ,C <34π,从而B -C =π2.(2)由(1)知B -C =π2,又B +C =π-A =3π4,因此B =5π8,C =π8.由a=2,A=π4,得b=a sin Bsin A=2sin5π8,c=a sin Csin A=2sinπ8,所以△ABC的面积S=12bc sin A=2sin5π8sinπ8=2cosπ8sinπ8=12.18、[2018·江西卷]如图1-4,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0)、(1)求V=0的概率;(2)求V的分布列及数学期望EV.18、解:(1)从6个点中随机取3个点总共有C36=20种取法,选取的3个点与原点在同一个平面内的取法有C13C34=12种,因此V=0的概率为P(V=0)=1220=3 5.(2)V的所有可能取值为0,16,13,23,43,因此V的分布列为EV=0×35+16×120+13×320+23×320+43×120=940.19、[2018·江西卷]如图1-5,在三棱柱ABC-A1B1C1中,AB=AC=AA1=5,BC=4,点A1在底面ABC的投影是线段BC的中点O.(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(2)求平面A1B1C与平面BB1C1C夹角的余弦值、19、解:(1)证明:连接AO,在△AOA1中,作OE⊥AA1于点E,因为AA1∥BB1,所以OE⊥BB1.因为A1O⊥平面ABC,所以A1O⊥BC.因为AB=AC,OB=OC,所以AO⊥BC,所以BC ⊥平面AA 1O . 所以BC ⊥OE ,所以OE ⊥平面BB 1C 1C ,又AO =AB 2-BO 2=1,AA 1=5,得AE =AO 2AA 1=55.(2)如图,分别以OA ,OB ,OA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,那么A (1,0,0),B (0,2,0),C (0,-2,0),A 1(0,0,2),由AE →=15AA 1→得点E 的坐标是⎝ ⎛⎭⎪⎫45,0,5,由(1)得平面BB 1C 1C 的法向量是OE →=⎝ ⎛⎭⎪⎫45,0,25,设平面A 1B 1C 的法向量=(x ,y ,z ),由⎩⎪⎨⎪⎧·AB →=0,n ·A 1C →=0得⎩⎨⎧-x +2y =0,y +z =0,令y =1,得x =2,z =-1,即=(2,1,-1),所以 cos 〈OE →,〉=OE →·n |OE →|·|n |=3010.即平面BB 1C 1C 与平面A 1B 1C 的夹角的余弦值是3010.20、[2018·江西卷]三点O (0,0),A (-2,1),B (2,1),曲线C 上任意一点M (x ,y )满足|MA →+MB →|=OM →·(OA →+OB →)+2.(1)求曲线C 的方程;(2)动点Q (x 0,y 0)(-2<x 0<2)在曲线C 上,曲线C 在点Q 处的切线为l ,问:是否存在定点P (0,t )(t <0),使得l 与PA ,PB 都相交,交点分别为D ,E ,且△QAB 与△PDE 的面积之比是常数?假设存在,求t 的值;假设不存在,说明理由、20、解:(1)由MA →=(-2-x,1-y ),MB →=(2-x,1-y ),得|MA →+MB →|=-2x 2+2-2y 2, OM →·(OA →+OB →)=(x ,y )·(0,2)=2y ,由得-2x 2+2-2y 2=2y +2, 化简得曲线C 的方程:x 2=4y .(2)假设存在点P (0,t )(t <0)满足条件,那么直线PA 的方程是y =t -12x +t ,PB 的方程是y =1-t2x +t .曲线C 在Q 处的切线l 的方程是y =x 02x -x 204,它与y 轴交点为F ⎝ ⎛⎭⎪⎫0,-x 204.由于-2<x 0<2,因此-1<x 02<1.①当-1<t <0时,-1<t -12<-12,存在x 0∈(-2,2)使得x 02=t -12, 即l 与直线PA 平行,故当-1<t <0时不符合题意、②当t ≤-1时,t -12≤-1<x 02,1-t 2≥1>x 02,所以l 与直线PA ,PB 一定相交、分别联立方程组⎩⎪⎨⎪⎧y =t -12x +t ,y =x 02x -x24,⎩⎪⎨⎪⎧y =1-t 2x +t ,y =x 02x -x 24,解得D ,E 的横坐标分别是x D =x 20+4t2x 0+1-t,x E =x 20+4t2x 0+t -1,那么x E -x D =(1-t )x 20+4tx 20-t -12. 又|FP |=-x 204-t ,有S △PDE =12·|FP |·|x E -x D |=1-t 8·x 20+4t2t -12-x 20. 又S △QAB =12·4·⎝ ⎛⎭⎪⎫1-x 204=4-x 202,于是S △QAB S △PDE =41-t ·x 20-4[x 20-t -12]x 20+4t2 =41-t ·x 40-[4+t -12]x 20+4t -12x 40+8tx 20+16t2. 对任意x 0∈(-2,2),要使S △QABS △PDE 为常数,那么t 要满足⎩⎨⎧-4-t -12=8t ,4t -12=16t 2,解得t =-1,此时S △QABS △PDE =2,故存在t =-1,使△QAB 与△PDE 的面积之比是常数2. 21、[2018·江西卷]假设函数h (x )满足 ①h (0)=1,h (1)=0;②对任意a ∈[0,1],有h (h (a ))=a ; ③在(0,1)上单调递减、那么称h (x )为补函数、函数h (x )=⎝ ⎛⎭⎪⎫1-x p1+λx p 1p (λ>-1,p >0)、(1)判断函数h (x )是否为补函数,并证明你的结论;(2)假设存在m ∈[0,1],使h (m )=m ,称m 是函数h (x )的中介元、记p =1n (n∈*)时h (x )的中介元为x n ,且S n =∑i =1nx i ,假设对任意的n ∈*,都有S n <12,求λ的取值范围;(3)当λ=0,x ∈(0,1)时,函数y =h (x )的图像总在直线y =1-x 的上方,求p 的取值范围、21、解:(1)函数h (x )是补函数,证明如下:①h (0)=⎝ ⎛⎭⎪⎫1-01+01p =1,h (1)=⎝ ⎛⎭⎪⎫1-11+λ1p =0;②对任意a ∈[0,1],有h (h (a ))=h ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1-a p1+λa p 1p =⎝⎛⎭⎪⎪⎫1-1-a p1+λa p 1+λ1-a p1+λa p 1p =⎝ ⎛⎭⎪⎫1+λa p 1+λ1p=a ; ③令g (x )=(h (x ))p ,有g ′(x )=-px p -11+λx p -1-x p λpx p -11+λx p 2=-p 1+λx p -11+λx p 2. 因为λ>-1,p >0,所以当x ∈(0,1)时,g ′(x )<0,所以函数g (x )在(0,1)上单调递减,故函数h (x )在(0,1)上单调递减、(2)当p =1n (n ∈*),由h (x )=x ,得λx 2n +2x 1n -1=0,(*)(i)当λ=0时,中介元x n =⎝ ⎛⎭⎪⎫12n;(ii)当λ>-1且λ≠0时,由(*)得x 1n =11+λ+1∈(0,1)或x 1n =11-1+λ∉[0,1];得中介元x n =⎝ ⎛⎭⎪⎫11+λ+1n .综合(i)(ii):对任意的λ>-1,中介元为x n =⎝ ⎛⎭⎪⎫11+λ+1n (n ∈*)、于是,当λ>-1时,有S n =∑n i =1⎝⎛⎭⎪⎫11+λ+1i =11+λ⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫11+λ+1n <11+λ, 当n 无限增大时,⎝ ⎛⎭⎪⎫11+λ+1n 无限接近于0,S n 无限接近于11+λ,故对任意的n ∈*,S n <12成立等价于11+λ≤12,即λ∈[3,+∞)、(3)当λ=0时,h(x)=(1-x p)1p,中介元为x p=⎝⎛⎭⎪⎫121p.(i)当0<p≤1时,1p≥1,中介元x p=⎝⎛⎭⎪⎫121p≤12,所以点(x p,h(x p))不在直线y=1-x的上方,不符合条件;(ii)当p>1时,依题意只需(1-x p)1p>1-x在x∈(0,1)时恒成立,也即x p+(1-x)p<1在x∈(0,1)时恒成立,设φ(x)=x p+(1-x)p,x∈(0,1),那么φ′(x)=p[x p-1-(1-x)p-1],由φ′(x)=0得x=12,且当x∈⎝⎛⎭⎪⎫0,12时,φ′(x)<0,当x∈⎝⎛⎭⎪⎫12,1时,φ′(x)>0,又因为φ(0)=φ(1)=1,所以当x∈(0,1)时,φ(x)<1恒成立、综上:p的取值范围是(1,+∞)、。
