初中数学几何模型大全+经典题型含答案
初中数学几何模型大全+经典题型(含答案)
初中数学几何模型大全+经典题型(含答案)全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生了解。
垂直也可以做为轴进行对称全等。
说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
对称最值(两点间线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。
说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。
初中数学几何模型大全+经典题型(含答案)
初中数学几何模型大全+经典题型(含答案) 初中数学几何模型大全及经典题型(含答案)全等变换平移:平行线段平移形成平行四边形。
对称:以角平分线、垂线或半角作轴进行对称,形成对称全等。
旋转:相邻等线段绕公共顶点旋转形成旋转全等。
对称半角模型通过翻折将直角三角形对称成正方形、等腰直角三角形或等边三角形。
旋转全等模型半角:相邻等线段所成角含1/2角及相邻线段。
自旋转:通过旋转构造相邻等线段的旋转全等。
共旋转:通过寻找两对相邻等线段构造旋转全等。
中点旋转:将倍长中点相关线段转换成旋转全等问题。
模型变形当遇到复杂图形找不到旋转全等时,先找两个正多边形或等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
几何最值模型对称最值:通过对称进行等量代换,转换成两点间距离及点到直线距离。
旋转最值:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。
剪拼模型通过中点的180度旋转及平移改变图形的形状,例如将三角形剪拼成四边形或将矩形剪拼成正方形。
正方形的边长可以通过射影定理来求解。
假设正方形的边长为x,那么正方形的对角线长为x√2.将正方形分成两个等腰直角三角形,可以得到等腰直角三角形的斜边长为x√2/2.因此,根据射影定理,可以得到等腰直角三角形的高为x/2,进而得到正方形的边长为x=x√2/2.通过平移和旋转,可以将一个正方形变成另一个正方形。
这可以通过旋转相似模型来实现。
例如,两个等腰直角三角形可以通过旋转全等来实现形状的改变,而两个有一个角为300度的直角三角形可以通过旋转相似来实现形状的改变。
更一般地,两个任意相似的三角形可以通过旋转成一定角度来实现旋转相似,其中第三边所成夹角符合旋转“8”字的规律。
在相似证明中,需要注意边和角的对应关系。
相等的线段或比值在证明相似时可以通过等量代换来构造相似三角形。
另外,从三垂线到射影定理的演变,再到内外角平分线定理,需要注意它们之间的相同和不同之处。
完整版)初中数学几何模型大全+经典题型(含答案)
完整版)初中数学几何模型大全+经典题型(含答案)通过将倍长中点相关线段进行旋转变换,可以构造出旋转全等模型。
这种模型的特点是,将相邻等线段所成角的一半旋转后拼接在一起,形成对称全等。
同时,也可以通过将两个等腰三角形或正多边形的夹角进行变化,来构造出模型变形。
如果遇到复杂图形找不到旋转全等,可以先找到两个正多边形或等腰三角形的公共极点,然后围绕公共极点找到两组相邻等线段,分组组成三角形证全等。
幂定理可以用等线段、等比值、等乘积进行代换,从而将两个数之间的比值转换成乘积。
在相似证明中,常用的辅助线是平行线,根据题目条件来确定比值并做出相应的平行线。
题目一:在半圆中,圆心为O,圆上有点C、E,CD垂直于AB,EF垂直于AB,EG垂直于CO。
证明CD等于GF。
题目二:在正方形ABCD内部,点P满足∠PAD=∠PDA=15度。
证明△PBC是正三角形。
题目三:在图中,ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点。
证明A2B2C2D2是正方形。
题目四:在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F。
证明∠DEN=∠F。
题目五:在△ABC中,H为垂心,O为外心,且OM垂直于BC于M。
1)证明AH等于2OM;2)如果∠BAC等于60度,证明AH等于AO。
1.设P为正三角形ABC内任意一点,连接PA,PB,PC,由三角形不等式可得PA+PB>AB。
PB+PC>BC。
PC+PA>CA。
将三式相加得到2PA+2PB+2PC>AB+BC+CA=3,即PA+PB+PC>3/2.又由于P到三角形三边的距离不超过1,所以PA+PB+PC<3,综上可得1.5≤PA+PB+PC<3,即所求不等式成立。
2.设P为正方形ABCD内任意一点,连接PA,PB,PC,PD。
由于正方形四边相等,所以PA+PC=2,PB+PD=2.又由于P到四边的距离不超过1,所以PA+PB+PC+PD<4.将前两式相加得到PA+PB+PC+PD=2(PA+PB)/2+2(PC+PD)/2≥2√(PA·PB)+2√(PC·P D)。
初中数学几何模型大全+经典题型(含答案)教学内容
初中数学几何模型大全+经典题型(含答案)初中数学几何模型大全+经典题型(含答案)全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
