常用反三角函数公式表

合集下载

常用反三角函数公式

常用反三角函数公式

反三角函数公式反三角函数图像与特征1,该点切线斜率为-:反三角函数的定义域与主值范围,则式中n为任意整数.反三角函数的相互关系sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞)cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞<x<∞)arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|<1)arccos x= π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x|<1)arctan x = x - x^3/3 + x^5/5 - ... (x≤1)ArcSin(x) 函数功能:返回一个指定数的反正弦值,以弧度表示,返回类型为Double。

语法:ArcSin(x)。

说明:其中,x的取值范围为[-1,1],x的数据类型为Double。

程序代码:Function ArcSin(x As Double) As DoubleIf x >= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x))If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End FunctionArcCos(x) 函数功能:返回一个指定数的反余弦值,以弧度表示,返回类型为Double。

语法:ArcCos(x)。

说明:其中,x的取值范围为[-1,1],x的数据类型为Double。

常用反三角函数公式表

常用反三角函数公式表

常用反三角函数公式表在数学的广阔天地中,反三角函数是一个重要的概念,它们在解决各种数学问题时经常被用到。

为了更好地理解和运用反三角函数,我们有必要熟悉一些常用的反三角函数公式。

首先,让我们来了解一下什么是反三角函数。

反三角函数是三角函数的反函数,简单来说,如果给定一个三角函数的值,反三角函数可以帮助我们求出对应的角度。

常见的反三角函数有反正弦函数(arcsin)、反余弦函数(arccos)、反正切函数(arctan)等。

一、反正弦函数公式1、 arcsin(x) = arcsinx这个公式表明,反正弦函数是一个奇函数,即其图像关于原点对称。

2、 arcsin(sinx) = x (π/2 ≤ x ≤ π/2)这是反正弦函数的基本定义,意味着在其定义域内,对正弦函数的值求反正弦,就可以得到原来的角度。

3、 sin(arcsinx) = x (-1 ≤ x ≤ 1)这是反正弦函数与正弦函数的相互转换关系。

二、反余弦函数公式1、 arccos(x) =π arccosx与反正弦函数类似,反余弦函数也是一个非奇非偶函数。

2、 arccos(cosx) = x (0 ≤ x≤ π)3、 cos(arccosx) = x (-1 ≤ x ≤ 1)三、反正切函数公式1、 arctan(x) = arctanx反正切函数是一个奇函数。

2、 arctan(tanx) = x (π/2 < x <π/2)3、 tan(arctanx) = x (x 为任意实数)四、反余切函数公式1、 arccot(x) =π arccotx2、 arccot(cotx) = x (0 < x <π)3、 cot(arccotx) = x (x 为任意实数)五、其他常用公式1、 arcsinx + arccosx =π/2 (-1 ≤ x ≤ 1)这个公式表明,在定义域内,反正弦函数和反余弦函数的值之和为常数π/2。

2、 arctanx + arccotx =π/2 (x 为任意实数)反正切函数和反余切函数的值之和也为常数π/2。

常用反三角函数公式表

常用反三角函数公式表

常用反三角函数公式表1. 反正弦函数(arcsin)定义域:[1, 1]值域:[π/2, π/2]公式:arcsin(x) = y,其中sin(y) = x 2. 反余弦函数(arccos)定义域:[1, 1]值域:[0, π]公式:arccos(x) = y,其中cos(y) = x 3. 反正切函数(arctan)定义域:(∞, +∞)值域:(π/2, π/2)公式:arctan(x) = y,其中tan(y) = x 4. 反余切函数(arccot)定义域:(∞, +∞)值域:(0, π)公式:arccot(x) = y,其中cot(y) = x 5. 反正割函数(arcsec)定义域:(∞, 1] ∪ [1, +∞)值域:[0, π/2) ∪ (π/2, π]公式:arcsec(x) = y,其中sec(y) = x 6. 反余割函数(arccsc)定义域:(∞, 1] ∪ [1, +∞)值域:(π/2, 0] ∪ [0, π/2)公式:arccsc(x) = y,其中csc(y) = x 常用反三角函数公式表7. 反正弦函数(arcsin)的性质当x=0时,arcsin(x) = 0当x=1时,arcsin(x) = π/2当x=1时,arcsin(x) = π/28. 反余弦函数(arccos)的性质当x=0时,arccos(x) = π/2当x=1时,arccos(x) = 0当x=1时,arccos(x) = π9. 反正切函数(arctan)的性质当x=0时,arctan(x) = 0当x=1时,arctan(x) = π/4当x=1时,arctan(x) = π/410. 反余切函数(arccot)的性质当x=0时,arccot(x) = π/2当x=1时,arccot(x) = 0当x=1时,arccot(x) = π11. 反正割函数(arcsec)的性质当x=1时,arcsec(x) = 0当x=1时,arcsec(x) = π当x=√2时,arcsec(x) = π/412. 反余割函数(arccsc)的性质当x=1时,arccsc(x) = π/2当x=1时,arccsc(x) = π/2当x=√2时,arccsc(x) = π/4常用反三角函数公式表13. 反三角函数的周期性反正弦函数和反余弦函数是周期函数,周期为2π。