2019年江西高考试题(数学理)含祥解
![2019年江西高考试题(数学理)含祥解](https://img.taocdn.com/s3/m/bc8a741caaea998fcc220e91.png)
2019年江西高考试题(数学理)含祥解注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!理科数学本试卷分第一卷(选择题)和第二卷(非选择题)两部分。
第一卷1至2页。
第二卷3至4页。
全卷总分值150分,考试时间120分钟。
考生本卷须知1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2、答第一卷时,每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3、答第二卷时,必须用0.5毫米墨水签字笔在答题卡上书写。
在试题卷上作答无效。
4、考试结束,监考人员将试题卷和答题卡一并收回。
参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+ 如果时间A 、B 相互独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n kkkn n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径 第一卷〔选择题 共60分〕【一】选择题:本大题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1、集合M ={x|3x 0x 1≥(-)},N ={y|y =3x 2+1,x ∈R },那么M ⋂N =〔 〕 A 、∅ B. {x|x ≥1} C.{x|x >1} D. {x| x ≥1或x <0}2、复数z +3i 〕z =3i ,那么z =〔 〕A 、32 B. 34 C. 32 D.34 3、假设a >0,b >0,那么不等式-b <1x<a 等价于〔 〕 A 、1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1bD.x <1b -或x >1aO O 4、设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,假设OA F A ∙=-4那么点A 的坐标是〔 〕A 、〔2,±〕 B. (1,±2) C.〔1,2〕D.(2,)5、对于R 上可导的任意函数f 〔x 〕,假设满足〔x -1〕f x '()≥0,那么必有〔 〕 A . f 〔0〕+f 〔2〕<2f 〔1〕 B. f 〔0〕+f 〔2〕≤2f 〔1〕 B . f 〔0〕+f 〔2〕≥2f 〔1〕 C. f 〔0〕+f 〔2〕>2f 〔1〕6、假设不等式x 2+ax +1≥0对于一切x ∈〔0,12〕成立,那么a 的取值范围是〔 〕 A 、0 B. –2 C.-52D.-3 7、等差数列{a n }的前n 项和为S n ,假设1O a B =200OA a OC +,且A 、B 、C 三点共线〔该直线不过原点O 〕,那么S 200=〔 〕 A 、100 B. 101 C.200 D.201 8、在〔x 〕2006的二项展开式中,含x 的奇次幂的项之和为S ,当x 时,S 等于〔 〕A.23008B.-23008C.23009D.-230099、P 是双曲线22x y 1916-=的右支上一点,M 、N 分别是圆〔x +5〕2+y 2=4和〔x -5〕2+y 2=1上的点,那么|PM|-|PN|的最大值为〔 〕 A. 6 B.7 C.8 D.910、将7个人〔含甲、乙〕分成三个组,一组3人,另两组2 人,不同的分组数为a ,甲、乙分到同一组的概率为p ,那么a 、p 的值分别为〔 〕 A . a=105 p=521 B.a=105 p=421 C.a=210 p=521 D.a=210 p=42111、如图,在四面体ABCD 中,截面AEF 经过四面体的内切球〔与四个面都相切的球〕球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,那么必有〔 〕A. S 1<S 2B. S 1>S 2C. S 1=S 2D. S 1,S 2的大小关系不能确定 12、某地一年的气温Q 〔t 〕〔单位:ºc 〕与时间t 〔月份〕之间的关系如图〔1〕所示,该年的平均气温为10ºc ,令G 〔t 〕表示时间段〔0,t 〕的平均气温,G 〔t 〕与t 之间的函数关系用以下图象表示,那么正确的应该是〔 〕C12 6理科数学第二卷〔非选择题 共90分〕本卷须知请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效。
2019年普通高等学校招生全国统一考试数学及详细解析(江西卷.理)
![2019年普通高等学校招生全国统一考试数学及详细解析(江西卷.理)](https://img.taocdn.com/s3/m/e55c1cb681c758f5f61f67e0.png)
2019年普通高等学校招生全国统一考试 数学(江西理科卷)试题精析详解一、选择题(5分⨯12=60分)1.设集合{|||3,},{1,2},{2,1,2}I x x x Z A B =<∈==--,则()I A C B =( )A .{1}B .{1,2}C .{2}D .{0,1,2}【思路点拨】本题考察集合的逻辑运算,可直接求得.【正确解答】{|3003}I x x x =-<<<<或,{0}I C B =,(){0,1,2}I AC B =.选D.【解后反思】集合主要有三种逻辑运算:交集,并集,补集,运算时要留意集合元素的性质,元素确定性,互异性,无序性,要注意补集的运算是离不开全集的,在化简集合时,经常用到两种工具:数轴和韦恩图.2.设复数:2121),(2,1z z R x i x z i z 若∈+=+=为实数,则x = ( )A .-2B .-1C .1D .2【思路点拨】本题考察复数的乘法运算,可直接计算得到答案.【正确解答】12(1)(2)(2)(2)z z i x i x x i =++=-++为实数,故20x +=,即2x =-.选A.【解后反思】复数有两个部分:实部和虚部.而且复数的几种代数运算,其基本算法也是尽可能将其化成复数的代数形式.3. “a =b ”是“直线222()()2y x x a y b =+-+-=与圆相切”的 ( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【思路点拨】本题主要考查直线和圆相切的条件以及充要条件,直线与圆相切的充要条件是 圆心到直线的距离等于半径.【正确解答】直线相切与圆2)()(222=++-+=b y a x x y=,得0a b -=或40a b -+=,因此“a =b ”是“直线2y x =+与圆22()()2x a y b -+-=”相切的充分不必要条件. 选A【解后反思】直线与圆相切可以有两种方式转化(1)几何条件:圆心到直线的距离等于半径(2)代数条件:直线与圆的方程组成方程组有唯一解,从而转化成判别式等于零来解, A ⇒ B,那么称A 是B 的充分条件,B 是A 的必要条件,但是实际问题中,我们往往是说B 成立的的充分条件是A,千万不要搞错顺序.4.123)(x x +的展开式中,含x 的正整数次幂的项共有( )A .4项B .3项C .2项D .1项【思路点拨】本题主要考查二项式展开通项公式的有关知识. 【正确解答】123)(x x +的展开式为12412236121212t t t t t tt tC C xC x-++-==,因此含x的正整数次幂的项共有3项.选B【解后反思】在二项式展开式中,要注意二项式定理的变形,要掌握二项展开式中的系数与二项式系数的区别.5.设函数)(|,3sin |3sin )(x f x x x f 则+=为 ( )A .周期函数,最小正周期为3π B .周期函数,最小正周期为32πC .周期函数,数小正周期为π2D .非周期函数【思路点拨】本题考查三角函数的周期,首先应将f(x)化简,尽可能地化成形如sin()(0)y A x ωϕω=+≠然后再判断.【正确解答】222sin 3 333()2220 3333x k x k f x k x k πππππππ⎧<<+⎪⎪=⎨⎪+<<+⎪⎩()k Z ∈,因此()f x 为周期函数,且最小正周期为32π.选B. 