运筹学-第六章图与网络分析
合集下载
运筹学(第6章 图与网络分析)
a1 (v1) 赵
(v2)钱
a2 a3 a4 a14 a15
a8 a9
a7 (v4) 李
(v3)孙
a5 (v5) 周 a6 a10 (v6)吴
图6-3
a12 a11 a13
(v7)陈
定义: 图中的点用v表示,边用e表示。对每条边可用它
所连接的点表示,记作:e1=[v1,v1]; e2=[v1,v2];
树是图论中结构最简单但又十分重要的图。在自然和社会领 域应用极为广泛。 例6.2 乒乓求单打比赛抽签后,可用图来表示相遇情况,如 下图所示。
运动员 A
B C
D
E
F G
H
例6.3 某企业的组织机构图也可用树图表示。
厂长
人事科
财务科
总工 程师
生产副 厂长
经营副 厂长
开发科
技术科
生产科
设备科
供应科
动力科
e2
(v1) 赵
e1
e3
e4 孙(v3) 李(v4)
周(v5)
图6-2
e5 吴(v6) 陈(v7)
(v2)钱
如果我们把上面例子中的“相互认识”关系改为“认识” 的关系,那么只用两点之间的联线就很难刻画他们之间的关 系了,这是我们引入一个带箭头的联线,称为弧。图6-3就是 一个反映这七人“认识”关系的图。相互认识用两条反向的 弧表示。
端点,关联边,相邻 若有边e可表示为e=[vi,vj],称vi和
e2 v2 e6 e1 e4 v1 e3 v3 e8
vj是边e的端点,反之称边e为点vi
或vj的关联边。若点vi、vj与同一条 边关联,称点vi和vj相邻;若边ei和
e5
e7
(v2)钱
a2 a3 a4 a14 a15
a8 a9
a7 (v4) 李
(v3)孙
a5 (v5) 周 a6 a10 (v6)吴
图6-3
a12 a11 a13
(v7)陈
定义: 图中的点用v表示,边用e表示。对每条边可用它
所连接的点表示,记作:e1=[v1,v1]; e2=[v1,v2];
树是图论中结构最简单但又十分重要的图。在自然和社会领 域应用极为广泛。 例6.2 乒乓求单打比赛抽签后,可用图来表示相遇情况,如 下图所示。
运动员 A
B C
D
E
F G
H
例6.3 某企业的组织机构图也可用树图表示。
厂长
人事科
财务科
总工 程师
生产副 厂长
经营副 厂长
开发科
技术科
生产科
设备科
供应科
动力科
e2
(v1) 赵
e1
e3
e4 孙(v3) 李(v4)
周(v5)
图6-2
e5 吴(v6) 陈(v7)
(v2)钱
如果我们把上面例子中的“相互认识”关系改为“认识” 的关系,那么只用两点之间的联线就很难刻画他们之间的关 系了,这是我们引入一个带箭头的联线,称为弧。图6-3就是 一个反映这七人“认识”关系的图。相互认识用两条反向的 弧表示。
端点,关联边,相邻 若有边e可表示为e=[vi,vj],称vi和
e2 v2 e6 e1 e4 v1 e3 v3 e8
vj是边e的端点,反之称边e为点vi
或vj的关联边。若点vi、vj与同一条 边关联,称点vi和vj相邻;若边ei和
e5
e7
运筹学:第6章 图与网络分析
给图中的点和边赋以具体的含义和权值,我们称 这样的图为网络图(赋权图)
2021/4/18
6
图中的点用 v 表示,边用 e 表示,对每条边可用
它所联结的点表示,如图,则有:
e1 = [v1 , v1], e2 = [v1 , v2]或e2= [v2 , v1]
2021/4/18
7
用点和点之间的线所构成的图,反映实际生产和 生活中的某些特定对象之间的特定关系。
第一种解法:
1. 在点集中任选一点,不妨取 S,令 V={S} 2. 找到和 S 相邻的边中,权值最小的 [S , A] 。
2021/4/18
22
3.V={S , A} 4. 重复第2,3步,找到下一个点。
2021/4/18
23
第二种做法求解过程:
2021/4/18
24
破圈法求解步骤:
1. 从图 N 中任取一回路,去掉这个回路中边 权最大的边,得到原图的一个子图 N1。
Dijkstra 算法假设:
1.设 dij 表示图中两相邻点 i 与 j 的距离,若 i 与 j 不相邻,令 dij =∞,显然 dii =0。 2. 设 Lsi 表示从 s 点到 i 点的最短距离。
2021/4/18
31
求从起始点 s 到终止点 t 的最短路径。 Dijkstra 算法步骤:
1.对起始点 s ,因 Lss =0 ,将 0 标注在 s 旁的小 方框内,表示 s 点已标号;
终点重合的链称为圈,起点和终点重合的路称为回
路,若在一个图中,每一对顶点之间至少存在一条
链,称这样的图为连通图,否则称该图为不连通的。
2021/4/18
12
2021/4/18
链
2021/4/18
6
图中的点用 v 表示,边用 e 表示,对每条边可用
它所联结的点表示,如图,则有:
e1 = [v1 , v1], e2 = [v1 , v2]或e2= [v2 , v1]
2021/4/18
7
用点和点之间的线所构成的图,反映实际生产和 生活中的某些特定对象之间的特定关系。
第一种解法:
1. 在点集中任选一点,不妨取 S,令 V={S} 2. 找到和 S 相邻的边中,权值最小的 [S , A] 。
2021/4/18
22
3.V={S , A} 4. 重复第2,3步,找到下一个点。
2021/4/18
23
第二种做法求解过程:
2021/4/18
24
破圈法求解步骤:
1. 从图 N 中任取一回路,去掉这个回路中边 权最大的边,得到原图的一个子图 N1。
Dijkstra 算法假设:
1.设 dij 表示图中两相邻点 i 与 j 的距离,若 i 与 j 不相邻,令 dij =∞,显然 dii =0。 2. 设 Lsi 表示从 s 点到 i 点的最短距离。