几何最值模型对称最值(两点间线段最短)对称最值(点到直线垂线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。
(完整版)初中数学几何模型大全+经典题型(含答案).docx
初中数学几何模型大全+ 经典题型(含答案)全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是 45 °、30 °、22.5 °、15 °及有一个角是 30 °直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2 角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇60 度旋 60 度,造等边三角形遇90 度旋 90 度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋 180 度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“ 8”字模型可以证明。
模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
初中数学几何模型大全+经典题型(含答案)
初中数学几何模型大全+经典题型(含答案)之吉白夕凡创作全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等.两边进行边或者角的等量代换,产生联系.垂直也可以做为轴进行对称全等.说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等.半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要机关旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等.机关办法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容.通过“8”字模型可以证明.说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变更,另外是等腰直角三角形与正方形的混用.当遇到庞杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等.说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形.证明办法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证.对称最值(两点间线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离.说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值.三角形→四边形四边形→四边形说明:剪拼主要是通过中点的180度旋转及平移改动图形的形状.说明:通过射影定理找到正方形的边长,通过平移与旋转完成形状改动说明:两个等腰直角三角形成旋转全等,两个有一个角是300角的直角三角形成旋转相似.推广:两个任意相似三角形旋转成一定角度,成旋转相似.第三边所成夹角合适旋转“8”字的规律.说明:注意边和角的对应,相等线段或者相等比值在证明相似中起到通过等量代换来机关相似三角形的作用.说明:(1)三垂直到一线三等角的演变,三等角以30度、45度、60度形式出现的居多.(2)内外角平分线定理到射影定理的演变,注意之间的相同与不合之处.另外,相似、射影定理、相交弦定理(可以推广到圆幂定理)之间的比值可以转换成乘积,通过等线段、等比值、等乘积进行代换,进行证明得到需要的结论.说明:相似证明中最经常使用的帮助线是做平行,按照题目的条件或者结论的比值来做相应的平行线.初中数学经典几何题(附答案)经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD=∠PDA=150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A1B1C1D1都是正方形,A2、B2、C2、D2辨别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二) A P CDB4、已知:如图,在四边形ABCD 中,AD =BC,M 中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN=∠F.经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点)于M .(1)求证:AH =2OM ;(2)若∠BAC=600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA⊥MN 于线,交圆于B 、C 及D 、E,直线EB 及CD 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内, 设MN 是圆O 的弦,过MN 的中点A EB 辨别交MN 于P 、Q .求证:AP =AQ .(初二) 4、如图,辨别以△ABC 的AC 和BC 为一边,ACDE 和正方形CBFG,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)1、如图,四边形ABCD 求证:CE =CF .