【解后反思】本题也可根据三角函数周期定义进行检验,将A 、 B 、C 、D 中的周期都代入,验证后,可得答案B,另外记住一些常用结论是必要的,例如sin()(0)y A x ωϕω=+≠的最小正周期2||T πω=,tan()(0)y A x ωϕω=+≠最小正周期||T πω=. 6.已知向量的夹角为与则若c a c b a c b a ,25)(,5||),4,2(),2,1(=⋅+=--= ( )A .30°B .60°C .120°D .150°【思路点拨】本题考查平面向量的运算及向量的夹角公式.【正确解答】设(,)c x y =,则5()(1,2)(,)22a b c x y x y +⋅=--⋅=--=,又 ||5c =,所以2||||cos a c x y a c α⋅=+=⋅⋅,得1cos 2α=-,120α=︒,选C.【解后反思】设,a b 的夹角为θ,则]cos ,0,||||a ba b θθπ⎡=∈⎣,(1)当θ为锐角,有0a b 且1a b ≠(2) 当θ为钝角,有0a b 且1a b ≠-(3)当0θ=,,a b 共线且方向相同.(4)当2πθ=时, 0a b =.7.已知函数)(()(x f x f x y ''=其中的图象如右图所示))(的导函数是函数x f ,下面四个图象中)(x f y =的图象大致是( )【思路点拨】本题考查导函数的图象及其性质,由图象得(1)(1)0f f ''=-=,从而导出1x =±是函数f(x)极值点是解本题的关健.【正确解答】由图象知,(1)(1)0f f ''=-=,所以1x =±是函数()f x 的极值点,又因为在(1,0)-上,()0f x '<,在(0,1)上,()0f x '<,因此在(1,1)-上,()f x 单调递减,故选C.【解后反思】要注意,若00(,)p x y 是函数y=f(x)的极值点,则有()0f x '=,但是若0()0f x '=,则是00(,)p x y 不一定是函数y=f(x)极值点,所以要判断一个点是否为极值点,还要检验点P 的两侧的单调性是否不同. 8.=--=--→→)22(1lim ,11)1(lim11x f x x x f x x 则若( )A .-1B .1C .-21D .21 【思路点拨】本题主要是考查函数极限法则的运用,涉及函数在某一点的极限的有关知识. 【正确解答】令1t x =-,则0()lim1t f t t→=,令22s x =-,则1001112lim lim lim (22)()2()2x s s sx s f x f s f s →→→--==-=--.选C.【解后反思】本题首先利用整体代换的方法,简化极限运算中式子,然后使用配凑法,将最值式子进行简化,再将简化后的条件代入因式,得出解.在做这一类题目时,先适当的将条件化简是解决的关健.9.矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B -AC -D ,则四面体ABCD 的外接球的体积为( )A .π12125B .π9125C .π6125D .π3125【思路点拨】本题主要考查图形的翻折问题,利用球心到球面的距离均相等,找出球心是解本题的关健.【正确解答】连接矩形ABCD 的对角线AC 、BD 交于O ,则AO =BO =CO =DO ,则O 为四面体ABCD 的外接球的圆心,因此四面体ABCD 的外接球的半径为52,体积为345125()326ππ=.选C. 【解后反思】对于图形的翻折问题,关健是利用翻折前后的不变量,另外,球和正方体,长方体,三棱锥的组合问题,应引起高度重视,而且有些问题也可以通过补形法转化成球内接正方体或内接长方体问题.10.已知实数a , b 满足等式,)31()21(ba=下列五个关系式 ①0<b <a②a <b <0③0<a <b ④b <a <0 ⑤a =b 其中不可能...成立的关系式有 ( )A .1个B .2个C .3个D .4个【思路点拨】本题涉及指数函数的若干知识.【正确解答】,a b 均大于零时,要满足等式,必有a b >;,a b 均小于零时,要满足等式,必有a b <;0a b ==时,显然等式成立.因此不可能成立的关系式为③④,选B 【解后反思】根据函数图形来解客观题,快速而且准确,这就要求对函数的图形要相当了解. 11.在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则△OAB 的面积达到最大值时,=θ( )A .6πB .4π C .3π D .2π 【思路点拨】运用图形,根据图形表示ABC ∆的面积,将实际问题转化成数学问题. 【正确解答】1111sin cos (1cos )(1sin )222ABC S θθθθ∆=-----11sin cos 22θθ=-11sin 224θ=- 当2θπ=即2πθ=时,面积最大.【解后反思】运用三角函数解决相应的实际问题,首先应根据题目的要求将面积的表达式写出来,然后在表达式中,根据自变量的取值范围,最终求出答案,所要注意的是,解决此类问题时不能仅凭函数的表达式,应考虑实际情况,例如,在函数的自变量中,可以取负数,而如果在实际题目中,自变量表示的是天数,那么这相自变量必须为正数,且为整数等等.12.将1,2,…,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为( )A .561B .701 C .3361 D .4201 【思路点拨】本题主要考查平均分组问题及概率问题.【正确解答】将1,22-------9平均分成三组的数目为33396333280C C C A =,又每组的三个数成等差数列,种数为了4,所以答案为B【解后反思】这是一道概率题,属于等可能事件,在求的过程中,先求出不加条件限制的所有可能性a ,然后再根据条件,求出满足题目要求的可能种数b ,最后要求的概率就是b a. 二、填空题(4分⨯4=16分) 13.若函数)2(log )(22a x x x f n ++=是奇函数,则a = .【思路点拨】本题主要考查函数的奇偶性,由函数的奇偶性的定义可求得. 【正确解答】解法1:由题意可知,()()f x f x =--,即x +=,因此221a =,2a =±. 解法2:函数的定义域为R,又f(x)为奇函数,故其图象必过原点即f(0)=0,所以(0log 0n=,1=即||2a =2a =± 【解后反思】对数学概念及定理公式的深刻理解是解数学问题的关健,讨论函数的奇偶性,其前提条件是函数的定义域必须关于原点对称.若函数f(x)为奇函数()()()f x f x y f x ⇔-=-⇔=的图象关于原点对称. 若函数f(x)为偶函数()()()f x f x y f x ⇔-=⇔=的图象关于y 轴对称. 14.设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- . 【思路点拨】本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最值.【正确解答】0y y z x x -==-表示两点(0,0),A(x,y)的斜率【解后反思】解题的关键是理解目标函数00y y z x x -==-的几何意义,类似的你知道22z x y =+的几何意义吗? 15.如图,在直三棱柱ABC —A 1B 1C 1中,AB=BC=2,BB 1=2,90=∠ABC ,E 、F 分别为AA 1、C 1B 1的中点,沿棱柱的表面从E 到F 两点的最短路径的长度为 .【思路点拨】本题主要考查空间距离转化为平面距离. 【正确解答】分别延11111BB A C A B 、和将E 、F 展开到同一平面内,则易得:EF ==EF ==或EF ==【解后反思】将平面图形空间化也是立体几何的另一种问题形式,在做立体几何中,许多问题都是空间图形进行平面化,努力将一个个空间图形,通过所学的几何知识,转化成平面图形,最后使用平面几何的若干知识解决,而本题却反其道而行之,所以在做法上就不能和上述的方法相同,但在本质上有许多相通之处,在这类题目中,尽量找出两者图形过程中的联系之处,哪些量变啦,哪些量没有变,然后解决起来,就会顺手多啦. 16.以下同个关于圆锥曲线的命题中①设A 、B 为两个定点,k 为非零常数,k =-||||,则动点P 的轨迹为双曲线;②设定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若),(21OB OA OP +=则动点P 的轨迹为椭圆;③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为 (写出所有真命题的序号)【思路点拨】本题主要考查圆锥曲线的定义和性质主要由a,b,c,e 的关系求得【正确解答】双曲线的第一定义是:平面上的动点P 到两定点是A,B 之间的距离的差的绝对值为常数2a,且2||a AB <,那么P 点的轨迹为双曲线,故①错, 由1()2OP OA OB =+,得P 为弦AB 的中点,故②错, 设22520x x -+=的两根为12,x x 则12125,12x x x x +==可知两根互与为倒数,且均为正,故③对,221259x y -=的焦点坐标(),而22135x y +=的焦点坐标(),故④正确. 