2021/4/18
31
求从起始点 s 到终止点 t 的最短路径。 Dijkstra 算法步骤:
1.对起始点 s ,因 Lss =0 ,将 0 标注在 s 旁的小 方框内,表示 s 点已标号;
终点重合的链称为圈,起点和终点重合的路称为回
路,若在一个图中,每一对顶点之间至少存在一条
链,称这样的图为连通图,否则称该图为不连通的。
2021/4/18
12
2021/4/18
链
运筹学 第6章 图论与网络分析
(4) 重复第3步,一直到t点得到标号为止。 例3 求从v1到v7的最短路
v2
5 2 7 6
v5
3 1 2 6
v1
2 7
v4
v7
解:
5
v3
v2
0 2 7 7
4
v6
v5
6 1 2 6 3
(1)
v1
2
v4
v7
v3
4
v6
(2)
L1 p min d12 , d13 min 5, 2 2 L13
• 若两个点之间的边多于一条,称为具有多重边;
• 对无环、无多重边的图称为简单图。 次、奇点、偶点、孤立点、悬挂点 • 与某一个点vi 相关联的边的数目称为次(也称度),记d(vi);
次为奇数的点称为奇点;次为偶数的点称为偶点;
次为0的点称为孤立点;次为1的点称为悬挂点。
多重边 v1 e'13 v3 e13
( vi , v j )
3-1 迪杰斯特拉(Dijkstra)算法 算法的思想:如果P是从vs到vt的最短路,vi是P上的一个 点,那么,从vs沿P到vi的路是从vs到vi的最短路。 设dij为图中两相邻点i与j的距离,若不相邻,dij=0;Lsi为点 s到i的最短距离, 求s点到t点最短距离。 算法的步骤:
v4
v7
v3
2
4
v6 6
(5) L1 p min L12 d 25 , L12 d 24 , L13 d 34 , L16 d 64 , L16 d 65 , L16 d 67 min 5 7, 5 2, 2 7, 6 2,6 1,6 6 7 L14 L15
第六章图与网络分析
e3
v3
若链中所有的顶点也互不相同,这样的链称为路.
e4
v4
起点和终点重合的链称为圈. 起点和终点重合的路称为回路.
若图中的每一对顶点之间至少存在一条链, 称这 样的图为连通图, 否则称该图是不连通的. 第10页
完全图,偶图
任意两点之间均有边相连的简单图, 称为完全图. K n
K2
K3
K4
2 | E | Cn
第20页
6.2树图和图的最小部分树问题 Minimal tree problem 6.2.1树的概念
若图中的每一对顶点之间至少存在一条链, 称这样的图 为连通图. 树图(简称树Tree): 无圈的连通的图,记作T(V, E)
组织机构、家谱、学科分支、因特网络、通讯网络及高压线路 网络等都能表达成一个树图 。
第13页
有向图 G : (V,E),记为 G=(V,E)
G 的点集合: V {v1 , v2 ,...,vn } G 的弧集合: E {eij } 且 eij 是一个有序二元组 (vi , v j ) ,记
为 eij (vi , v j ) 。下图就是一个有向图,简记 G 。 若 eij (vi , v j ) ,则称 eij 从 v i 连向 v j ,点 v i 称为 eij 的尾,v j 称为 eij 的头。 v i 称为 v j 的前继, v j 称为 v i 的后继。 基本图:去掉有向图的每条弧上的方向所得到的无向图。
有向图 G (V , E ) 的关联矩阵:一个 | V | | E | 阶矩阵
B (bik ) ,
1, 当 弧ek以 点i为 尾 其中 bik 1, 当 弧ek以 点i为 头 0, 否 则
运筹学6(图与网络分析)
定义7:子图、生成子图(支撑子图)
图G1={V1、E1}和图G2={V2,E2}如果 V1 V2和E1 E2 称G1是G2的一个子图。
若有 V1=V2,E1 E2 则称 G1是G2的一 个支撑子图(部分图)。
图8-2(a)是图 6-1的一个子图,图8-2 (b)是图 8-1的支撑子图,注意支撑子图 也是子图,子图不一定是支撑子图。 e1
v2 ▲如果链中所有的顶点v0,v1,…,vk也不相
e1 e2 e4 v1 e3
v3 e5
同,这样的链称初等链(或路)。
e6
▲如果链中各边e1,e2…,ek互不相同称为简单链。
e7
e8
▲当v0与vk重合时称为回路(或圈),如果边不 v4
v5
重复称为简单回路,如果边不重复点也不重复
则称为初等回路。
图8-1中, μ1={v5,e8,v3,e3,v1,e2,v2,e4,v3,e7,v5}是一条链,μ1中因顶 点v3重复出现,不能称作路。
e1
e2 e4 v1 e3
v2
v3
e5
e6
e7
e8
v4
v5
定理1 任何图中,顶点次数的总和等于边数的2倍。
v1
v3
v2
定理2 任何图中,次为奇数的顶点必为偶数个。
e1
e2 e4 v1 e3
v2
v3
e5
e6
e7
e8
v4
v5
定义4 有向图: 如果图的每条边都有一个方向则称为有向图
定义5 混合图: 如何图G中部分边有方向则称为混合图 ② ⑤ ④
定理4 有向连通图G是欧拉图,当且仅当G中每个顶点的出 次等于入次。
② 15
9 10
运筹学-6(图与网络分析)PPT课件
4
3
验证:第一圈内总长:3+4+5+4+7=23 第一圈逆时针内配送路长:3+4+5=12>11.5,则不是最优方案 第二圈内配送路长:4+2+3+4=13 第二圈逆时针内配送路长:2<6.5,则是最优方案。 第二圈顺时针内配送路长:3<6.5,则是最优方案。
修正第一圈内方案,取逆时针方向最小值1,然后逆时针方向配送路线减去 1,顺时针方向配送及未走路线加上1,则得到第一圈内配送路长:5<总长 一半,则是最优方案。如图所示:
