独立样本t检验

合集下载

独立样本t检验的前提条件

独立样本t检验的前提条件

独立样本t检验的前提条件
独立样本t检验是一种常用的统计方法,但在使用该方法前需要满足一定的前提条件。

其中包括样本的独立性、正态分布和方差齐性。

样本的独立性是指样本之间互相独立,即某个样本的观测值与另一个样本的观测值无关。

这是因为如果样本之间存在依赖关系,那么样本中的变异性可能会受到影响,从而导致独立样本t检验的结果不准确。

正态分布是指样本的数据分布符合正态分布。

在正态分布下,数据集中在均值附近,而且分布的左右两侧对称。

如果样本数据不符合正态分布,那么可能会导致独立样本t检验的结果不准确。

方差齐性是指样本的方差相等。

如果方差不相等,那么样本之间的差异可能会受到影响,从而导致独立样本t检验的结果不准确。

因此,在使用独立样本t检验前,需要检查样本是否满足以上三个前提条件,以确保结果的准确性。

- 1 -。

独立样本t公式

独立样本t公式

独立样本t公式全文共四篇示例,供读者参考第一篇示例:独立样本t检验(Independent samples t-test)是一种常用的统计方法,用于比较两组数据的均值是否有显著差异。

它适用于两个独立的、正态分布的样本组,且两组数据之间没有相关性。

独立样本t检验的原假设是两组数据的均值相等,备择假设是两组数据的均值不相等。

独立样本t检验的计算公式如下:t = (X1 - X2)/ √(s1²/n1 + s2²/n2)t表示t值,X1和X2分别为两组数据的均值,s1²和s2²分别为两组数据的方差,n1和n2分别为两组数据的样本量。