反三角函数公式大全

反三角函数公式大全

反三角函数公式大全三角函数的反函数,是多值函数。

它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x,反正割Arcsec x=1/cosx,反余割Arccsc x=1/sinx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。

为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。

反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。

其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]y=arccos(x),定义域[-1,1] ,值域[0,π]y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)sinarcsin(x)=x,定义域[-1,1],值域【-π/2,π/2】反三角函数公式:arcsin(-x)=-arcsinxarccos(-x)=∏-arccosxarctan(-x)=-arctanxarccot(-x)=∏-arccotxarcsinx+arccosx=∏/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x当x∈〔0,∏〕,arccos(cosx)=xx∈(—∏/2,∏/2),arctan(tanx)=xx∈(0,∏),arccot(cotx)=xx〉0,arctanx=arctan1/x,arccotx类似若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)。

三角函数-反三角函数公式大全

三角函数-反三角函数公式大全

三角函数-反三角函数公式大全tan (π+α)= tanα cot (π+α)= cotα 公式三:任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα 公式六:2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A正切函数sin tan cos x x x =;余切函数cos cot sin xx x =; 正割函数1sec cos x x =;余割函数1csc sin x x= 三角函数奇偶、周期性sin x ,tan x ,cot x 奇函数;cos x 偶函数;sin x,cos x 周期2π;sin()t ωϕ+ 周期2πω;tan x ,cot x 周期π常用三角函数公式:22cos sin 1x x += 22cos sin cos2x x x -=2s i n c o ssx x x = 21cos 22sin x x -= 21c o s 22c o sx x +=22211tan sec cos x x x+== 22211cotcsc sin x x x +==1sin sin [cos()cos()]2x y x y x y =-+-- 1c o sc o s[c o s ()c o s ()]2x y x y x y =++-1sin cos [sin()sin()]2x y x y x y =++-反三角函数:a r c s i na r c c o s 2x x π+=a r c t a na r c c o t2x x π+=arcsin x:定义域[1,1]-,值域[,]22ππ-;arccos x :定义域[1,1]-,值域[0,]π;arctan x:定义域(,)-∞+∞,值域(,)22ππ-;arccot x :定义域(,)-∞+∞,值域(0,)π式中n为任意整数.arc sin x = arc cos x = arc tan x = arc cot x =。