相关 成本
A 4C
E
A 5C
E F
A 6C
F I
D D, F F, I
D D I H, G
D D H, G H, J
348 291, 228 294, 258
348 291 258 288, 360
348 291 288, 360 390, 384
第n个 最近
节点
最小 成本
最新 连接
A到各 N节点 最短 路径
6.2.2 网络图的绘制原则
只能有一个始点事项和一个终点事项 不允许出现编号相同的箭线 不允许出现循环线路 作业要始于结点终于结点
网 络 规 则(2)
1、避免循环、不留缺口
2、一一对应:一道工序用两个事项表示
F 228 CF A→C→F
I
258 EI A→B→E
→I
H 288 FH A→C→F →H
步 已解点 候选点 骤
相关 成本
A C 7F I H
F 8I
H D
D D G J G, J
G J J G
348 291 360 384 336, 414 360 384 414 396
运筹学第六章图与网络分析
S
2
4
7
2 A
0 5
S
5 45 B
98
14
5
13
D
T
C
E
4
4
4
7
最短路线:S AB E D T
最短距离:Lmin=13
2.求任意两点间最短距离的矩阵算法
⑴ 构造任意两点间直接到达的最短距离矩阵D(0)= dij(0)
S A B D(0)= C D E T
SABCDET 0 25 4 2 02 7 5 20 1 5 3 4 1 0 4 75 0 15 3 41 0 7 5 7 0
e1 v1
e5
v0 e2
e3
v2
e4
e6 e7
v3
v4
(4)简单图:无环、无多重边的图称为简单图。
(5)链:点和边的交替序列,其中点可重复,但边不能 重复。
(6)路:点和边的交替序列,但点和边均不能重复。
(7)圈:始点和终点重合的链。
(8)回路:始点和终点重合的路。
(9)连通图:若一个图中,任意两点之间至少存在一条 链,称这样的图为连通图。 (10)子图,部分图:设图G1={V1,E1}, G2={V2,E2}, 如果有V1V2,E1E2,则称G1是G2的一个子图;若 V1=V2,E1E2,则称G1是G2的一个部分图。 (11)次:某点的关联边的个数称为该点的次,以d(vi)表示。
步骤:
1. 两两连接所有的奇点,使之均成为偶点;
2. 检查重复走的路线长度,是否不超过其所在 回路总长的一半,若超过,则调整连线,改 走另一半。
v1
4
v4
4
1
4
v2
v5
5
运筹学第6章 图与网络
也就是说| V1 |必为偶数。
定理6.2有学者也称作定理6.1的推论。根据定理6.2,握手定理也可以 表述为,在任何集体聚会中,握过奇次手的人数一定是偶数个。
12 该课件的所有权属于熊义杰
另外,现实中不存在面数为奇数且每个面的边数也是奇数的多面 体,如表面为正三角形的多面体有4个面,表面为正五边形的多面体有 12个面等等,也可以用这一定理予以证明。因为在任意的一个多面体 中, 当且仅当两个面有公共边时,相应的两顶点间才会有一条边,即 任意多面体中的一个边总关联着两个面。所以,以多面体的面数为顶
v j V2
(m为G中的边数)
因式中 2m 是偶数, d (v j ) 是偶数,所以 d (vi ) 也必为偶数
v j V2
vi V1
( 两个同奇同偶数的和差必为偶数 ), 同时,由于 d (vi ) 中的每个加数 d (vi )
均为奇数,因而 d (vi ) 为偶数就表明, d (vi ) 必然是偶数个加数的和 ,
图论、算法图论、极值图论、网络图论、代数图论、随机图论、 模糊图论、超图论等等。由于现代科技尤其是大型计算机的迅 猛发展,使图论的用武之地大大拓展,无论是数学、物理、化 学、天文、地理、生物等基础科学,还是信息、交通、战争、 经济乃至社会科学的众多问题.都可以应用图论方法子以解决。
1976年,世界上发生了不少大事,其中一件是美国数学家 Appel和Haken在Koch的协作之下,用计算机证明了图论难题— —四色猜想(4CC):任何地图,用四种颜色,可以把每国领土染 上一种颜色,并使相邻国家异色。4CC的提法和内容十分简朴, 以至于可以随便向一个人(哪怕他目不识丁)在几分钟之内讲清 楚。1852年英国的一个大学生格思里(Guthrie)向他的老师德·摩 根(De Morgan)请教这个问题,德·摩根是当时十分有名的数学家, 他不能判断这个猜想是否成立,于是这个问题很快有数学界流 传开来。1879年伦敦数学会会员Kemple声称,证明了4CC成立, 且发表了论文。10年后,Heawood指出了Kemple的证明中
运筹学第六章图与网络分析a管理精品资料
min T (v j) T ( v j) ,L ( v i) d ij j
3. 在与固定标号点相邻的临时标号点中选取 具有最小标号的点vi给予固定标号,即:
L(vi)=min{ T(vj) } 返回第2步。 4. 当vn得到固定标号时,计算结束。 注: 固定标号L(vi)表示v1到vi的最短距离, 临时标号T(vj)表示v1到vi距离的上界。
能一笔画的图一定是欧拉圈或含有欧拉链。 定理:连通的多重图G是欧拉图的充要条件是G 中无奇点。 推论:连通的多重图G有欧拉链的充要条件是G 中恰有两个奇点。
第二节 树图和图的最小部分树
树图:无圈的连通图称为树图,记为T(V,E)。 2-1 树的性质 性质1:任何树中必存在至少两个次为1的点(悬 挂点)。
若一个简单图中任意两点之间均有边相连,
则称该图为完全图。
对含有n个顶点的完全图,其边数有
Cn2
1n(n1) 2
条。
如果图的顶点能分成两个互不相交的非空