这个公式是根据两组数据的均值和标准差来计算t值的,从而判断两组数据的均值之间是否有显著差异。

1. 提出假设:设定原假设和备择假设,一般原假设为两组数据的均值相等,备择假设为两组数据的均值不相等。

2. 收集数据:分别收集两组数据的样本量、均值和标准差。

3. 计算t值:根据上面的公式计算t值。

4. 查找t临界值:根据显著水平和自由度确定t检验的临界值。

5. 进行假设检验:比较计算得到的t值和临界值,若t值大于临界值,则拒绝原假设,即认为两组数据的均值存在显著差异;反之,则接受原假设,认为两组数据的均值相等。

独立样本t检验是一种简单而有效的方法,可用于比较两组数据的差异,帮助研究者更好地理解数据之间的关系。

在实际应用中,独立样本t检验常用于医学、社会科学等领域,帮助研究者进行比较分析,发现隐藏在数据中的规律和规律。

独立样本t检验是一种重要的统计方法,通过比较两组数据的均值差异来判断它们之间的关系。

熟练掌握独立样本t检验的公式和步骤,可以帮助研究者更准确地进行数据分析,做出科学合理的结论。

希望通过本文的介绍,读者对独立样本t检验有了更深入的了解。

第二篇示例:独立样本t检验是一种统计方法,常用于比较两组数据的均值是否有显著差异。

在进行独立样本t检验时,我们需要计算t值,以判断两组数据在均值上是否存在显著差异。

独立样本T检验课件

独立样本T检验课件

独立性
两个样本之间相互独立,没有关联性 ,即一个样本的数据不会对另一个样 本的数据产生影响。
目的与意义
比较两组数据的均值差异
通过独立样本t检验,可以比较两组数据的均值是否存在显 著差异,从而判断不同组别之间的差异是否具有统计学上 的意义。
探索潜在的分组因素
在研究过程中,有时需要探索不同分组之间的差异,独立 样本t检验可以帮助我们确定这些差异是否具有统计学上的 显著性。
假设检验
独立样本t检验是一种假设检验方法,通过设定原假设和备 择假设,进行统计推断,以决定是否拒绝原假设或接受备 择假设。
02
独立样本t检验的步骤
数据准备
确定样本来源
明确实验或调查的样本来 源,确保数据具有代表性 。
数据收集
按照研究目的和范围收集 数据,确保数据准确性和 完整性。
数据筛选与整理
对数据进行筛选,排除异 常值和缺失值,并进行数 据整理,使其满足分析要 求。
样本量的大小对独立样本t检验的结果具有重要影响。较小的样本量可能会导致 结果的不稳定和不可靠,而较大的样本量则可以提供更准确和可靠的结果。
确定合适的样本量
在进行分析之前,需要根据研究目的、研究设计和数据情况,确定合适的样本量 。如果样本量不足,可能需要重新收集数据或采用其他统计方法。
05
独立样本t检验的案例分析
数据正态性检验
正态分布检验
使用统计量或图形方法检验数据 是否符合正态分布,如直方图、 P-P图、Q-Q图等。
异常值处理
若数据不符合正态分布,需对异 常值进行处理,如用中位数或平 均数进行替代。
方差齐性检验
方差齐性检验方法
选择适当的方差齐性检验方法,如 Bartlett检验或Levene检验。

t检验计算公式

t检验计算公式

t检验计算公式在统计学中,t 检验是一种常用的假设检验方法,用于比较两个样本的均值是否存在显著差异。

t 检验的计算公式是其核心部分,理解和掌握这个公式对于正确应用 t 检验至关重要。

t 检验的基本思想是基于样本数据,通过计算 t 值来判断两个样本所代表的总体均值之间的差异是否具有统计学意义。

简单来说,如果计算得到的 t 值较大,超过了一定的临界值,就可以认为两个样本的均值差异不是由随机误差引起的,而是具有实质性的差异。

首先,我们来看看单样本t 检验的计算公式。

假设我们有一个样本,其均值为`x`,样本量为`n`,已知总体均值为`μ`,样本标准差为`s`。

那么单样本 t 检验的 t 值计算公式为:`t =(xμ) /(s /√n)`在这个公式中,`(xμ)`表示样本均值与总体均值的差值,反映了实际观测值与理论值之间的偏差。

`s /√n` 则是标准误差,用于衡量样本均值的抽样误差大小。

接下来是独立样本 t 检验的计算公式。

假设有两个独立的样本,分别为样本 1 和样本 2,其样本量分别为`n1` 和`n2`,均值分别为`x1` 和`x2`,标准差分别为`s1` 和`s2`。

首先,我们需要计算合并方差`Sp²`:`Sp²=(n1 1)s1²+(n2 1)s2²/(n1 + n2 2)`然后,独立样本 t 检验的 t 值计算公式为:`t =(x1 x2) /√(Sp²(1 / n1 + 1 / n2))`这个公式中,`(x1 x2)`表示两个样本均值的差值,而`√(Sp²(1 / n1 + 1 / n2))`是标准误差。

为了更好地理解 t 检验计算公式,让我们通过一个具体的例子来进行说明。

假设我们想要比较两种教学方法对学生成绩的影响。

我们随机选取了两组学生,分别采用不同的教学方法进行教学。

第一组有30 名学生,平均成绩为 85 分,标准差为 10 分;第二组有 25 名学生,平均成绩为90 分,标准差为 8 分。

独立样本T检验结果解读

独立样本T检验结果解读

t检验过程,是对两样本均数(mean)差别的显著性进行检验。

惟t检验须知道两个总体的方差(Variances)是否相等;t检验值的计算会因方差是否相等而有所不同。

也就是说,t检验须视乎方差齐性(Equality of Variances)结果。

所以,SPSS在进行t-test for Equality of Means的同时,也要做Levene's Test for Equality of Variances 。

1.在Levene's Test for Equality of Variances一栏中F值为2.36, Sig.为.128,表示方差齐性检验「没有显著差异」,即两方差齐(Equal Variances),故下面t检验的结果表中要看第一排的数据,亦即方差齐的情况下的t检验的结果。