【解后反思】要牢牢掌握椭圆,双曲线的第一定义,同时还要掌握圆锥曲线的统一定义,弄清圆锥曲线中a,b,c,e 的相互关系. 三、解答题(共74分) 17.(本小题满分12分)已知函数bax x x f +=2)((a ,b 为常数)且方程f (x )-x +12=0有两个实根为x 1=3, x 2=4.(1)求函数f (x )的解析式;(2)设k>1,解关于x 的不等式;xkx k x f --+<2)1()(【思路点拨】本题主要考查求函数的解析式及含参分式不等式的解法.【正确解答】(1)将0124,3221=+-+==x bax x x x 分别代入方程得 ).2(2)(,2184169392≠-=⎩⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-=+-=+x x x x f b a ba ba 所以解得 (2)不等式即为02)1(,2)1(222<-++---+<-xkx k x x k x k x x 可化为即.0))(1)(2(>---k x x x①当).,2(),1(,21+∞⋃∈<<k x k 解集为②当);,2()2,1(0)1()2(,22+∞⋃∈>--=x x x k 解集为不等式为时 ③),()2,1(,2+∞⋃∈>k x k 解集为时当.【解后反思】解不等式的过程实质上就是转化的过程,分式不等式转化成整式不等式,解分式不等式一般情况下是移项,通分,然后转化成整式不等式,对于高次不等式,借助数轴法,则简单,快捷,另外()0()()0()f x f x g x g x >⇔>,()()0()0()0()f x g x f x g x g x ≥⎧≥⇔⎨≠⎩ 18.(本小题满分12分)已知向量x f x x x x⋅=-+=+=)()),42tan(),42sin(2()),42tan(,2cos 2(令πππ. 是否存在实数?))()((0)()(],,0[的导函数是其中使x f x f x f x f x '='+∈π若存在,则求出x 的值;若不存在,则证明之.【思路点拨】本题主要考查向量与三角,导数的综合题,正确化简f(x)是解该题的关健. 【正确解答】)42tan()42tan()42sin(2cos 22)(πππ-+++=⋅=x x x x b a x f12cos 22cos 2sin 22tan112tan 2tan 12tan1)2cos 222sin 22(2cos 222-+=+-⋅-+++=x x x x x x x x x x.cos sin x x +=xx x x x f x f x f x f sin cos cos sin )()(:,0)()(-++='+='+即令.0cos 2==x.0)()(],,0[2,2='+∈==x f x f x x 使所以存在实数可得πππ【解后反思】本题是一道简单三角函数题,不过我们仍然在本题的解决过程中,发现这样一个问题,化简在解决数学过程中的重要地位,本题只要化简到位,那么在解决的过程会大大缩短,一切都变的简单起来,所以在解三角函数问题或其他的数学问题,能化简的,要尽量先化简.19.(本小题满分12分)A 、B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止.设ξ表示游戏终止时掷硬币的次数.(1)求ξ的取值范围; (2)求ξ的数学期望E ξ.【思路点拨】本题考查涉及概率等若干知识,理解ξ的含义是解决本题的关键.【正确解答】(1)设正面出现的次数为m ,反面出现的次数为n ,则⎪⎩⎪⎨⎧≤≤=+=-915||ξξn m n m ,可得:.9,7,5:;9,7,22,7;7,6,11,6;5,5,00,5的所有可能取值为所以时或当时或当时或当ξξξξ===============n m n m n m n m n m n m(2);645)21(2)7(;161322)21(2)5(7155=====⨯==C P P ξξ .322756455964571615;64556451611)9(=⨯+⨯+⨯==--==ξξE P【解后反思】要想做对此类问题,要具备两个条件,首先要理解题目所涉及的知识,本题有一定的抽象性,如果你不理解题目,你就无从下手,第二要记牢这一类题目的做题步骤,做此类型题目,有时候步骤很重要的,严格按照书中例题的步骤完成是得到正确答案的保证. 20.(本小题满分12分)如图,在长方体ABCD —A 1B 1C 1D 1,中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离;(3)AE 等于何值时,二面角D 1—EC —D 的大小为4π.【思路点拨】本题涉及立体几何线面关系的有关知识, 【正确解答】解法(一)(1)证明:∵AE ⊥平面AA 1DD 1,A 1D ⊥AD 1,∴A 1D ⊥D 1E(2)设点E 到面ACD 1的距离为h ,在△ACD 1中,AC=CD 1=5,AD 1=2, 故.2121,232152211=⋅⋅==-⋅⋅=∆∆BC AE S S ACE C AD 而 .31,23121,3131111=∴⨯=⨯∴⋅=⋅=∴∆∆-h h h S DD S V C AD AEC AEC D(3)过D 作DH ⊥CE 于H ,连D 1H 、DE ,则D 1H ⊥CE , ∴∠DHD 1为二面角D 1—EC —D 的平面角. 设AE=x ,则BE=2-x,,,1,.1,4,211x EH DHE Rt x DE ADE Rt DH DHD DH D Rt =∆∴+=∆=∴=∠∆中在中在中在 π.4,32.32543.54,3122π的大小为二面角时中在中在D EC D AE x x x x x x CE CBE Rt CH DHC Rt ---=∴-=⇒+-=+∴+-=∆=∆解法(二):以D 为坐标原点,直线DA ,DC ,DD 1分别为x,y,z 轴,建立空间直角坐标系,设AE=x ,则A 1(1,0,1),D 1(0,0,1),E (1,x ,0),A (1,0,0)C (0,2,0)(1).,0)1,,1(),1,0,1(,1111D DA x D DA ⊥=-=所以因为(2)因为E 为AB 的中点,则E (1,1,0),从而)0,2,1(),1,1,1(1-=-=AC E D ,)1,0,1(1-=AD ,设平面ACD 1的法向量为),,(c b a =,则⎪⎩⎪⎨⎧=⋅=⋅,0,01AD 也即⎩⎨⎧=+-=+-002c a b a ,得⎩⎨⎧==ca ba 2,从而)2,1,2(=,所以点E 到平面AD 1C 的距离为.3132121=-+=⋅=h (3)设平面D 1EC 的法向量),,(c b a =,∴),1,0,0(),1,2,0(),0,2,1(11=-=-=DD D x由⎩⎨⎧=-+=-⇒⎪⎩⎪⎨⎧=⋅=⋅.0)2(02,0,01x b a c b D 令b=1, ∴c=2,a =2-x , ∴).2,1,2(x -= 依题意.225)2(222||||4cos 211=+-⇒=⋅=x DD n π∴321+=x (不合,舍去),322-=x .∴AE=32-时,二面角D 1—EC —D 的大小为4π. 【解后反思】立体几何的内容就是空间的判断、推理、证明、角度和距离、面积与体积的计算,这是立体几何的重点内容,本题实质上求解角度和距离,在求此类问题中,尽量要将这些量处于三角形中,最好是直角三角形,这样计算起来,比较简单,此外用向量也是一种比较好的方法,不过建系一定要恰当,这样坐标才比较好写出来.21.(本小题满分12分)已知数列:,}{且满足的各项都是正数n a0111,(4),.2n n n a a a a n N +==-∈ (1)证明;,21N n a a n n ∈<<+(2)求数列}{n a 的通项公式a n .【思路点拨】本题考查数列的基础知识,考查运算能力和推理能力.第(1)问是证明递推关系,联想到用数学归纳法,第(2)问是计算题,也必须通过递推关系进行分析求解.【正确解答】(1)方法一 用数学归纳法证明:1°当n=1时,,23)4(21,10010=-==a a a a ∴210<<a a ,命题正确.2°假设n =k 时有.21<<-k k a a则)4(21)4(21,1111k k k k k k a a a a a a k n ---=-+=--+时 ).4)((21))((21)(211111k k k k k k k k k k a a a a a a a a a a ---=+---=----- 而.0,04.0111<-∴>--<----k k k k k k a a a a a a又.2])2(4[21)4(2121<--=-=+k k k k a a a a ∴1+=k n 时命题正确.