集合V1和V2 ,使在同一集合中任意两个顶点 都不相邻,则称该图为偶图(或二分图)。
若偶图的顶点集合V1、V2之间的每一对不 同顶点之间都有一条边相连,则称该图为完全 偶图。在完全偶图中, V1若有m个顶点, V2 有n个顶点,则其边数共有m×n条。
临时标号
v2(5) v3(2) v4(∞) v5(∞) v6(∞) v7(∞) v2(5) v4(9) v5(∞) v6(6) v7(∞) v4(7) v5(12) v6(6) v7(∞) v4(7) v5(7) v7(12)
v5(7) v7(12)
v7(10)
❖ Dijkstra 算 法 仅 适 合 于 所 有 的 权
Hale Waihona Puke 3-2 求任意两点间最短距离的矩阵算法(Floyd) 设邻接矩阵为D,计算D1=D+D, D2= D1 +D ,
3. 在与固定标号点相邻的临时标号点中选取 具有最小标号的点vi给予固定标号,即:
L(vi)=min{ T(vj) } 返回第2步。 4. 当vn得到固定标号时,计算结束。 注: 固定标号L(vi)表示v1到vi的最短距离, 临时标号T(vj)表示v1到vi距离的上界。
能一笔画的图一定是欧拉圈或含有欧拉链。 定理:连通的多重图G是欧拉图的充要条件是G 中无奇点。 推论:连通的多重图G有欧拉链的充要条件是G 中恰有两个奇点。
第二节 树图和图的最小部分树
树图:无圈的连通图称为树图,记为T(V,E)。 2-1 树的性质 性质1:任何树中必存在至少两个次为1的点(悬 挂点)。
若一个简单图中任意两点之间均有边相连,
则称该图为完全图。
对含有n个顶点的完全图,其边数有
Cn2
1n(n1) 2
条。
如果图的顶点能分成两个互不相交的非空
集合V1和V2 ,使在同一集合中任意两个顶点 都不相邻,则称该图为偶图(或二分图)。
若偶图的顶点集合V1、V2之间的每一对不 同顶点之间都有一条边相连,则称该图为完全 偶图。在完全偶图中, V1若有m个顶点, V2 有n个顶点,则其边数共有m×n条。
临时标号
v2(5) v3(2) v4(∞) v5(∞) v6(∞) v7(∞) v2(5) v4(9) v5(∞) v6(6) v7(∞) v4(7) v5(12) v6(6) v7(∞) v4(7) v5(7) v7(12)
v5(7) v7(12)
v7(10)
❖ Dijkstra 算 法 仅 适 合 于 所 有 的 权
Hale Waihona Puke 3-2 求任意两点间最短距离的矩阵算法(Floyd) 设邻接矩阵为D,计算D1=D+D, D2= D1 +D ,
运筹学胡运权第五版(第6章)课件
零图: 边集为空集的图。
运筹学胡运权第五版(第6章)
2、图的阶:即图中的点数。 例如 右图为一个五阶图
3、若图中边e= [vi,vj] ,则vi,vj称 为e的端点,
e称为vi,vj的关联边。 若vi与vj是一条边的两个端
点,则称vi与vj相邻; 若边ei与ej有公共的端点,
则称ei与ej相邻。
e8
1、图(graph):由V,E构成的有序二元组,用以表示对 某些现实对象及其联系的抽象,记作 G={V,E}。 其中V称为点集,记做V={v1,v2,···,vn}
E称为边集,记做E={e1,e2,···,em}
点(vertex):表示所研究的对象,用v表示; 边(edge):表示对象之间的联系,用e表示。 网络图(赋权图): 点或边具有实际意义(权数)的图, 记做N。
路:点不能重复的链。
圈:起点和终点重合的链。
回路:起点和终点重合的路。
连通图:任意两点之间至少存在一条链的图。
完全图:任意两点之间都有边相连的简单图。
n阶完全图用Kn表示,边数=
C 2 n(n 1)
n
2
注意:完全图是连通图,但连通图不一定是完全图。
运筹学胡运权第五版(第6章)
v1 e4
v4 e5 v5
依次下去,vn必然与前面的某个点相邻,图中有圈,矛盾!
注意:树去掉悬挂点和悬挂边后余下的子图还是树。
运筹学胡运权第五版(第6章)
(2)n阶树必有n-1条边。
证明(归纳法): 当n=2时,显然;
设n=k-1时结论成立。 当n=k时,树至少有一个悬挂点。
去掉该悬挂点和悬挂边,得到一个k-1阶的树,它有 k-2条边,则原k阶树有k-1条边。
7、已知图G1={V1,E1}, G2={V2,E2}, 若有V1V2,E1E2,则称G1是G2的一个子图; 若V1=V2,E1E2且 E1≠E2 ,则称G1是G2的一个部分图。
运筹学胡运权第五版(第6章)
2、图的阶:即图中的点数。 例如 右图为一个五阶图
3、若图中边e= [vi,vj] ,则vi,vj称 为e的端点,
e称为vi,vj的关联边。 若vi与vj是一条边的两个端
点,则称vi与vj相邻; 若边ei与ej有公共的端点,
则称ei与ej相邻。
e8
1、图(graph):由V,E构成的有序二元组,用以表示对 某些现实对象及其联系的抽象,记作 G={V,E}。 其中V称为点集,记做V={v1,v2,···,vn}
E称为边集,记做E={e1,e2,···,em}
点(vertex):表示所研究的对象,用v表示; 边(edge):表示对象之间的联系,用e表示。 网络图(赋权图): 点或边具有实际意义(权数)的图, 记做N。
路:点不能重复的链。
圈:起点和终点重合的链。
回路:起点和终点重合的路。
连通图:任意两点之间至少存在一条链的图。
完全图:任意两点之间都有边相连的简单图。
n阶完全图用Kn表示,边数=
C 2 n(n 1)
n
2
注意:完全图是连通图,但连通图不一定是完全图。
运筹学胡运权第五版(第6章)
v1 e4
v4 e5 v5
依次下去,vn必然与前面的某个点相邻,图中有圈,矛盾!