(初二)2、如图,四边形ABCD 延长线于F .求证:AE =AF .(初二)3、设P 是正方形求证:PA =PF .4、如图,PC 切圆O 于直线PO 相交于B 、D 1、已知:△ABC =5.求:∠APB 的度数.2、设P 是平行四边形求证:∠PAB=∠PCB.(初二)3、设ABCD 为圆内接凸四边形,求证:AB·C D +AD·BC=AC·BD.(初三)4、平行四边形ABCD 中,设E 、F 辨别是BC 、AB 上的一点,AE 与CF相交于P,且AE =CF .求证:∠DPA=∠DPC.(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC,求证:≤L<2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a,PB =2a,PC =3a,求正方形的边长. P A DCB CB DAF P DE CB A A PC B A PDA CB P D4、如图,△ABC 中,∠ABC=∠ACB=800,D 、E 辨别是AB 、AC 上的点,∠DCA=300,∠EBA=200,求∠BED 的度数.经典难题(一)1.如下图做GH⊥AB,连接EO.由于GOFE∠OEG,即△GHF∽△OGE,可得EO GF =GO GH =CO CD ,又CO=EO,. 2. 如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150 所以∠DCP=300 ,从而得出△PBC 是正三角形3.如下图连接BC1和AB1辨别找其中点F,E.连接C2F 与A2E 并延长相交于Q 点,连接EB2并延长交C2Q 于H 点,连接FB2并延长交A2Q 于G 点, 由A2E=12A1B1=12B1C1= FB2 ,EB2=12AB=12BC=FC1 ,又∠GFQ+∠Q=900和∠GEB2+∠Q=900,所以∠GEB2=∠GFQ 又∠B2FC2=∠A2EB2 , 可得△B2FC2≌△A2EB2 ,所以A2B2=B2C2 ,又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 ,从而可得∠A2B2 C2=900 ,同理可得其他边垂直且相等,从而得出四边形A2B2C2D2是正方形.4.如下图连接AC 并取其中点Q,连接QN 和QM,所以可得∠QMF=∠F,∠QNM=∠DEN 和∠QMN=∠QNM,从而得出∠DEN=∠F.经典难题(二)1.(1)延长AD 到F 连BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,从而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM(2)连接OB,OC,既得∠BOC=1200,从而可得∠BOM=600,所以可得OB=2OM=AH=AO,得证.3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ.由于22ADAC CD FD FD AB AE BE BG BG ,由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE.又因为PFOA 与QGOA 四点共圆,可得∠AFC=∠AOP 和∠AGE=∠AOQ,∠AOP=∠AOQ,从而可得AP=AQ.4.过E,C,F 点辨别作AB 所在直线的高EG,CI,FH.可得PQ=2EGFH .由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI. 从而可得PQ=2AI BI =2AB,从而得证.经典难题(三)1.顺时针旋转△ADE,到△ABG,连接CG.由于∠ABG=∠ADE=900+450=1350从而可得B,G,D 在一条直线上,可得△AGB≌△CGB. 推出AE=AG=AC=GC,可得△AGC 为等边三角形.∠AGB=300,既得∠EAC=300,从而可得∠A EC=750. 又∠EFC=∠DFA=450+300=750.可证:CE=CF.2.连接BD 作CH⊥DE,可得四边形CGDH 是正方形.由AC=CE=2GC=2CH,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,又∠FAE=900+450+150=1500,从而可知道∠F=150,从而得出AE=AF.3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形.令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X .tan∠BAP=tan∠EPF=XY =ZY X Z,可得YZ=XY-X2+XZ,即Z(Y-X)=X(Y-X) ,既得X=Z ,得出△ABP≌△PEF ,得到PA=PF ,得证 .经典难题(四)1.顺时针旋转△ABP 600 ,连接PQ ,则△PBQ是正三角形.可得△PQC是直角三角形.所以∠APB=1500 .2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC.可以得出∠ABP=∠ADP=∠AEP,可得:AEBP共圆(一边所对两角相等).