由1°、2°知,对一切n ∈N 时有.21<<+n n a a方法二:用数学归纳法证明:1°当n=1时,,23)4(21,10010=-==a a a a ∴2010<<<a a ; 2°假设n =k 时有21<<-k k a a 成立,令)4(21)(x x x f -=,)(x f 在[0,2]上单调递增,所以由假设 有:),2()()(1f a f a f k k <<-即),24(221)4(21)4(2111-⨯⨯<-<---k k k k a a a a 也即当n=k+1时 21<<+k k a a 成立,所以对一切2,1<<∈+k k a a N n 有(2)下面来求数列的通项:],4)2([21)4(2121+--=-=+n n n n a a a a 所以 21)2()2(2--=-+n n a an n n n n n n n n b b b b b a b 22212122222112)21()21(21)21(2121,2-+++----==⋅-=--=-=-= 则令, 又b n =-1,所以1212)21(22,)21(---=+=-=n n n n n b a b 即. 【解后反思】数列是高考考纲中明文规定必考内容之一,考纲规定学生必须理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.当然数列与不等式的给合往往得高考数学的热点之一,也成为诸多省份的最后压轴大题,解决此类问题,必须有过硬的数学基础知识与过人的数学技巧,同时运用数学归纳法也是比较好的选择,不过在使用数学归纳法的过程中,一定要遵循数学归纳法的步骤.22.(本小题满分14分)如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程.(2)证明∠PFA=∠PFB.【思路点拨】本题涉及解析几何中直线与抛物线的若干知识.【正确解答】(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;02200=--x y x x切线BP 的方程为:;02211=--x y x x解得P 点的坐标为:1010,2x x y x x x P P =+= 所以△APB 的重心G 的坐标为 P P G x x x x x =++=310, ,343)(3321021010212010p P P G y x x x x x x x x x y y y y -=-+=++=++= 所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为: ).24(31,02)43(22+-==-+--x x y x y x 即。
2019年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)
![2019年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)](https://img.taocdn.com/s3/m/40f1db1fee06eff9aef8075a.png)
绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A. }{43x x -<<B. }{42x x -<<-C. }{22x x -<<D. }{23x x <<【答案】C 【解析】 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A. 22+11()x y += B. 22(1)1x y -+=C. 22(1)1x y +-=D. 22(+1)1y x +=【答案】C 【解析】 【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【详解】,(1),z x yi z i x y i =+-=+-1,z i -则22(1)1x y +-=.故选C .【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.3.已知0.20.32log 0.2,2,0.2a b c ===,则A. a b c <<B. a c b <<C. c a b <<D. b c a <<【答案】B 【解析】 【分析】运用中间量0比较,a c ,运用中间量1比较,b c 【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.4.≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm【答案】B 【解析】 【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至肚脐的长为x cm ,肚脐至腿根的长为y cm ,则262611052x x y +==+,得42.07, 5.15x cm y cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B .【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为A.B.C. D.【答案】D 【解析】 【分析】先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.【详解】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D . 【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.1116【答案】A 【解析】 【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2中情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.7.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A.π6B.π3C.2π3D.5π6【答案】B 【解析】 【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥得出向量,a b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.8.如图是求112122++的程序框图,图中空白框中应填入A. A =12A+ B. A =12A+C. A =112A+D. A =112A+【答案】A 【解析】 【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.【详解】执行第1次,1,122A k ==≤是,因为第一次应该计算1122+=12A +,1k k =+=2,循环,执行第2次,22k =≤,是,因为第二次应该计算112122++=12A +,1k k =+=3,循环,执行第3次,22k =≤,否,输出,故循环体为12A A=+,故选A .【点睛】秒杀速解 认真观察计算式子的结构特点,可知循环体为12A A=+.9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A. 25n a n =- B. 310n a n =- C. 228n S n n =-D. 2122n S n n =- 【答案】A 【解析】 【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C.对D,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A . 【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A. 2212x y +=B. 22132x y +=C. 22143x y +=D. 22154x y += 【答案】B 【解析】 【分析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12A F n =,在1A FB △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得2n =,从而可求解. 