反三角函数公式大全

反三角函数公式大全

反三角函数公式大全反三角函数是三角函数的逆运算,它们是一组用来描述角度的函数,与三角函数相对应。

在数学中,反三角函数广泛应用于三角函数的逆运算、三角方程的求解以及在物理、工程等领域的实际问题中。

本文将为您详细介绍反三角函数的各种公式,帮助您更好地理解和应用反三角函数。

1. 反正弦函数公式。

反正弦函数通常表示为arcsin(x),其定义域为[-1,1],值域为[-π/2,π/2]。

其公式如下:arcsin(x) = y, 当且仅当sin(y) = x, -π/2 ≤ y ≤π/2。

2. 反余弦函数公式。

反余弦函数通常表示为arccos(x),其定义域为[-1,1],值域为[0,π]。

其公式如下:arccos(x) = y, 当且仅当cos(y) = x, 0 ≤ y ≤π。

3. 反正切函数公式。

反正切函数通常表示为arctan(x),其定义域为实数集,值域为(-π/2,π/2)。

其公式如下:arctan(x) = y, 当且仅当tan(y) = x, -π/2 < y < π/2。

4. 反余切函数公式。

反余切函数通常表示为arccot(x),其定义域为实数集,值域为(0,π)。

其公式如下:arccot(x) = y, 当且仅当cot(y) = x, 0 < y < π。

5. 反正割函数公式。

反正割函数通常表示为arcsec(x),其定义域为(-∞,-1]∪[1,+∞),值域为[0,π]。

其公式如下:arcsec(x) = y, 当且仅当sec(y) = x, 0 ≤ y ≤π或 y < 0。

6. 反余割函数公式。

反余割函数通常表示为arccsc(x),其定义域为(-∞,-1]∪[1,+∞),值域为[-π/2,π/2]。

其公式如下:arccsc(x) = y, 当且仅当csc(y) = x, -π/2 ≤ y ≤π/2 或 y ≠ 0。

以上是反三角函数的基本公式,通过这些公式我们可以求出给定数值的反三角函数值,从而解决实际问题中的角度计算、三角方程求解等问题。

三角反三角函数公式大全

三角反三角函数公式大全

三角-反三角函数公式大全三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=AA cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积sina+sinb=2sin2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2ba - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2ba -tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sinasin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =aacos sin万能公式sina=2)2(tan 12tan 2a a + cosa= 22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan2aa - 其它公式a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab]a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba]1+sin(a) =(sin 2a +cos 2a)21-sin(a) = (sin 2a -cos 2a)2其他非重点三角函数csc(a) =a sin 1 sec(a) =acos 1双曲函数 sinh(a)=2e -e -a a cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三:任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα 公式六: 2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinαtan (2π+α)= -cotα cot (2π+α)= -tanαsin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanαsin (23π+α)= -cosα cos (23π+α)= sinαtan (23π+α)= -cotα cot (23π+α)= -tanαsin (23π-α)= -cosα cos (23π-α)= -sinαtan (23π-α)= cotα cot (23π-α)= tanα(以上k ∈Z)正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B 是边a 和边c 的夹角 正切定理 [(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}正切函数sin tan cos x x x =;余切函数cos cot sin xx x =; 正割函数1sec cos x x =;余割函数1csc sin x x= 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 三角形中的一些结论(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1 (4)sin2A+sin2B+sin2C=4sinA·sinB·sinC (5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1反三角函数:arcsin arccos 2x x π+=arctan arccot 2x x π+=arcsin x:定义域[1,1]-,值域[,]22ππ-;arccos x :定义域[1,1]-,值域[0,]π;arctan x:定义域(,)-∞+∞,值域(,)22ππ-;arccot x :定义域(,)-∞+∞,值域(0,)π式中n为任意整数.arc sin x = arc cos x = arc tan x = arc cot x =。

三角函数反三角函数公式大全

三角函数反三角函数公式大全

三角函数反三角函数公式大全Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+倍角公式 tan2A =Atan 12tanA2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A Acos 1sin +和差化积 sina+sinb=2sin2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2ba -tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 诱导公式s in(-a) = -sina c os(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosasin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =aacos sin万能公式sina=2)2(tan 12tan2a a + cosa= 22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan2aa- 其它公式asina+bcosa=)b (a 22+×sin(a+c) [其中tanc=ab]asin(a)-bcos(a) = )b (a 22 ×cos(a-c) [其中tan(c)=ba ]1+sin(a) =(sin 2a +cos 2a )21-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三:任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosαtan (π-α)= -tanα cot (π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα 公式六:2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用Asin(ωt+θ)+ Bsin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A正切函数sin tan cos x x x =;余切函数cos cot sin xx x =; 正割函数1sec cos x x =;余割函数1csc sin x x= 三角函数奇偶、周期性sin x ,tan x ,cot x 奇函数;cos x 偶函数; sin x ,cos x 周期2π;sin()t ωϕ+ 周期2πω;tan x ,cot x 周期π常用三角函数公式:22cos sin 1x x += 22cos sin cos2x x x -= 2sin cos sin 2x x x = 21cos 22sin x x -= 21cos 22cos x x += 22211tan sec cos x x x +== 22211cot csc sin x x x+== 1sin sin [cos()cos()]2x y x y x y =-+-- 1cos cos [cos()cos()]2x y x y x y =++-1sin cos [sin()sin()]2x y x y x y =++-反三角函数: arcsin arccos 2x x π+=arctan arccot 2x x π+=arcsin x :定义域[1,1]-,值域[,]22ππ-;arccos x :定义域[1,1]-,值域[0,]π;arctan x :定义域(,)-∞+∞,值域(,)22ππ-;arccot x :定义域(,)-∞+∞,值域(0,)π式中n 为任意整数.arc sin x = arc tan x = arc cot x =。