可得∠BAP=∠BEP=∠BCP,得证.3.在BD取一点E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:BE BC =ADAC,即AD•BC=BE•AC, ①又∠ACB=∠DCE,可得△ABC∽△DEC,既得AB AC =DE DC ,即AB•CD=DE•AC, ②由①+②可得: AB•CD+AD•BC=AC(BE+DE)= AC·BD ,得证.4.过D 作AQ⊥AE ,AG⊥CF ,由ADE S=2ABCD S =DFC S ,可得: 2AE PQ=2AE PQ,由AE=FC.可得DQ=DG,可得∠DPA=∠DPC(角平分线逆定理).经典难题(五)1.(1)顺时针旋转△BPC 600 ,可得△PBE 为等边三角形.既得PA+PB+PC=AP++PE+EF 要使最小只要AP,PE,EF 在一条直线上,即如下图:可得最小L= ;(2)过P 点作BC 的平行线交AB,AC 与点D,F.由于∠APD>∠ATP=∠ADP,推出AD>AP ①又BP+DP>BP ②和PF+FC>PC ③又DF=AF ④由①②③④可得:最大L< 2 ;由(1)和(2)既得:≤L<2 .2.顺时针旋转△BPC 600 ,可得△PBE 为等边三角形.既得PA+PB+PC=AP+PE+EF 要使最小只要AP,PE,EF 在一条直线上, 即如下图:可得最小PA+PB+PC=AF.既得213(1)42 = 23= 4232 2(31)2 = 2(31)2 622 .3.顺时针旋转△ABP 900 ,可得如下图:既得正方形边长2222(2)()22a 522a.4.在AB 上找一点F,使∠BCF=600 ,连接EF,DG,既得△BGC 为等边三角形,可得∠DCF=100 , ∠FCE=200 ,推出△ABE≌△ACF , 得到BE=CF , FG=GE .推出 : △FGE 为等边三角形 ,可得∠AFE=800 ,既得:∠DFG=400①又BD=BC=BG ,既得∠BGD=800 ,既得∠DGF=400②推得:DF=DG ,得到:△DFE≌△DGE ,从而推得:∠FED=∠BED=300 .时间:二O二一年七月二十九日。
初中数学几何模型大全+经典题型.docx
初中数学几何模型大全+ 经典题型(含答案)全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是 45°、 30°、°、 15°及有一个角是 30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2 角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇60 度旋 60 度,造等边三角形遇90 度旋 90 度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋 180 度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“ 8”字模型可以证明。
模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
2024年中考复习-专题14 几何综合六种模型(解析版)
专题14几何综合六种模型通用的解题思路:题型一:两垂一圆构造直角三角形模型平面内有两点A,B,再找一点C,使得ABC为直角三角形分类讨论:若∠A=90°,则点C在过点A且垂直于AB的直线上(除点A外);若∠B=90°,则点C在过点B且垂直于AB的直线上(除点B外);若∠C=90°,则点C在以AB为直径的圆上(除点A,B外).以上简称“两垂一圆”.“两垂一圆”上的点能构成直角三角形,但要除去A,B两点.题型二:两圆一中垂构造等腰三角形模型分类讨论:若AB=AC,则点C在以点A为圆心,线段AB的长为半径的圆上;若BA=BC,则点C在以点B为圆心,线段AB的长为半径的圆上;若CA=CB,则点C在线段AB的垂直平分线PQ上以上简称“两圆一中垂”“两圆一中垂”上的点能构成等腰三角形,但是要除去原有的点A,B,还要除去因共线无法构成三角形的点MN 以及线段AB中点E(共除去5个点)需要注意细节题型三:胡不归模型【模型解读】一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BC V V +的值最小.(注意与阿氏圆模型的区分)1)121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =,即求BC +kAC 的最小值.2)构造射线AD 使得sin ∠DAN =k ,CH k AC =,CH =kAC ,将问题转化为求BC +CH 最小值.3)过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.【解题关键】在求形如“PA +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“PA +kPB ”型问题转化为“PA +PC ”型.(若k >1,则提取系数,转化为小于1的形式解决即可)。
中考数学:初中数学几何模型大全+经典题型含答案
初中数学几何模型大全+经典题型(含答案)全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