【详解】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1A F B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]ππ-有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A. ①②④ B. ②④C. ①④D. ①③【答案】C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()s i n s i n s i n s i n ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N 时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A. B.C.D.【答案】D 【解析】 【分析】先证得PB ⊥平面PAC ,再求得PA PB PC ===P ABC -为正方体一部分,进而知正方体的体对角线即为球直径,从而得解. 【详解】解法一:,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,PAB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,2R ==3442338R V R =∴=π=⨯=π,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形,CF ∴=90CEF ∠=︒1,2CE AE PA x ∴===AEC ∆中余弦定理()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D Q 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x +-+∴=,22121222x x x ∴+=∴==,PA PB PC ∴===,又===2A B B C A C ,,,PA PB PC ∴两两垂直,2R ∴==R ∴=,34433V R ∴=π==,故选D . 【点睛】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.二、填空题:本题共4小题,每小题5分,共20分。
2019年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
![2019年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)](https://img.taocdn.com/s3/m/f377b8ff32d4b14e852458fb770bf78a64293a7d.png)
绝密★启用前2019 年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12 小题,每小题5 分,共60 分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合A = {-1, 0,1, 2},B = {x x2≤1} ,则AA.{-1,0,1} B.{0,1} C.{-1,1} D.{0,1, 2}2.若z(1+ i) = 2i ,则z=A.-1- iB.-1+iC.1- iD.1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100 学生,其中阅读过《西游记》或《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.84.(1+2x2)(1+x)4的展开式中x3的系数为A.12 B.16 C.20 D.245.已知各项均为正数的等比数列{a n}的前4 项为和为15,且a5=3a3+4a1,则a3=A.16 B.8 C.4 D.26.已知曲线y =a e x+x ln x 在点(1,a e)处的切线方程为y=2x+b,则A. a = e,b =-1 b =-1B.a=e,b=1 C.a = e-1,b = 1 D .a = e-1,B =7.函数y =2x32x + 2-x在[-6, 6]的图象大致为A.B.C.D.8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD⊥平面ABCD,M是线段ED 的中点,则A.BM=EN,且直线BM、EN 是相交直线B.BM≠EN,且直线BM,EN 是相交直线C.BM=EN,且直线BM、EN 是异面直线D.BM≠EN,且直线BM,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于yA. 2 - 124B. 2 - 125C. 2 - 126D. 2 - 12710. 双曲线 C :x2- =1 的右焦点为 F ,点 P 在 C 的一条渐进线上,O 为坐标原点,若 4 2PO = PF ,则△PFO 的面积为A. 3 24B. 3 22C. 2D. 311. 设 f( x ) 是定义域为 R 的偶函数,且在(0, ∞) 单调递减,则A. f (log1 )> f (- 3)>f ( - 2 )B. f (log 34 1)> f ( 2 2- 2)> f ( 2 3- 3 )3 4 2 3 2 2C. f ( - 3)> f ( -2)> f (log1)2 22 334D. f ( - 2)> f ( -3)> f (log1 )2 32 23412. 设函数 f( x ) =sin (ω x + π)( ω >0),已知 f (x ) 在[0, 2π]有且仅有 5 个零点,下述 5四个结论:① f (x ) 在( 0, 2π )有且仅有 3 个极大值点 2 22, xy ② f (x ) 在( 0, 2π )有且仅有 2 个极小值点③ f (x ) 在( 0, π)单调递增10④ ω 的取值范围是[12 29) 5 10其中所有正确结论的编号是A . ①④B . ②③C . ①②③D . ①③④二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2019年江西高考试题(数学理)解析版
![2019年江西高考试题(数学理)解析版](https://img.taocdn.com/s3/m/f978610810661ed9ad51f390.png)
2019年江西高考试题(数学理)解析版注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!理科数学试题〔江西卷〕第一卷【一】选择题:本大题共12小题,每个小题5分,共60分。
在每个小题给出的四个选项中,有一项为哪一项符合题目要求的。
1.〔x+i 〕〔1-i 〕=y ,那么实数x ,y 分别为〔 〕A.x=-1,y=1B. x=-1,y=2C. x=1,y=1D. x=1,y=2 【答案】 D【解析】考查复数的乘法运算。
可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2.2.假设集合{}A=|1x x x R ≤∈,,{}2B=|y y x x R =∈,,那么A B ⋂=〔 〕A. {}|11x x -≤≤B. {}|0x x ≥C. {}|01x x ≤≤D. ∅【答案】 C【解析】考查集合的性质与交集以及绝对值不等式运算。
常见的解法为计算出集合A 、B ;{|11}A x x =-≤≤,{|0}B y y =≥,解得A B={x|01}x ≤≤。
在应试中可采用特值检验完成。
3.不等式22x x x x --> 的解集是〔 〕 A. (02), B. (0)-∞, C. (2)+∞, D. (0)∞⋃+∞(-,0), 【答案】 A【解析】考查绝对值不等式的化简.绝对值大于本身,值为负数.20x x-<,解得A 。
或者选择x=1和x=-1,两个检验进行排除。
4.2111lim 1333nx →∞⎛⎫++++=⎪⎝⎭〔 〕A. 53B. 32 C. 2 D. 不存在【答案】B【解析】考查等比数列求和与极限知识.解法一:先求和,然后对和取极限。
1133lim ()1213nn →+∞-=-5.等比数列{}n a 中,12a =,8a =4,函数()128()()()f x x x a x a x a =---,那么()'0f =〔 〕A 、62 B. 92 C. 122 D. 152【答案】C【解析】考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法。
2019江西高考数学理科试题及答案共9页