注意:树去掉悬挂点和悬挂边后余下的子图还是树。
运筹学胡运权第五版(第6章)
(2)n阶树必有n-1条边。
证明(归纳法): 当n=2时,显然;
设n=k-1时结论成立。 当n=k时,树至少有一个悬挂点。
去掉该悬挂点和悬挂边,得到一个k-1阶的树,它有 k-2条边,则原k阶树有k-1条边。
7、已知图G1={V1,E1}, G2={V2,E2}, 若有V1V2,E1E2,则称G1是G2的一个子图; 若V1=V2,E1E2且 E1≠E2 ,则称G1是G2的一个部分图。
运筹学课件-第六章图与网络分析
运筹学课件-第六章 图与网络分析
contents
目录
•的算法 • 图的应用
01
CATALOGUE
图的基本概念
图的定义
总结词
图是由顶点(或节点)和边(或弧) 组成的数据结构。
详细描述
图是由顶点(或节点)和边(或弧) 组成的数据结构,其中顶点表示对象 ,边表示对象之间的关系。根据边的 方向,图可以分为有向图和无向图。
04
CATALOGUE
图的算法
深度优先搜索
要点一
总结词
深度优先搜索是一种用于遍历或搜索树或图的算法。
要点二
详细描述
该算法通过沿着树的深度遍历树的节点,尽可能深地搜索 树的分支。当节点v的所在边都己被探寻过,搜索将回溯到 发现节点v的那条边的起始节点。这一过程一直进行到已发 现从源节点可达的所有节点为止。如果还存在未被发现的 节点,则选择其中一个作为源节点并重复以上过程,整个 进程反复进行直到所有节点都被访问为止。
物流网络设计的应用
在物流规划、供应链管理、运输优化等领域有广泛应用,例如通过物 流网络设计优化货物运输路径、提高仓储管理效率等。
生物信息学中的图分析
生物信息学中的图分析
利用图论的方法对生物信息进 行建模和分析,以揭示生物系 统的结构和功能。
生物信息学中的节点
代表生物分子、基因、蛋白质 等。
生物信息学中的边
Dijkstra算法
总结词:Dijkstra算法是一种用于在有向图中查找单源 最短路径的算法。
详细描述:Dijkstra算法的基本思想是从源节点开始, 逐步向外扩展,每次找到离源节点最近的节点,并更新 最短路径。该算法使用一个优先级队列来保存待访问的 节点,并将源节点加入队列中。然后,从队列中取出具 有最小优先级的节点进行访问,并将其相邻节点加入队 列中。这一过程一直进行,直到队列为空,即所有可到 达的节点都已被访问。Dijkstra算法的时间复杂度为 O((V+E)logV),其中V是节点的数量,E是边的数量。
contents
目录
•的算法 • 图的应用
01
CATALOGUE
图的基本概念
图的定义
总结词
图是由顶点(或节点)和边(或弧) 组成的数据结构。
详细描述
图是由顶点(或节点)和边(或弧) 组成的数据结构,其中顶点表示对象 ,边表示对象之间的关系。根据边的 方向,图可以分为有向图和无向图。
04
CATALOGUE
图的算法
深度优先搜索
要点一
总结词
深度优先搜索是一种用于遍历或搜索树或图的算法。
要点二
详细描述
该算法通过沿着树的深度遍历树的节点,尽可能深地搜索 树的分支。当节点v的所在边都己被探寻过,搜索将回溯到 发现节点v的那条边的起始节点。这一过程一直进行到已发 现从源节点可达的所有节点为止。如果还存在未被发现的 节点,则选择其中一个作为源节点并重复以上过程,整个 进程反复进行直到所有节点都被访问为止。
物流网络设计的应用
在物流规划、供应链管理、运输优化等领域有广泛应用,例如通过物 流网络设计优化货物运输路径、提高仓储管理效率等。
生物信息学中的图分析
生物信息学中的图分析
利用图论的方法对生物信息进 行建模和分析,以揭示生物系 统的结构和功能。
生物信息学中的节点
代表生物分子、基因、蛋白质 等。
生物信息学中的边
Dijkstra算法
总结词:Dijkstra算法是一种用于在有向图中查找单源 最短路径的算法。
详细描述:Dijkstra算法的基本思想是从源节点开始, 逐步向外扩展,每次找到离源节点最近的节点,并更新 最短路径。该算法使用一个优先级队列来保存待访问的 节点,并将源节点加入队列中。然后,从队列中取出具 有最小优先级的节点进行访问,并将其相邻节点加入队 列中。这一过程一直进行,直到队列为空,即所有可到 达的节点都已被访问。Dijkstra算法的时间复杂度为 O((V+E)logV),其中V是节点的数量,E是边的数量。
第六章物流运筹学——图与网络分析.