几何最值模型对称最值(两点间线段最短)对称最值(点到直线垂线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。
初中数学全部几何模型汇总+附例题精编
专题一 平行线的五大类拐点模型模型一 铅笔头模型1例题1 (1)如图,若CD AB //,此时,E D B ∠∠∠,,之间有什么关系?请证明【解析】如图,过点E 作AB l //得证360=∠+∠+∠E D B(2)反之,如图,若360=∠+∠+∠E D B ,直线AB 与CD 有什么位置关系?请证明【解析】如图,过点E 作AB l //得证CD l //则CD AB // 【总结】①辅助线:过拐点作平行线②若CD AB //,则360=∠+∠+∠E D B ③若360=∠+∠+∠E D B ,则CD AB //例题2 如图,两直线CD AB ,平行,则=∠+∠+∠+∠+∠+∠654321【解析】如图,过F 作AB l //1,过G 作12//l l ,过H 作23//l l ,过I 作34//l l 得证900654321=∠+∠+∠+∠+∠+∠【总结】①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②)1(180121-=∠+∠+⋅⋅⋅+∠+∠-n A A A A n n【2-n 个拐点】例题3 (1)如图,若CD AB //,则E D B ∠=∠+∠,你能说明为什么吗?【解析】如图,过点E 作AB l //得证E D B ∠=∠+∠(2)在图中,CD AB //,G E ∠+∠与D F B ∠+∠+∠又有何关系?【解析】如图,过点E 作AB l //1,过点F 作AB l //2,过点G 作AB l //3得证G E ∠+∠=D F B ∠+∠+∠(3)在图中,若CD AB //,又得到什么结论?【解析】同理可得n n E E E D F F F B ∠++∠+∠=∠+∠++∠+∠+∠- 21121 【总结】①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和例题4 如图所示,已知CD AB //,BE 平分ABC ∠,DE 平分ADC ∠,求证:)(21C A E ∠+∠=∠【解析】①方法一:锯齿模型【锯齿ABEDC 】如图,过点E 作AB EF //+转化思想得证 ②方法二:8字模型(详解见第2讲) 【总结】①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和 ③转化思想例题5 如图,已知CD AB //,EAB EAF ∠=∠41,ECD ECF ∠=∠41,求证: AEC AFC ∠=∠43【解析】锯齿BAECD +锯齿BA F CD ;过点E 作AB GE //,过点F 作CD HF //+方程思想【βα,表示角度】得证 【总结】①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和 ③方程思想例题6 如图,CD AB //,61=∠BED ,ABE ∠的平分线与CDE ∠的平分线交于点F ,则=∠DFB ( )A.149 B .5.149 C .150 D .5.150【解析】锯齿CD F BA +铅笔头CDEBA ;得证B 【总结】①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②铅笔头模型:角之和=180×(拐点个数+1)微信公众号:数学三剑客 ③锯齿模型:所有朝左的角之和等于所有朝右的角之和例题7 如图,已知点P 是矩形ABCD 内一点(不含边界),设21,θθ=∠=∠PBA PAD ,43,θθ=∠=∠PDC PCB ,若 50,80=∠=∠CPD APB ,则( )A .30)()(3241=+-+θθθθB .40)()(3142=+-+θθθθ C .70)()(4321=+-+θθθθD .180)()(4321=+++θθθθ【解析】锯齿ADPCB +锯齿DAPBC ;得证A 【总结】①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和例题8 如图,若CD AB //,E D B ∠∠∠,,之间有什么关系?请证明【解析】如图,过点E 作AB l //得证B E D ∠=∠+∠ 臭脚模型基础(汇总)【总结】①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线例题9 如图,直线CD AB //,50,30,90,30=∠=∠=∠=∠CNP HMN FGH EFA ,则GHM ∠的大小是【解析】①方法一:如图,过点H 作AB QH //则有铅笔头A F GH Q+臭脚Q HMNC 得证40=∠GHM ②方法二:锯齿B F GHMND 得证40=∠GHM 【总结】①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线模型七 蛇型基础例题10 如图,若D C B CD AB ∠∠∠,,,//之间有什么关系?请证明【解析】过点C 作AB l //得证180=∠-∠+∠D C B 【总结】①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线模型八 蜗牛模型基础例题11 如图,若D C B DE AB ∠∠∠,,,//之间有什么关系?