三角函数与反三角函数公式大全

三角函数与反三角函数公式大全

三角函数与反三角函数公式大全1. 正弦函数(sine function)的公式:- 基本关系式:sinθ = 对边/斜边- 余角关系式:sin(90°-θ) = cosθ- 二倍角关系式:sin2θ = 2sinθcosθ- 半角关系式:sin(θ/2) = ±√[(1-cosθ)/2]- 三倍角关系式:sin3θ = 3sinθ - 4sin^3θ- 和差关系式:sin(α±β) = sinαcosβ ± cosαsinβ2. 余弦函数(cosine function)的公式:- 基本关系式:cosθ = 邻边/斜边- 余角关系式:cos(90°-θ) = sinθ- 二倍角关系式:cos2θ = cos^2θ - sin^2θ- 半角关系式:cos(θ/2) = ±√[(1+cosθ)/2]- 三倍角关系式:cos3θ = 4cos^3θ - 3cosθ- 和差关系式:cos(α±β) = cosαcosβ ∓ sinαsinβ3. 正切函数(tangent function)的公式:- 基本关系式:tanθ = 对边/邻边= sinθ/cosθ- 余角关系式:t an(90°-θ) = 1/tanθ- 二倍角关系式:tan2θ = (2tanθ)/(1-tan^2θ)- 半角关系式:tan(θ/2) = ±√[(1-cosθ)/(1+cosθ)]- 三倍角关系式:tan3θ = (3tanθ-tan^3θ)/(1-3tan^2θ)- 和差关系式:tan(α±β) = (tanα±tanβ)/(1∓tanαtanβ) 4. 余切函数(cotangent function)的公式:- 基本关系式:cotθ = 邻边/对边= 1/tanθ- 余角关系式:co t(90°-θ) = tanθ- 二倍角关系式:cot2θ = (cot^2θ-1)/(2cotθ)- 半角关系式:cot(θ/2) = ±√[(1+cosθ)/(1-cosθ)]- 三倍角关系式:cot3θ = (3cotθ-cot^3θ)/(1-3cot^2θ)- 和差关系式:cot(α±β) = (cotαcotβ-1)/(cotβ±cotα) 1. 反正弦函数(arcsine function)的公式:- 基本关系式:sinθ = arcsin(x)- 余角关系式:arcsin(x) = 90° - arccos(x)- 二倍角关系式:arcsin(2x√(1-x^2)) = 2arcsin(x)- 和差关系式:arcsin(x ± y) ≠ arcsin(x) ± arcsin(y) 2. 反余弦函数(arccosine function)的公式:- 基本关系式:cosθ = arccos(x)- 余角关系式:arccos(x) = 90° - arcsin(x)- 二倍角关系式:arccos(2x^2 - 1) = 2arccos(x)- 和差关系式:arccos(x ± y) ≠ arccos(x) ± arccos(y) 3. 反正切函数(arctangent function)的公式:- 基本关系式:tanθ = arctan(x)- 余角关系式:arctan(x) = 90° - arctan(1/x)- 二倍角关系式:arctan(2x/(1-x^2)) = 2arctan(x)- 和差关系式:arctan(x ± y) ≠ arctan(x) ± arctan(y)。

反三角函数公式大全

反三角函数公式大全

反三角函数‎公式大全三角函数的‎反函数,是多值函数‎。

它们是反正‎弦Arcs‎i n x,反余弦Ar‎c cos x,反正切Ar‎c tan x,反余切Ar‎c cot x,反正割Ar‎c sec x=1/cosx,反余割Ar‎c csc x=1/sinx等‎,各自表示其‎正弦、余弦、正切、余切、正割、余割为x的‎角。

为限制反三‎角函数为单‎值函数,将反正弦函‎数的值y限‎在y=-π/2≤y≤π/2,将y为反正‎弦函数的主‎值,记为y=arcsi‎n x;相应地,反余弦函数‎y=arcco‎s x的主值限‎在0≤y≤π;反正切函数‎y=arcta‎n x的主值限‎在-π/2<y<π/2;反余切函数‎y=arcco‎t x的主值限‎在0<y<π。