![2019江西高考数学理科试题及答案共9页](https://img.taocdn.com/s3/m/8a1ccb2db84ae45c3b358c48.png)
2019年普通高等学校招生全国统一考试(江西卷)理科数学乐享玲珑,为中国数学增光添彩! 免费,全开放的几何教学软件,功能强大,好用实用第一卷一、 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1,2,M zi =,i 为虚数单位,{}{}3,4,4N M N =⋂=,则复数z = A.2i - B.2i C.4i - D.4i 2.函数)y x =-的定义域为A.(0,1)B.[0,1)C.(01]D.[0,1] 3.等比数列,33,66x x x ++,..的第四项等于A.24-B.0C.12D.244.总体有编号为01,02,…,19,20的20个个体组成。
利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的5. 2532()x x-展开式中的常数项为 A.80 B.-80 C.40 D.40-6.若22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰则123,,S S S 的大小关系为A.123S S S <<B.213S S S <<C.231S S S <<D.321S S S <<7.阅读如下程序框图,如果输出5i =,那么在空白矩形框中应填入的语句为8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD P ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为,m n ,那么m n +=A.8B.9C.10D.119. 过点引直线l 与曲线y =A 、B 两点,O 为坐标原点,当AOB ∆的面积取最大值时,直线l 的斜率等于 10.如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线,12,l l 之间l //1l ,l 与半圆相交于F,G 两点,与三角形ABC 两边相交于E,D两点,设弧»FG的长为(0)x x π<<,y EB BC CD =++,若l 从1l 平行移动到2l ,则函数()y f x =的图像大致是第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分。
2019年江西省高考理科数学试卷及答案解析【word版】
![2019年江西省高考理科数学试卷及答案解析【word版】](https://img.taocdn.com/s3/m/3b447c36f18583d04964599f.png)
2019年普通高等学校招生全国统一考试(江西卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. z 是z 的共轭复数. 若2=+z z ,(2)(=-i z z (i 为虚数单位),则=z ( )A. i +1B. i --1C. i +-1D. i -1 【答案】D 【解析】()2,(,)12211Z Z Z a bi a b R a Z Z i Z b b Z i+==+∈∴=-=∴-=∴=-∴=-Q Q所以选D 。
2. 函数)ln()(2x x x f -=的定义域为( )A.)1,0(B. ]1,0[C. ),1()0,(+∞-∞D. ),1[]0,(+∞-∞ 【答案】C 【解析】2010x x x x ->∴><Q 或所以选C.3. 已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=a ( ) A. 1 B. 2 C. 3 D. -1 【答案】A 【解析】()()()01510101f g x g a a ==∴=∴-=∴=Q所以选A 。
4.在ABC ∆中,内角A,B,C 所对应的边分别为,,,c b a ,若,3,6)(22π=+-=C b a c 则ABC ∆的面积( )A.3B.239C.233 D.33 【答案】C 【解析】()2 2222 22222cos2611333cos2222c a b ba b c ab ba b c abC abab b ababS ab C b=-+∴+-=-+-==∴-=∴=∴===QQg g所以选C。
5.一几何体的直观图如右图,下列给出的四个俯视图中正确的是()【答案】B【解析】俯视图为在底面上的投影,易知选:B6.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,泽宇性别有关联的可能性最大的变量是()A.成绩B.视力C.智商D.阅读量【答案】D【解析】根据独立性检验相关分析知,阅读量与性别相关数据较大,选D7.阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为()A.7B.9C.10D.11【答案】B【解析】1357910lg lg lg lg lg lg135791111S=+++++=<-,9i∴=,选B8.若12()2(),f x x f x dx=+⎰则10()f x dx=⎰()A.1- B.13- C.13D.1【答案】B【解析】设()1m f x dx=⎰,则2()2f x x m=+,()11112300011()2()2233f x dx x f x dx dx x mx m m=+=+=+=⎰⎰⎰,所以13m=-.9.在平面直角坐标系中,,A B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线240x y+-=相切,则圆C 面积的最小值为( ) A.45π B.34π C.(625)π- D.54π 【答案】A【解析】原点O 到直线240x y +-=的距离为d ,则54=d ,点C 到直线240x y +-=的距离是圆的半径r ,由题意知C 是AB 的中点,又以斜边为直径的圆过三个顶点,则在直角AOB ∆中三角形中,圆C 过原点O ,即||OC r =,圆C 的轨迹为抛物线,O 为焦点,l 为准线,所以522min ==d r ,542min ππ==r S ,所以选A 。
2019年高考理科数学试题(江西卷)
![2019年高考理科数学试题(江西卷)](https://img.taocdn.com/s3/m/d09209ea6529647d272852ff.png)
2006年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第Ⅱ卷时,必须用0.5毫米墨水签字笔在答题卡上书写。
在试题卷上作答无效。
4.考试结束,监考人员将试题卷和答题卡一并收回。
参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+ 如果时间A 、B 相互独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n kkkn n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合M ={x|3x 0x 1≥(-)},N ={y|y =3x 2+1,x ∈R },则M ⋂N =( ) A .∅ B. {x|x ≥1} C.{x|x >1} D. {x| x ≥1或x <0}2、已知复数z 3i )z =3i ,则z =( )A .322i B. 344 C. 322 D.3443、若a >0,b >0,则不等式-b <1x<a 等价于( ) A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a4、设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA F A ∙=-4则点A 的坐标是( )A .(2,±) B. (1,±2) C.(1,2)D.(2,)5、对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( ) A . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) B . f (0)+f (2)≥2f (1) C. f (0)+f (2)>2f (1)6、若不等式x 2+ax +1≥0对于一切x ∈(0,12〕成立,则a 的取值范围是( ) A .0 B. –2 C.-52D.