2.在t-test for Equality of Means中,第一排(Variances=Equal)的情况:t=8.892, df=84, 2-Tail Sig=.000, Mean Difference=22.99 既然Sig=.000,亦即,两样本均数差别有显著性意义!3.到底看哪个Levene's Test for Equality of Variances一栏中sig,还是看t-test for Equality of Means中那个Sig. (2-tailed)啊?答案是:两个都要看。

先看Levene's Test for Equality of Variances,如果方差齐性检验「没有显著差异」,即两方差齐(Equal Variances),故接著的t检验的结果表中要看第一排的数据,亦即方差齐的情况下的t检验的结果。

反之,如果方差齐性检验「有显著差异」,即两方差不齐(Unequal Variances),故接著的t检验的结果表中要看第二排的数据,亦即方差不齐的情况下的t检验的结果。

独立样本t检验制表

独立样本t检验制表

独立样本t检验制表
回答:
独立样本t检验制表是统计学中的一种常用方法,用于比较两组独立样本的平均值是否有显著差异。

以下是一个独立样本t检验制表的例子:
组别样本大小平均值标准差 t值 p值
组A 50 78.5 10.2 2.56 0.012
组B 60 72.3 9.5
这个独立样本t检验制表中,包含了两组独立样本(组A和组B),它们的样本大小分别为50和60,平均值分别为78.5和72.3,标准差分别为10.2和9.5。

通过计算,得出了t值为2.56和p值为0.012。

这个p值比通常设置的显著性水平(一般为0.05或0.01)小,说明两组平均值之间存在显著差异,也就是说,在这个例子中,组A的平均值比组B高。

独立样本t检验制表的应用非常广泛。

例如,可以用它来比较两个不同的医疗治疗效果、两个不同的广告宣传效果、两个不同的销售策略
等等。

在使用独立样本t检验制表时,需要注意以下几个方面:
1.样本大小要足够大,一般建议每组样本大小不少于30个。

2.两组样本必须是独立的,就是说,两组样本之间没有任何关系。

3.两组样本的分布要近似正态分布,如果不符合近似正态分布的情况,应采用其他的统计方法。

4.结果的可靠性取决于数据的质量和收集方法,因此,在使用独立样本t检验制表时,要注意数据的收集方法和注意样本的随机性。

总之,独立样本t检验制表是一种有效的统计方法,可用于比较两组独立样本的平均值是否显著差异。

在应用该方法时,需要注意选样、数据质量、分布等方面的问题,以保证结果的可靠性。

检验两组独立样本均值的差异—独立样本t检验

检验两组独立样本均值的差异—独立样本t检验

2.98 3.07 1.71 1.80
1.92 2.19 1.40 1.53
-0.23 -0.28
表5-2所示。
异性交往
文科 理科
1.47 2.44
1.32 1.88
-3.06**
人际总分
文科 理科
9.02 9.70
5.03 6**表p<0.01。
独立样本t检验结果显示,文科生和理科生在交谈、交际、待人接物和人际关系困扰总
9
任 务
——


独两
立组
样独
本立
t
检 验
样 本 均




10
三、应用举例
(一)操作步骤
(1)打开本书配套素材文件“演 示数据-t检验.sav”。
(2)在菜单栏中选择【分析】> 【 比 较 均 值 】>【 独 立 样 本 t 检 验 】 菜单命令。
(3)在弹出的【独 立样本t检验】对话框中 进行设定,如图5-10所 示。
4
t X1 X2 S12 S22 n1 n2
任 务
——


独两
立组
样独
本立
t
检 验
样 本 均




二、操作方法
( 1 ) 在 SPSS 菜 单 栏 中 选 择 【 分 析 】>【 比 较均值】>【独立样本t 检验】菜单命令,如图 5-6所示。
5
图5-6 独立样本t检验的操作命令
任 务
——
(5)在【独立样本t检验】对话框中单击 【确定】按钮,运行独立样本t检验。
图5-9 【独立样本t检验:选项】对话框