反三角函数‎实际上并不‎能叫做函数‎,因为它并不‎满足一个自‎变量对应一‎个函数值的‎要求,其图像与其‎原函数关于‎函数y=x对称。

其概念首先‎由欧拉提出‎,并且首先使‎用了arc‎+函数名的形‎式表示反三‎角函数,而不是f-1(x).反三角函数‎主要是三个‎:y=arcsi‎n(x),定义域[-1,1] ,值域[-π/2,π/2]y=arcco‎s(x),定义域[-1,1] ,值域[0,π]‎y=arcta‎n(x),定义域(-∞,+∞),值域(-π/2,π/2)‎sinar‎c sin(x)=x,定义域[-1,1],值域【-π/2,π/2】反三角函数‎公式:arcsi‎n(-x)=-arcsi‎n xarcco‎s(-x)=∏-arcco‎s xarcta‎n(-x)=-arcta‎n xarcco‎t(-x)=∏-arcco‎t xarcsi‎n x+arcco‎s x=∏/2=arcta‎n x+arcco‎t xsin(arcsi‎n x)=x=cos(arcco‎s x)=tan(arcta‎n x)=cot(arcco‎t x)当x∈〔—∏/2,∏/2〕时,有arcs‎i n(sinx)=x当x∈〔0,∏〕,arcco‎s(cosx)=xx∈(—∏/2,∏/2),arcta‎n(tanx)=xx∈(0,∏),arcco‎t(cotx)=xx〉0,arcta‎n x=arcta‎n1/x,arcco‎t x类似若(arcta‎n x+arcta‎n y)∈(—∏/2,∏/2),则arct‎a nx+arcta‎n y=arcta‎n(x+y/1-xy)。

反三角函数计算公式

反三角函数计算公式

反三角函数计算公式
1. 反正弦函数(arcsin)
反正弦函数将一个实数值映射到[-π/2,π/2]之间的角度。

其计算公
式如下:
arcsin(x) = sin^(-1)(x) = y,其中-1 ≤ x ≤ 1,-π/2 ≤ y ≤ π/2
注意,由于反正弦函数的取值范围限制在[-π/2,π/2]之间,所以对
于输入值x,结果y的范围也会限制在该区间内。

2. 反余弦函数(arccos)
反余弦函数将一个实数值映射到[0,π]之间的角度。

其计算公式如下:arccos(x) = cos^(-1)(x) = y,其中-1 ≤ x ≤ 1,0 ≤ y ≤ π。

与反正弦函数类似,反余弦函数的取值范围也会影响结果的范围。

3. 反正切函数(arctan)
反正切函数将一个实数值映射到[-π/2,π/2]之间的角度。

其计算公
式如下:
arctan(x) = tan^(-1)(x) = y,其中-π/2 ≤ y ≤ π/2
反正切函数的结果范围是[-π/2,π/2],这意味着其输出会落在第一
和第四象限内。

如果需要求解其他象限中的角度,则需要进行一些额外的
计算。

除了这些基础的反三角函数,还可以使用其他形式的反三角函数来进行特殊的计算,如反余切函数。

需要注意的是,反三角函数的计算可能会产生多个解或无解的情况。

在实际应用中,需要结合具体问题进行合理的范围限制和解的选择,以得到正确的结果。

常用反三角函数公式表

常用反三角函数公式表

反三角函数公式arc sin x + arc sin y = arc sin x – arc sin y = arc cos x + arc cos y = arc cos x – arc cos y = arc tan x + arc tan y = arc tan x – arc tan y = 2 arc sin x = 2 arc cos x =2 arc tanx = cos (n arc cos x) =反三角函数图像与特征反正弦曲线图像与特征反余弦曲线图像与特征拐点(同曲线对称中心):,该点切线斜率为1拐点(同曲线对称中心):,该点切线斜率为-1 反正切曲线图像与特征反余切曲线图像与特征拐点(同曲线对称中心):,该点切线斜率为1 拐点:,该点切线斜率为-1渐近线:渐近线:名称反正割曲线反余割曲线方程图像顶点渐近线反三角函数的定义域与主值范围函数主值记号定义域主值范围反正弦若,则反余弦若,则反正切若,则反余切若,则反正割若,则反余割若,则一般反三角函数与主值的关系为式中n为任意整数.反三角函数的相互关系arc sin x = arc cos x = arc tan x = arc cot x =sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞)cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞<x<∞)arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|<1)arccos x = π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x|<1)arctan x = x - x^3/3 + x^5/5 - ... (x≤1)ArcSin(x) 函数功能:返回一个指定数的反正弦值,以弧度表示,返回类型为Double。