L( )
( vi ,v j )
l
ij
最小的 。
Dijkstra算法
算法的基本步骤: (1)给 v s 以 P 标号, P(vs ) 0 ,其余各点均给 T 标号, T (vi ) 。 (2)若 vi 点为刚得到 P 标号的点,考虑这样的点 v j: (vi , v j ) E ,且 v j 为 T 标号,对 v j 的 T 标号进行如下的更改:
v2
(4,3)
v4
(3,3)
(5,3) (1,1) (1,1) (3,0)
vs
(5,1)
vt
(2,1)
v1
(2,2)
v3
图 6-14
运输线路图
第四节 最小费用最大流问题
在容量网络 G (V , E, C ) ,每一条边 (vi , v j ) E 上,除了已 给容量 cij 外,还给了一个单位流量的费用 bij 0 ,记此时的容 量网络为 G (V , E, C , B) 。 所谓最小费用最大流问题就是要求一个最大流 f ,使流的 总运输费用 b( f )
定理 6-1 任何图中顶点次数的总和等于边数的 2 倍。 推论 6-1 任何图中,次为奇数的顶点必有偶数个。 图 G (V , E ) 和图 H (V , E ) ,若 V V且E E ,则 称 H 是 G 的子图,记作: H G ;特别的,当 V V 时, 称 H 为 G 的生成子图。
容量网络g若?为网络中从sv到tv的一条链给?定向为从sv到tv?上的边凡与?同向称为前向边凡与?反向称为后向边其集合分别用??和??表示??ijff?是一个可行流如果满足??????0ijijijijiijjffcvv??????????c???0ijijijfvv????则称?为从sv到tv的关于f的可增广链
( vi ,v j )
l
ij
最小的 。
Dijkstra算法
算法的基本步骤: (1)给 v s 以 P 标号, P(vs ) 0 ,其余各点均给 T 标号, T (vi ) 。 (2)若 vi 点为刚得到 P 标号的点,考虑这样的点 v j: (vi , v j ) E ,且 v j 为 T 标号,对 v j 的 T 标号进行如下的更改:
v2
(4,3)
v4
(3,3)
(5,3) (1,1) (1,1) (3,0)
vs
(5,1)
vt
(2,1)
v1
(2,2)
v3
图 6-14
运输线路图
第四节 最小费用最大流问题
在容量网络 G (V , E, C ) ,每一条边 (vi , v j ) E 上,除了已 给容量 cij 外,还给了一个单位流量的费用 bij 0 ,记此时的容 量网络为 G (V , E, C , B) 。 所谓最小费用最大流问题就是要求一个最大流 f ,使流的 总运输费用 b( f )
定理 6-1 任何图中顶点次数的总和等于边数的 2 倍。 推论 6-1 任何图中,次为奇数的顶点必有偶数个。 图 G (V , E ) 和图 H (V , E ) ,若 V V且E E ,则 称 H 是 G 的子图,记作: H G ;特别的,当 V V 时, 称 H 为 G 的生成子图。
容量网络g若?为网络中从sv到tv的一条链给?定向为从sv到tv?上的边凡与?同向称为前向边凡与?反向称为后向边其集合分别用??和??表示??ijff?是一个可行流如果满足??????0ijijijijiijjffcvv??????????c???0ijijijfvv????则称?为从sv到tv的关于f的可增广链
运筹学第六章图与网络分析(ppt文档)
§6.1 图的基本概念和模型
一、概念
(1)图:点V和边E的集合,用以表示对某种现实事物
的抽象。记作 G={V,E}, V={v1,v2,···,vn}, 点:表示所研究的事物对象; E={e1,e2,···,em}
边:表示事物之间的联系。
e0
(2)若边e的两个端点重 合,则称e为环。
(3)多重边:若某两端点之 间多于一条边,则称为多重边。
D 8 64 5 0 15
E 7 53 4 1 0 6
T 14 11 9 10 5 6 0
i
dir(1)
r
drj(1)
j
⑷ 构造任意两点间最多可经过7个中间点到达的最短距 离矩阵 D(3)= dij(3)
其中
dij(3)=
min
r
{
dir(2)+
drj(2)
}
SABCDET
S 0 2 4 4 8 7 13
dir(0)
r i
drj(0)
j
⑶ 构造任意两点间最多可经过3个中间点到达的最短距 离矩阵 D(2)= dij(2)
其中
dij(2)=
min
r
{
dir(1)+
drj(1)}
SABCDET
S 0 2 4 4 8 7 14
A 2 0 2 3 6 5 11
B 4 20 1 43 9 D(2)= C 4 3 1 0 5 4 10
2. 破圈法:
⑴ 任取一圈,去掉其中一条最长的边, ⑵ 重复,至图中不存在任何的圈为止。
2. 破圈法
A
S
5 × B 5× D 5 T
C
4× E
最小部分树长Lmin=14
运筹学第6章:图与网路分析
13
6.3 最短路问题
6.3.1 狄克斯特拉算法 (Dijkstra algorithm, 1959)
• 计算两节点之间或一个节点到所有节点之间的最短路
令 dij 表示 vi 到 vj 的直接距离(两点之间有边),若两点之间 没有边,则令 dij = ,若两点之间是有向边,则 dji = ; 令 dii = 0,s 表示始点,t 表示终点
10 16 11 10 17 10 9.5 19.5 16 9.5 7 12 7 8 7 11 10 8 9 17 19.5 12 7 9
• • • • •
Prim算法是多项式算法 Prim算法可以求最大生成树 网路的边权可以有多种解释,如效率 次数受限的最小生成树—尚无有效算法 最小 Steiner 树—尚无有效算法
j dij i dik djk k
17
6.3.2 Floyd-Warshall 算法 (1962)
for i=1 to n do dii=; for all eij=0; for j=1 to n do for i=1 to n do if ij then for k=1 to n do if kj then begin dik=min{dik, dij+djk}; if dik>dij+djk then eik=j end;
7
6.2 树图与最小生成树
• 一般研究无向图 • 树图:倒臵的树,根(root)在上,树叶(leaf)在下 • 多级辐射制的电信网络、管理的指标体系、家谱、分 类学、组织结构等都是典型的树图
C1
根
C2
C3
C4
运筹学 CH6图与网络分析
Chapter6 图与网络分析
( Graph Theory and Network Analysis )
本章主要内容:
图与树的基本概念
最短路问题 网络的最大流网络问ຫໍສະໝຸດ 的Excel解法教学目的与要求
【教学目的与要求】
Page 2
了解图和树的基本概念;掌握最短路问题基本理论;了解网 络最大流问题;了解Microsoft Excel求解网络问题的方法。 【教学重难点】 最短路问题
2、基本思想是采用两种标号:
从始点vs 出发,逐步探寻,给每个点标号; 标号分永久标号P(vk)和临时标号T(vk) 两种:
•永久标号P(vk) 是从点 vs → vk 的最短路权 •临时标号T(vk) 是从点 vs → vk 最短路权的上界
算法的每一步从临时标号集中选最小者变为永久标号; 经过逐次改变,就可以得到从点vs 到各点的最短路。
点:研究对象(城市、球队)。 点间连线:对象之间的特定关系。 对称关系:用不带箭头的连线表示,称为边。 非对称关系:用带箭头的连线表示,称为弧。 图是由点和连线组成。 无向图(简称图):由点和边构成, 记作G = (V ,E)(V 是点的集合,E 是边的集合)
Page 7
连接点vi,vjV的边记作eij=[vi,vj],或者[vj,vi]。
图—引言
Page 3
图论是应用非常广泛的运筹学分支,它已经广泛地应用 于物理学、控制论、信息论、交通运输、经济管理、电子计 算机等各项领域。 例如,各种通信线路的架设,输油管道的铺设,铁路或 公路交通网络的合理布局等问题。
图—引例1
哥尼斯堡七桥问题
Page 4
哥尼斯堡(现名加里宁格勒)是欧洲一个城市,Pregei 河把该城分成两部分,河中有两个小岛,十八世纪时,河两 边及小岛之间共有七座桥,当时人们提出这样的问题:有没 有办法从某处(如A)出发,经过各桥一次且仅一次最后回 到原地呢?