-3 7、已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC +,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=( ) A .100 B. 101 C.200 D.201 8、在(x)2006的二项展开式中,含x 的奇次幂的项之和为S ,当x时,S 等于( ) A.23008 B.-23008 C.23009 D.-230099、P 是双曲线22x y 1916-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN|的最大值为( ) A. 6 B.7 C.8 D.910、将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a ,甲、乙分到同一组的概率为p ,则a 、p 的值分别为( ) A . a=105 p=521 B.a=105 p=421 C.a=210 p=521 D.a=210 p=42111、如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( )A. S 1<S 2B. S 1>S 2C. S 1=S 2D. S 1,S 2的大小关系不能确定 12、某地一年的气温Q (t )(单位:ºc )与时间t (月份)之间的关系如图(1)所示,已知该年的平均气温为10ºc ,令G (t )表示时间段〔0,t 〕的平均气温,G (t )与t 之间的函数关系用下列图象表示,则正确的应该是( )C理科数学第Ⅱ卷(非选择题 共90分)注意事项:请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年普通高等学校招生全国统一考试(江西卷)
理科数学
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页。
满分150分,考试时间120分钟。
考生注意:
1.答题前,考生务必将自己的准考证号、姓名填写答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答题无效。
3.考试结束,务必将试卷和答题卡一并上交。
参考公式: 锥体体积公式V=
1
3
Sh ,其中S 为底面积,h 为高。
第I 卷
一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x ∈A,y ∈B }中的元素的个数为 A .5 B.4 C.3 D.2 2.下列函数中,与函数
定义域相同的函数为 A .y=
1
sin x
B.y=1nx x
C.y=xe x
D. sin x x
3.若函数f(x)= 21,1
lg ,1x x x x ⎧+≤⎨
>⎩
,则f(f(10)=
A.lg101
B.b
C.1
D.0
4.若tan θ+
1
tan θ =4,则sin2θ= A .15 B. 14 C. 13 D. 12
5.下列命题中,假命题为
A .存在四边相等的四边形不.
是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数 C .若,x y ∈R ,且2,x y +>则,x y 至少有一个大于1
D .对于任意01,n n n n n N C C C ∈++
+都是偶数
6.观察下列各式:
221,3,a b a b +=+=334455
4,7,11,a b a b a b +=+=+=则1010
a b +=
A .28
B .76
C .123
D .199
7.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则
22
2
PA PB PC
+=
A .2
B .4
C .5
D .10
8.某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表 年产量/亩 年种植成本/亩 每吨售价 黄瓜 4吨 1.2万元 0.55万元 韭菜
6吨
0.9万元
0.3万元
为使一年的种植总利润(总利润=总销售收入 总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为
A .50,0
B .30,20
C .20,30
D .0,50 9.样本(12,,,n x x x )的平均数为x ,样本(12,,m y y y )的平均数为()y x y ≠,若样本
(12,,
,n x x x ,12,,m y y y )的平均数(1)z ax a y =+-,其中1
02
α<<
,则n,m 的大小关系为
A .n m <
B .n m >
C .n m =
D .不能确定
10.如右图,已知正四棱锥S ABCD -所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分,记(01),SE x x =<<截面下面部分的体积为
(),V x 则函数()y V x =的图像大致为
2019年普通高等学校招生全国统一考试(江西卷)
理科数学
第Ⅱ卷
注:
第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答。
若在试题卷上作答,答案无效。
二。
填空题:本大题共4小题,每小题5分,共20分。
11.计算定积分___________。
12.设数列{a n},{b n}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=___________。
13椭圆(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2。
若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为_______________.
14下图为某算法的程序框图,则程序运行后输出的结果是______________.
三、选做题:请在下列两题中任选一题作答。
若两题都做,则按第一题评阅计分。
本题共5分。
15.(1)(坐标系与参数方程选做题)曲线C的直角坐标方程为x2+y2-2x=0,以原点为极点,x轴的正半轴为极轴建立积坐标系,则曲线C的极坐标方程为___________。
15.(2)(不等式选做题)在实数范围内,不等式|2x-1|+|2x+1|≤6的解集为___________。
四.解答题:本大题共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤。
16.(本小题满分12分)
已知数列{a n}的前n项和,且S n的最大值为8. (1)确定常数k,求a n;
(2)求数列的前n项和T n。
17.(本小题满分12分)
在△ABC中,角A,B,C的对边分别为a,b,c。
已知,。
(1)求证:
(2)若a=2,求△ABC的面积。
18.(本题满分12分)
如图,从A1(1,0,0),A2(2,0,0),B1(0,2,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0)。
(1)求V=0的概率;
(2)求V的分布列及数学期望。
19.(本题满分12分)
在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=5,BC=4,在A1在底面ABC的投影是线段BC的中点O。
(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值。
20. (本题满分13分)
已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足+=⋅++.
MA MB OM OA OB
()2
(1)求曲线C的方程;
(2)动点Q(x0,y0)(-2<x0<2)在曲线C上,曲线C在点Q处的切线为l向:是否存在定点P(0,t)(t<0),使得l与PA,PB都不相交,交点分别为D,E,且△QAB与△PDE 的面积之比是常数?若存在,求t的值。
若不存在,说明理由。
21. (本小题满分14分) 若函数h(x)满足
(1)h(0)=1,h(1)=0;
(2)对任意[]0,1a ∈,有h(h(a))=a ; (3)在(0,1)上单调递减。
则称h(x)为补函数。
已知函数
(1)判函数h(x)是否为补函数,并证明你的结论;
(2)若存在[]0,1m ∈,使得h(m)=m ,若m 是函数h(x)的中介元,记
时
h(x)的中介元为x n ,且
,若对任意的n N +∈,都有S n <
1
2
,求λ的取值范围; (3)当λ=0,()0,1x ∈时,函数y= h(x)的图像总在直线y=1-x 的上方,求P 的取值范围。