反三角函数公式表

反三角函数公式表

反三角函数公式包括1、arcsin(-x)=-arcsinx。

2、arccos(-x)=π-arccosx。

3、arctan(-x)=-arctanx。

4、arccot(-x)=π-arccotx。

5、arcsinx+arccosx=π/2=arctanx+arccotx。

6、sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)。

7、当x∈[—π/2,π/2]时,有arcsin(sinx)=x。

8、当x∈〔0,π〕,arccos(cosx)=x。

9、x∈(—π/2,π/2),arctan(tanx)=x。

反三角函数是一种基本初等函数。

它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切,反正割,反余割为x 的角。

三角函数的反函数是个多值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x 对称。

欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。

反三角函数(inverse trigonometric function)是一类初等函数。

指三角函数的反函数,由于基本三角函数具有周期性,所以反三角函数是多值函数。

这种多值的反三角函数包括:反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数,分别记为Arcsin x,Arccos x,Arctan x,Arccot x,Arcsec x,Arccsc x。

高中数学三角函数-反三角函数公式大全

高中数学三角函数-反三角函数公式大全
13.函数f(x)= ,关于x的方程f(x)=kx﹣k至少有两个不相等的实数根,则实数k的取值范围为.
14.已知λ∈R,函数f(x)= ,当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.
三.解答题(共6小题)
15.已知定义域为R的函数f(x)=﹣ + 是奇函数
(1)求a的值;
A. B.3C. 或3D. 或3
4.(5.00分)已知奇函数f(x),当x>0时单调递增,且f(1)=0,若f(x﹣1)>0,则x的取值范围为( )
A.{x|0<x<1或x>2}B.{x|x<0或x>2}
C.{x|x<0或x>3}D.{x|x<﹣1或x>1}
5.(5.00分)已知函数f(x)=logax(0<a<1)的导函数为f'(x),记A=f'(a),B=f(a+1)﹣f(a),C=f'(a+1),则( )
tan(2π-α)= -tanαcot(2π-α)= -cotα
公式六:
±α及 ±α与α的三角函数值之间的关系:
sin( +α)= cosαcos( +α)= -sinα
tan( +α)= -cotαcot( +α)= -tanα
sin( -α)= cosαcos( -α)= sinαtan( -α)= cotαcot( -α)= tanα
万能公式
sina= cosa= tana=
其他非重点三角函数
csc(a) = sec(a) = cot(a) =
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinαcos(2kπ+α)= cosα
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反三角函数公式
arc sin x + arc sin y = arc sin x – arc sin y = arc cos x + arc cos y = arc cos x – arc cos y = arc tan x + arc tan y = arc tan x – arc tan y = 2 arc sin x = 2 arc cos x =
2 arc tanx = cos (n arc cos x) =
反三角函数图像与特征
反正弦曲线图像与特征反余弦曲线图像与特征
拐点(同曲线对称中心):,该点切线斜率为1
拐点(同曲线对称中心):
,该点切线斜率为-1 反正切曲线图像与特征反余切曲线图像与特征
拐点(同曲线对称中心):,该点切线斜率为1 拐点:
,该点切线斜率为-1

渐近线:
名称反正割曲线反余割曲线
方程
图像
顶点
渐近线
反三角函数的定义域与主值范围
函数主值记号定义域主值范围反正弦若,则
反余弦若,则
反正切若,则
反余切若,则
反正割若,则
反余割若,则
一般反三角函数与主值的关系为
式中n为任意整数.
反三角函数的相互关系
arc sin x = arc cos x = arc tan x = arc cot x =
sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞)
cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞<x<∞)
arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|<1)
arccos x = π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x|<1)
arctan x = x - x^3/3 + x^5/5 - ... (x≤1)
ArcSin(x) 函数
功能:返回一个指定数的反正弦值,以弧度表示,返回类型为Double。

语法:ArcSin(x)。

说明:其中,x的取值范围为[-1,1],x的数据类型为Double。

程序代码:
Function ArcSin(x As Double) As Double
If x >= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1)
If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x))
If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function
ArcCos(x) 函数
功能:返回一个指定数的反余弦值,以弧度表示,返回类型为Double。

语法:ArcCos(x)。

说明:其中,x的取值范围为[-1,1],x的数据类型为Double。

程序代码:
Function ArcCos(x As Double) As Double
If x >= -1 And x < -0.5 Then ArcCos = Atn(Sqr(1 - x *x) / x) + 4 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcCos = -Atn(x/ Sqr(1 - x * x)) + 2 * Atn(1) If x> 0.5 And x <= 1 Then ArcCos = Atn(Sqr(1 - x*x) / x)
End Function。

相关文档
最新文档