独立样本的T检验

独立样本的T检验

独立样本的T检验对于相互独立的两个来自正态总体的样本,利用独立样本的T检验来检验这两个样本的均值和方差是否来源于同一总体。

在SPSS中,独立样本的T检验由“Independent-Sample T Test”过程来完成。

实例在有小麦丛矮病的麦田里,调查了13株病株和11株健株的植株高度,分析健株高度是否高于病株。

其调查数据如下:健株 26.0 32.4 37.3 37.3 43.2 47.3 51.8 55.8 57.8 64.0 65.3病株 16.7 19.8 19.8 23.3 23.4 25.0 36.0 37.3 41.4 41.7 45.7 48.2 57.8 该数据保存在“DATA4-3.SA V”文件中,变量格式如图4-6,状态变量中:1表示病株,2表示健株。

图4-61)准备分析数据在数据编辑窗口输入分析的数据,如图4-6所示。

或者打开需要分析的数据文件“DATA4-3.SA V”。

2)启动分析过程在主菜单选中“Analyze”中的“Compare Means”,在下拉菜单中选中“Independent -Sample T Test”命令。

出现图4-7设置对话框。

图4-7 独立样本T检验窗口3)设置分析变量从“Test Variable(s):”从左边的变量列表中选中变量后,点击右拉按钮后,这个变量就进入到检验分析“Test Variable(s):”框里,用户可以从左边变量列表里选择一个或多个。

本例选择“小麦丛矮病[株高]”。

“Grouping Variable(s):”栏是分组变量栏。

从左边的变量列表中选中分组变量后,按右拉按钮,这个变量就进入到“Grouping Variable(s):”框里。

本例选择“状态”变量。

“Define Groups”按钮是定义分组变量的分组值。

当该按钮可用时,出现图4-8对话框。

图4-8 定义分组值对话框如果分组变量是离散型数值变量应选择“Use specified values”项,该项下面的“Group 1”和“Group 2”栏用于输入分组变量值;字符型数据输入相应分组字符。

独立样本t检验

独立样本t检验
❖数据去拆分
.
独立样本 t 检验
❖ 定义组别具体数值
.
3. 根据检验统计量的结果做出统计推断
❖ 给出两处理组的各种统计量,包括 样本含量、均数、标准差、标准误
方差齐性检验
❖ 若方差齐,参考Equal variances assumed一行统计量
❖ 若方差不齐,参考Equal variances not assumed一行统计量
当样本例数比较大(n > 60),且服从正态分布—— u检验
.
实例分析
采用完全随机设计的方法,将19只体重、出生年月等相仿的小白鼠 随机分为两组,其中一组喂养高蛋白饲料,另外一组喂养低蛋白饲料, 然后观察喂养8周后小白鼠体重(mg)增加情况,问两组膳食对小白 鼠增加体重有无不同?
收集的所增体重结果数据如下: 高蛋白组:134、146、104、119、124、161、107、83、113、129 低蛋白组:70、118、101、85、107、132、94、123、
.
分析步骤:
1. 建立检验假设,确定检验水准 H0:μ1=μ2,即高蛋白组与低蛋白组所增体重的总体均数相同 H1:μ1≠μ2,即高蛋白组与低蛋白组所增体重的总体均数不同
(包括μ1>μ2 或μ1<μ2 ) α = 0.05 2. 计算检验统计量 应用SPSS21.0操作如下:
.
数据输入
.
正态性检验
.
谢 谢!
.
(n11)S12 (n2 1)S22 (11)
n1n22
n1 n2
n1n22
.
应用条件
当两样本含量较小(如n1≤60或/和n2≤60),且均来自正态总体 时,要根据两总体方差是否不同而采用不同检验方法