( Graph Theory and Network Analysis )
本章主要内容:
图与树的基本概念
最短路问题 网络的最大流网络问ຫໍສະໝຸດ 的Excel解法教学目的与要求
【教学目的与要求】
Page 2
了解图和树的基本概念;掌握最短路问题基本理论;了解网 络最大流问题;了解Microsoft Excel求解网络问题的方法。 【教学重难点】 最短路问题
2、基本思想是采用两种标号:
从始点vs 出发,逐步探寻,给每个点标号; 标号分永久标号P(vk)和临时标号T(vk) 两种:
•永久标号P(vk) 是从点 vs → vk 的最短路权 •临时标号T(vk) 是从点 vs → vk 最短路权的上界
算法的每一步从临时标号集中选最小者变为永久标号; 经过逐次改变,就可以得到从点vs 到各点的最短路。
点:研究对象(城市、球队)。 点间连线:对象之间的特定关系。 对称关系:用不带箭头的连线表示,称为边。 非对称关系:用带箭头的连线表示,称为弧。 图是由点和连线组成。 无向图(简称图):由点和边构成, 记作G = (V ,E)(V 是点的集合,E 是边的集合)
Page 7
连接点vi,vjV的边记作eij=[vi,vj],或者[vj,vi]。
图—引言
Page 3
图论是应用非常广泛的运筹学分支,它已经广泛地应用 于物理学、控制论、信息论、交通运输、经济管理、电子计 算机等各项领域。 例如,各种通信线路的架设,输油管道的铺设,铁路或 公路交通网络的合理布局等问题。
图—引例1
哥尼斯堡七桥问题
Page 4
哥尼斯堡(现名加里宁格勒)是欧洲一个城市,Pregei 河把该城分成两部分,河中有两个小岛,十八世纪时,河两 边及小岛之间共有七座桥,当时人们提出这样的问题:有没 有办法从某处(如A)出发,经过各桥一次且仅一次最后回 到原地呢?
运筹学06图与网络分析
满足w(T*)=min(w(T))的树T*称为最小支撑树 (最小树)。
求最小树的方法 求最小树的避圈法 求最小树的破圈法
根树及其应用
有向树中的根树在计算机科学、决策论中有 很重要的应用
有向树:若一个有向图在不考虑边的方向时 是一棵树,则称这个有向图为有向树。
根树:有向树T,恰有一个结点入次为0,其 余各点入次均为1,则称T为根树(又称外向 树)。根树中入次为0的点称为根。根树中出 次为0的点称为叶。入次和出次均大于0的点 称为分枝点。由根到某一顶点vi的道路长度 (设每边长度为1),称为vi点的层次。
v4
a5 a4 a7
a1=(v1,v5)
a6
a2=(v5,v4) a3=(v1,v4) a4=(v3,v1) a5=(v1,v2) a6=(v2,v3) a7=(v1,v4)
v2
v3
d-(v1)=1;d+(v1)=3 d-(v2)=1;d+(v2)=1 d-(v3)=1;d+(v3)=2 d-(v4)=3;d+(v4)=0 d-(v5)=1;d+(v5)=1
树及其性质
树在现实中随处可见,如电话线架设、比赛 程序、组织结构等。
树:连通的无圈的无向图称为树。
树的性质 图G=(V,E),p个点、q条边,下列说法是等价
的
(1)G是一个树 (2)G连通,且恰有p-1条边 (3)G无圈,且恰有p-1条边 (4)G连通,但每舍去一边就不连通 (5)G无圈,但每增加一边即得唯一一个圈 (6)G中任意两点之间恰有一条链(简单链)
如果对于给定的图G=(V,E)的任意一边e∈E, 有一实数W(e)与之对应,则称G为赋权图,称 W(e)为边e的权。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/4/17
7
2018/4/17
8
欧拉把这个试验化为下图所示的一个图论 问题。它用结点A,B,C,D分别表示对应的陆 地,用边来表示连接陆地的桥。这样哥尼斯堡七 桥问题就转化 为下图中寻求 一条包含每边 一次的回路问 题。
图6-3 “七桥难题”图 解
2018/4/17
9
欧拉证明七桥问题无解,因为图中的每个点 都只与奇数条线相关联,不可能将这个图不重复 地一笔画成。 从而解决了这一难题,它的抽象 与论证方法开创了图论科学的研究。 随着科学技术的发展以及电子计算机的出现 与广泛应用,二十世纪五十年代,图论的理论得 到进一步发展。将庞大复杂的工程系统和管理问 题用图描述,可以解决很多工程设计和管理决策 的最优化问题。 例如,完成工程任务的时间最少,距离最短, 费用最省等等。图论受到数学、工程技术及经营 管理等各个方面越来越广泛的重视。 2018/4/17 10
2018/4/17 3
图6-1 光纤铺设位置分析
2018/4/17 4
