最新七年级数学有理数易错题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学有理数解答题压轴题精选(难)
1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.
(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;
(2)当t=3秒时,点A与点P之间的距离是________个长度单位;
(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;
(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.
【答案】(1)-4
(2)6
(3)解:当点A为-3时,点P表示的数是-3+2t;
(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),
解得,t=,
当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),
解得,t=8,
∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.
【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,
则|a|+|b|=8,又|a|=|b|,
∴|a|=4,
∴a=−4,
则点A表示的数是−4;
( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,
∴当t=3秒时,点A与点P之间的距离为6个单位长度;
【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;
(2)根据路程等于速度乘以时间即可得出答案;
(3)由点A表示的数结合AP的长度,即可得出点P表示的数;
(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.
2.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:
(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.
(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.
(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.
(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.
【答案】(1)1
(2)1或-5
(3)6
(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,
∴当3≤a≤6时,|a-3|+|a-6|= =3,
当a>6或a<3时,|a-3|+|a﹣6|>3,
∴|a-3|+|a﹣6|有最小值,最小值为3.
【解析】【解答】(1)AB= =1,
故答案为:1
( 2 )∵数轴上表示数a的点与﹣2的距离是3,
∴ =3,
∴-2-a=3或-2-a=-3,
解得:a=1或a=-5,
故答案为:1或-5
( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,
∴|a+4|+|a﹣2|= =6,
故答案为:6
【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;
(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;
(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.
3.如图,AB=12cm,点C在线段AB上,AC=3BC,动点P从点A出发,以4cm/s的速度向右运动,到达点B之后立即返回,以4cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.
(1)AC=________cm,BC=________cm;
(2)当t=________秒时,点P与点Q第一次重合;当t=________秒时,点P与点Q第二次重合;
(3)当t为何值时,AP=PQ?
【答案】(1)9;3
(2)3;
(3)解:在点P和点Q运动过程中,当AP=PQ时,存在以下三种情况:
①点P与点Q第一次重合之前,可得:2×4t=9+t,解得t= ;
②点P与点Q第一次重合后,P、Q由点B向点A运动过程中,
可得:2×[12-(4t-12)]=12-(t-3),解得t= ;
③当点P运动到点A,继续由点A向点B运动,点P与点Q第二次重合之前,
可得:2×(4t-24)=12-(t-3),解得t=7.
故当t为秒、秒或7秒时,AP=PQ.
【解析】【解答】(1)∵AB=12cm,AC=3BC
∴AC= AB=9,BC=12-9=3.
故答案为:9;3.(2)设运动时间为t,则AP=4t,CQ=t,
由题意,点P与点Q第一次重合于点B,
则有4t-t=9,解得t=3;
当点P与点Q第二次重合时有:
4t+t=12+3+24,解得t= .
故当t=3秒时,点P与点Q第一次重合;当t= 秒时,点P与点Q第二次重合.
故答案为:3;.
【分析】(1)由题目中AB=12cm,点C在线段AB上,AB=3BC,可直接求得;(2)根据运动过程,两点重合时他们走过距离之间的关系列方程即可求得;(3)满足AP=PQ,则2AP=AQ,在整个运动过程中正确的位置存在三处,依次分析列出方程即可求得.