独立样本T检验和两配对样本T检验李燕

独立样本T检验和两配对样本T检验李燕
5.4
两配对独立样本t检验
5.4.1 两配对样本t检验的目的
检验目的:利用来自两个总体的配对样本,推断两个总体的均值是否存在显著性差异。两配对样本指同样的个案在“前”、“后”两种状态,或者不同的侧面所表现的两种不同的特征。前提条件:两配对样本的样本容量相同,两组样本观察值的先后顺序一一对应,不能随意改变;样本来自的总体服从或近似服从正态分布。
一、提出原假设H0为:两总体均值无显著差异,即 μ1 -μ2=0二、选择检验统计量1. 12、 22 已知检验统计量为
5.3.2 两独立样本t检验的基本步骤
2、当12、 22 未知且相等时,采用合并方差作为两个总体方差的估计 检验统计量为
5.3.2 两独立样本t检验的基本步骤
3、当12、 22 未知且不相等时,分别采用各自的方差,但需要修正t分布的自由度。 检验统计量为:
5.3、两独立样本t检验
5.4、两配对样本t检验
5.3
两独立样本t检验
5.3.1 两独立样本t检验的目的
利用来自两个总体的独立样本,推断两个总体的均值是否存在显著性差异
前提条件:两个样本总体应服从或近似服从正态分布两个样本相互独立,两独立样本的样本容量可以相等,也可以不相等;
5.3.2 两独立样本t检验的基本步骤
5.4.2 两配对样本t检验的基本步骤
一、提出原假设 H0:两总体均值无显著差异,即 μ1 -μ2=0二、选择检验统计量 因两配对的总体样本来源于同样的个案,所以两配对样本的t检验最终转化成差值序列总体均值是否为0的单样本t检验。 先求出每对观测值之差值,对差值变量求平均。 检验差值变量的均值与0之间差异的显著性。
Hale Waihona Puke 作业2生猪与饲料利用spss两独立样本t检验,研究猪饲料是否有效果。

spss独立样本t检验

spss独立样本t检验

spss中有关独立样本T检验的详细介绍包含操作过程和结果分析分析>比较平均值3.独立样本T检验独立样本T检验类似于单样本T检验,不过独立样本T检验的内容比单样本T检验要复杂的多,特别是对其结果的分析,而独立样本T检验被使用的情况也比单样本T检验更广泛(因此也可以看到网络上关于独立样本T检验的文章远比关于单样本T检验的文章多)对比:二者都是将数据的平均值进行比较,不同之处在于单样本T检验是将一个样本与某一特定值进行对比,而独立样本T检验是对多个样本之间的平均值进行对比。

独立样本是指进行对比的多个样本之间是相互独立、互不干扰的,通过独立样本T检验我们可以判断多个样本之间的平均值是否可以认为是相等的。

没有什么比举个例子更容易理解独立样本T检验的用途了:假如我们有两个样本,分别是来自农村和城市两个不同地方的人们的身高数据,我们的目的是探讨农村和城市的差异会不会给当地的人们带来身高上的影。

这时我们算出城市的人群的平均身高为168.38cm,而农村的人们的平均身高为164.58cm,二者差了3.8cm,那我们是否就可以认为这3.8cm就可以很好的说明农村和城市的人们身高有差异呢?那如果是差了3cm呢?如果是差了1cm呢?这种时候就不可以单靠感觉来评判了,而是应该使用独立样本T检验来帮助我们判断得出结论检验变量——需要进行平均值比较的数据分组变量——用于区分不同样本的变量选项——选择置信区间百分比以及缺失值的处理方法对于分组变量我们操作时需要注意一下,在我们选入了分组变量后,我们必须要对其进行定义组操作,因为SPSS无法自行判断如何通过分组变量对数据进行分组点击定义组我们有两种分类的方法,分别是使用指定的值与分割点,指定值就是将所有分类变量等于该输入的数值的样本划分为一组,分割点就是以该输入的数值为分割点划分出大于和小于该值的两组进行比较,这些都是很简单的,不多废话了~~接下来就是重头戏了——对结果的分析简洁解释:得到结果后,首先将独立样本检验表格中莱文方差等同性检验的显著性数值与0.05进行比较大于0.05,两组假定等方差,看第一行数据的显著性(双尾)数值,如果大于0.05,两组差异不显著;如果小于0.05,两组差异显著;小于0.05,两组不假定等方差,看第二行数据的显著性(双尾)数值,如果大于0.05,两组差异不显著;如果小于0.05,两组差异显著。