考虑到光纤技术在中心之间高速通信的优 势,所以不需在每两个中心之间都用一条光 纤把他们直接连接起来。那些需要光纤直接 连接的中心有一系列的光纤连接他们。 因此,公司面临的问题是如何选择在哪两 个中心之间铺设光纤,能够使得每两个中心 之间都是联通的,但是同时总的通信成本又 是最低的。
2018/4/17
11
例6-1 为了反映五个球队的赛事关系,可 以用点表示球队,用点间连线表示两个球队 已进行过比赛,如图6-4所示。其中点 分别表 示5个球队,两点的连接表示两球队之间的赛 事关系。因此,从图中可反映出 球队分别与 球队有赛事; 球队还与 球队, 球队还与 球 队有赛事。
2018/4/17
2018/4/17
5
图论是运筹学中有着广泛应用的一个分支。 管理科学 、计算机科学 、信息论 、控制论 、 物理 、化学 、生物学 、心理学等不同领域内的 许多问题都可以描述为图论模型来解决。 随着科学技术的发展以及电子计算机的出现 和应用,20世纪 50年代,图论的理论得到了进 一步的发展。将宠大复杂的工程和管理问题用图 描述,可以解决很多工程设计和管理决策的最优 化问题。 欧拉 (E. Euler)在 1736年发表图论方面的第 一篇论文解决了著名的哥尼斯堡七桥问题,被公 认为是图论的创始人。
第六章
图与网络分析
2018/4/17
1
学习目标
理解有向图、无向图的相关概念 理解树、支撑树、最小支撑树的概念 掌握求解支撑树和最小支撑树的破圈法和避圈法 掌握求解最短路的算法 掌握求解最大流的算法 掌握求解最小费用最大流的ern公司的光纤联网问题
Modern公司决定铺设最先进的光纤网络,以 便为它的主要中心之间提供高速的数据、声 音和图像等高速通信。该公司的主要中心包 括公司的总部、巨型计算机、研究区、生产 和配送中心,根据各中心的分布,公司分析 设计了可能的光纤铺设位置如下图6-1所示, 每条虚线旁边的数字表示在该位置铺设光纤 所需的成本(单位:百万美元)。
12
图6-4 球队赛事关系图
2018/4/17
13
例6-2 为了描述城市间的交通,可以用点表 示城市,用点间连线表示城市间的道路,如 果连线旁标注城市间的距离——网络图中称 为权,形成加权图,就称为网络图,就可进 一步研究从一个城市到另一个城市的最短路 径;或者标上单位运价,就可分析运费最小 的运输方案。图6-5是一张7个城市间物资运 输关系的运输网示意图, 表示7个城市,箭 线旁的数字表示物流的单位运价。
6.1 图与网络基本知识
在生产和日常生活中经常碰到各种各样的图: 公路或铁路交通图、管网图、电网图、通讯联络 图等.. 运筹学中所研究的图(graph)是上述各类 图的抽象概括,它表明一些研究对象和这些对象 之间的相互联系。如交通图是表明一些城镇及城 镇之间的道路沟通情况;管网图是表明供应源、 用户、中间加压站之间管网的联系情况等。
2018/4/17
17
图6-7 球队胜负关系图
综上,一个图是由一些点和一些点之间 的连线(不带箭头和带箭头)组成。为区 别起见,把两点之间不带箭头的连线成为 边,带箭头的连线成为弧。 2018/4/17 18
1、无向图 (1)无向图 定义6-1无向图是由点及边所构成的无序二元 组 V ,E ,记为 G V ,E ,其中 V v1 , v2 ,...,vn E e1 ,e2 ,..,em 是 n个点的集合,简称顶点集; 是m条边的集合,简称边集合。连接点 vi ,v j V 的边记为 v j ,vi 。 vi ,v j 或 图6-8即为无向图,图中:
2018/4/17 16
前面几个例子涉及到的对象之间的“关系” 具有“对称性”,即如果甲与乙有这种关系, 那么同时,乙与甲也有这种关系。但在现实 生活中,有许多关系不具有这种对称性,比 如,球队比赛的胜负关系,甲胜乙,那么乙 就不能胜甲。反映这种非对称关系,不能只 用一条连线,可以用一条带箭头的连线表示。 如球队 胜了球队 ,可以从 引一条带箭头的 连线到 。如图6-7反映了五个球队的胜负情况。
2018/4/17 14
图6-5 物资运输关系图
2018/4/17
15
由此看出,用图来描述事物间的联系, 不仅直观清晰,便于统观全局,而且图中 点的相对位置,连线的长短曲直,对于反 映对象之间的关系并不重要。如上述球队 比赛的例子也可以用6-6所示的图表示,这 与图6-4没有本质的区别。
图6-6 球队赛事关系图
2018/4/17 6
18世纪的哥尼斯堡城中流过一条河 (普 雷· 格尔河),河上有七座桥连结着河的两岸和 河中的两个小岛,如图6-2所示。当时,那里 的人们热衷于这样的问题:一个散步者能否 走过七座桥,且每座桥只走过一次,最后回 到出发点。没有人想出这种走法,也没有人 证明不存在这种走法,这就是著名的“七桥” 难题 。