t检验 stata命令

t检验 stata命令

t检验 stata命令
t检验是一种常见的统计方法,用于比较两组数据的均值是否有显著差异。

在Stata中,可以使用ttest命令进行t检验。

具体用法如下:
1. 单样本t检验
语法:ttest 变量名 = 常数
示例:ttest price = 12000
解释:该命令用于检验price变量的均值是否等于12000。

2. 独立样本t检验
语法:ttest 变量名1 == 变量名2
示例:ttest mpg1 == mpg2
解释:该命令用于检验mpg1和mpg2两个变量的均值是否有显著差异。

3. 配对样本t检验
语法:ttest 变量名1 = 变量名2, paired
示例:ttest weight1 = weight2, paired
解释:该命令用于检验weight1和weight2两个变量的均值是否有显著差异,这两个变量是配对的。

注意事项:
1. 在进行t检验之前,需要确保数据符合正态分布和方差齐性的假设。

2. 在进行独立样本t检验时,必须保证两个样本是独立的。

3. 在进行配对样本t检验时,需要确保配对样本之间存在相关性。

独立样本t检验制表

独立样本t检验制表

独立样本t检验制表引言独立样本t检验是一种用于比较两组样本均值是否存在显著差异的统计方法。

在进行独立样本t检验时,我们需要制表来展示计算结果和相关统计量。

本文将详细介绍独立样本t检验的制表方法,并以实例演示相应的步骤和结果。

独立样本t检验概述在统计学中,独立样本t检验用于比较两组独立样本的均值是否存在显著差异。

常见的应用场景包括比较不同治疗组的疗效、不同实验组的效果等。

独立样本t检验的原假设是两组样本均值相等,备择假设是两组样本均值不相等。

独立样本t检验步骤进行独立样本t检验时,通常需要以下步骤:步骤一:确定假设在进行独立样本t检验前,我们需要明确研究问题,并根据研究问题设定相应的原假设和备择假设。

例如,原假设可以是两组样本均值相等,备择假设可以是两组样本均值不相等。

步骤二:收集数据在进行独立样本t检验前,我们需要收集两组独立样本的数据。

数据可以是定量数据,也可以是定性数据。

步骤三:计算样本均值和标准差在进行独立样本t检验前,我们需要计算两组样本的均值和标准差。

均值表示样本的集中趋势,标准差表示样本的离散程度。

步骤四:计算t值和自由度在进行独立样本t检验时,我们需要计算t值和自由度。

t值是用来衡量两组样本均值差异的统计量,自由度是用来确定t值在t分布中的位置。

步骤五:确定显著性水平和临界值在进行独立样本t检验时,我们需要确定显著性水平和临界值。

显著性水平用来判断研究结果的统计显著性,临界值用来与计算得到的t值进行比较。

步骤六:比较t值和临界值在进行独立样本t检验时,我们将计算得到的t值与临界值进行比较。

若t值大于临界值,则拒绝原假设,认为两组样本均值存在显著差异;若t值小于临界值,则接受原假设,认为两组样本均值没有显著差异。

独立样本t检验制表独立样本t检验制表是一种将独立样本t检验计算结果以表格的形式展示出来的方法。

一个典型的独立样本t检验制表应包含以下内容:表头表头应包含研究问题的的描述、原假设和备择假设。

T检验分为三种方法

T检验分为三种方法

T检验分为三种方法
T检验是一种常见的统计推断方法,它用于比较两个样本之间的差异。

T检验分为三种方法:独立样本T检验、配对样本T检验和单样本T检验。

下面将对这三种方法进行介绍。

1.独立样本T检验:
独立样本T检验用于比较两个不相关的样本之间的均值差异。

要进行
独立样本T检验,首先需要收集两个独立的样本数据,然后根据这些数据
计算出两个样本的均值和方差。

T检验的原假设是这两个样本的均值相等,备择假设是这两个样本的均值不相等。

根据计算的T值和自由度,可以计
算出P值,从而判断原假设是否成立。

2.配对样本T检验:
配对样本T检验用于比较同一个样本在不同条件下的均值差异。

配对
样本T检验适用于两种情况:一是两个样本是相关的,例如同一个受试者
在不同时间点的数据;二是两个样本是配对的,例如同一组受试者在不同
条件下的数据。

在配对样本T检验中,计算的T值和自由度与独立样本T
检验类似,根据P值判断原假设是否成立。

3.单样本T检验:
单样本T检验用于判断一个样本的均值是否与一个已知的总体均值相等。

在单样本T检验中,收集一个样本的数据,计算样本的均值和标准差。

T检验的原假设是样本的均值等于总体的均值,备择假设是样本的均值不
等于总体的均值。

根据计算的T值和自由度,计算P值,从而判断原假设
是否成立。

总的来说,T检验是一种常用的统计方法,可以用于比较两个样本均值是否有差异,并判断这种差异是否显著。

根据实际问题的需求,可以选择独立样本T检验、配对样本T检验或单样本T检验来进行分析。

独立样本t检验结果解读

独立样本t检验结果解读

独立样本t检验结果解读在统计学的世界里,独立样本 t 检验是一种十分常见且重要的分析方法。

当我们想要比较两个独立组的均值是否存在显著差异时,它就派上了大用场。

但对于很多非统计学专业的朋友来说,面对独立样本 t 检验的结果,可能会感到一头雾水。

别担心,接下来就让我们一起揭开它神秘的面纱,用通俗易懂的方式来解读独立样本 t 检验的结果。

首先,我们要明白什么是独立样本。

简单来说,独立样本就是两个组之间的个体没有任何关联。

比如说,一组是男性,另一组是女性;或者一组是服用了某种药物的患者,另一组是没有服用该药物的患者。

那么,为什么要进行独立样本 t 检验呢?想象一下,我们想要知道男性和女性在某个能力测试中的平均得分是否不同,或者服用药物和未服用药物的患者在症状改善程度上的平均水平是否有差别。

这时候,独立样本 t 检验就能帮助我们回答这些问题。

当我们拿到独立样本 t 检验的结果时,通常会看到几个关键的数值和指标。

其中最重要的就是 t 值和 p 值。

t 值反映了两组均值之间的差异程度。

如果 t 值较大,说明两组均值的差异较大;如果 t 值较小,说明两组均值的差异较小。

但 t 值本身并不能直接告诉我们差异是否显著。

这时候就要看 p 值了。

p 值是用来判断我们观察到的两组均值差异是由于随机误差造成的概率。

一般来说,如果 p 值小于我们事先设定的显著性水平(通常是 005),我们就认为两组均值之间的差异是显著的,也就是说,这种差异不太可能是偶然造成的;反之,如果 p 值大于显著性水平,我们就认为两组均值之间的差异不显著,可能只是随机波动的结果。

举个例子,假设我们对两组学生的数学考试成绩进行独立样本 t 检验。

结果显示 t 值为 25,p 值为 002。

由于 p 值小于 005,我们可以得出结论:这两组学生的数学平均成绩存在显著差异。

但这里要注意一个常见的误区。

有时候人们会仅仅根据 t 值的大小来判断差异的重要性,这是不正确的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两独立样本t检验two independent sample t-test
学习目标
Ø掌握独立样本t检验的适用条件及步骤
有些研究的设计不能自身配对,也不便配对,只能将独立的两组均数作比较,如手术组与非手术组、新药组与原用药治疗组。

有的试验要把动物杀死后才能获得所需要的数据,除非事先做好了配对设计,一般只能做两组间的比较,两组例数可以不等,这是配对设计不能做到的。

•两独立样本t检验,又称成组t检验,适用于完全随机设计下两样本均数的比较,其目的是检验两样本所来自总体的均数是否相等。

完全随机设计是将受试对象随机地分配到两组中,每组对象分别接受不同的处理,分析比较两组的处理效应。

•两独立样本t检验要求两样本所在的总体服从正态分布,且两总体方差相等,即方差齐性,若两者总体方差不齐,可采用t’检验或者使用变量变换的方法进行分析。

一、两总体方差相等时的两独立样本t 检验
2121X X S X X t --=⎪⎪⎭⎫ ⎝⎛+=-212
1121n n S S C X X ()()2212
22221
21212-+-+-=∑∑∑∑n n n X X n X X S C 2
21-+=n n ν
例:27例已确诊为肠憩室的患者,被随机分为两组,分别给予甲、乙两种饮食,观察饮食排出时间(h),结果如下,试问甲、乙两种饮食对肠蠕动效果有无差别。

甲饮食组:76、75、44、55、51、66、69、68、53、60、71、62、70、75
乙饮食组:97、74、79、83、95、101、98、95、52、64、68、88、83
H 0:μ1=μ2,甲、乙两种饮食排出时间的总体均数相同H 1:μ1≠μ2,甲、乙两种饮食排出时间的总体均数不同α=0.05
已知n 1=14, =63.86h,S 1=10.11h,
n 2=13, =82.85h,S 2=15.00h
S c 2=161.258 =4.8911X 2X 2
1X X S
t= =3.883 υ=14+13-2=25
查t分布界值表,t 0.05/2,25=2.060
本例t=3.883>2.060,则P<0.05,按α=0.05的水准,拒绝H 0,差别有统计学意义,故认为甲、乙两种饮食对肠蠕动效果不同。

891
.485.8286.63
二、两总体方差不等时的两独立样本t’检验
1、两独立样本的方差齐性检验
公式: F= υ1=n 1-1
υ2=n 2-1(较小)(较大)222
1S S
例:两组小白鼠分别饲以高蛋白和低蛋白饲料,4周后记录小白鼠的体重增加量(g)如下,问两组动物体重增加量的均数是否相同?
高蛋白组:50 47 42 43 39 51 43 48 51 42 50 43
低蛋白组:36 38 37 38 36 39 37 35 33 37 39 34 36
方差齐性检验
本例:n1=12 =45.75 =17.659 =1.472 n1=13 =36.54 =3.269 =0.251H 0:H 1:α=0.05
1X 21S 2
1X S 2X 22S 2
2X S 22
21σσ=22
21σσ≠
F= =5.402υ1=12-1=11
υ2=13-1=12
查F界值表,得P<0.05,按α=0.05水准拒绝H 0,差别有统计学意义,可以认为两总体方差不齐。

22
2
1S S
2、t’检验
方法一:对临界值进行校正 υ1=n 1-1 υ2=n 2-1校正临界值:22212121'n S n S X X t +-=22,2,2
2
12211X X X
X S S t S t S t +⨯+⨯='ναναα
H 0:μ1=μ2
H 1:μ1≠μ2α=0.05
179.2201.2103.313269.312659.17538.3675.4512
,05.011,05.02
221212
1===+-=+-='t t n S n S X X t
t’=3.103>t’0.05=2.198
P<0.05,按α=0.05水准拒绝H 0,差别有统计学意义,可以认为两组小白鼠增重的均数不同。

198
.222,2,2
212211=+⨯+⨯='X X X
X S S t S t S t ναναα
方法二:对自由度作校正2
22121
21n
S n S
X X
t +-='1
1)(24142222121-+-+
=n S n S
S S X X X X ν
P<0.05,按α=0.05水准拒绝H 0,差别有统计学意义,可以认为两组小白鼠增重的均数不同。

12705.111
1)(24
142
2221
21≈=-+-+=n S n S S S X X X X ν782.1103.312,05.0=>='t t。

相关文档
最新文档