请证明【解析】过点C 作AB l //得证180=∠+∠+∠D C B【总结】辅助线:过拐点作平行线,且有多少个拐点就作多少平行线专题二 飞镖模型和8字模型模型一 角的飞镖模型1结论:C B A BDC ∠+∠+∠=∠【解析】①方法一:延长BD 交AC 于点E 得证 ②方法二:延长CD 交AB 于点F 得证③方法三:延长AD 到在其延长方向上任取一点为点G 得证 【总结】利用三角形外角的性质证明模型二 角的8字模型1结论:D C B A ∠+∠=∠+∠【解析】①方法一:三角形内角和得证②方法二:三角形外角【BOD ∠】的性质得证 【总结】①利用三角形内角和等于180 ②利用三角形外角的性质证明模型三 角的飞镖模型和8字模型2例题1 如图,则=∠+∠+∠+∠+∠E D C B A【解析】①方法一:飞镖ACD 得证180=∠+∠+∠+∠+∠E D C B A ②方法二:8字BECD 得证 180=∠+∠+∠+∠+∠E D C B A例题2 如图,则=∠+∠+∠+∠+∠+∠F E D C B A【解析】飞镖AB F+飞镖DEC 得证210=∠+∠+∠+∠+∠+∠F E D C B A例题3 如图,求=∠+∠+∠+∠+∠+∠F E D C B A【解析】8字模型得证360=∠+∠+∠+∠+∠+∠F E D C B A例题4 如图,求=∠+∠+∠+∠D C B A【解析】连接BD 得飞镖BAD +飞镖DBC 得证 220=∠+∠+∠+∠D C B A例题5 如图,求=∠+∠+∠+∠+∠+∠+∠+∠H G F E D C B A【解析】飞镖EHB +飞镖F AC 得证360=∠+∠+∠+∠+∠+∠+∠+∠H G F E D C B A模型四 边的飞镖模型1结论:CD BD AC AB +>+【解析】延长BD 交AC 于点E +三角形三边关系+同号不等式【大的放左边,小的放在右边】模型五 边的8字模型1结论:BC AD CD AB +<+【解析】三角形三边关系+同号不等式【大的放在右边,小的放在左边】 【总结】①三角形两边之和大于第三边模型六 边的飞镖模型和8字模型2例题6 如图,点P 为ABC ∆内一点,试说明AB PC PB PA AC BC AB <++<++)(21AC BC ++【解析】三角形三边关系+边的飞镖模型可证例题7 如图,BD AC ,是四边形ABCD 的对角线,且BD AC ,相交于点O ,求证:AD CD BC AB BD AC AD CD BC AB +++<+<+++)(21【解析】边的8字模型+三角形三边关系可证专题三 三垂直全等模型模型一 K 型三垂直1例题1 如图,DE AE DE AE BC CD BC AB =⊥⊥⊥,,,,求证:BC CD AB =+【解析】易证模型二 K 型三垂直2例题2 如图,等腰90,=∠∆AOB OAB Rt ,斜边AB 交y 轴正半轴于点C ,若)1,3(A ,则点C 的坐标为【解析】K 型三垂直模型+一次函数可得点C 坐标为)25,0(例题3 如图,在EF B ABC Rt ,90,=∠∆是AC 的垂直平分线,且CE EF =,D 是AB 的中点,21tan =A ,若15+=+DE EF ,求DEF ∆的面积【解析】21例题4 如图,在矩形ABCD 中,E AD AB ,12,6==为边AB 上一点,Q P AE ,,2=分别为边BC AD ,上的两点,且45=∠PEQ ,若EPQ ∆为等腰三角形,则AP 的长为【解析】10(该图为PQ EQ =)或6(PQ PE =图略)或224+(EQ EP =)模型三 L 型三垂直1例题5 如图,CE BE CE AD BC AC ACB ⊥⊥==∠,,,90,垂足分别是点1,3,,==BE AD E D ,则DE 的长是( )A .23B .2C .22D .10【解析】B模型四 L 型三垂直2例题6 如图,直线l 过正方形ABCD 的顶点D ,过C A ,分别作直线l 的垂线,垂足分别为F E ,,若a CF a AE ==,4,则正方形ABCD 的面积为【解析】217a例题7 如图,以ABC Rt ∆的斜边AC 为边,在ABC ∆同侧作正方形AEDC ,O 为对角线交点,连接BO ,若22,4==BO AB ,则正方形的面积是【解析】80例题8 如图,在ABC ∆中,BD CD BD CD AB BC AC ACB 3,,52,,90=⊥===∠,则ABD ∆的面积是【解析】①方法一:L 型三垂直+整体减空白 ②方法二:L 型三垂直+面积公式③方法三:铅垂高求面积法【½×(水平高×铅锤高)】 ④方法四:和角模型模型五 十字型三垂直1【解析】垂直⇔相等模型六 十字型三垂直2例题9 如图,已知正方形ABCD 的边长为4,点F E ,分别在边BC AB ,上,且1==BF AE ,则=OC【解析】512例题10 如图,在等腰ABC Rt ∆中,90=∠ACB ,点D 为BC 边上的中点,AD CE ⊥,分别交AD AB ,于点F E ,,连接DE ,求证:BDE ADC ∠=∠【解析】易证专题四 角平分线四大模型角平分线的定义:从一个角的顶点引出的一条射线,把这个叫分成两个相等的角,这条射线叫做这个角的平分线角平分线的性质定理:角平分线上的点到角两边距离相等角平分线的判定定理:角的内部,到角两边距离相等的点,在这个角的平分线上模型一 双垂直模型1角的平分线上的点到这个角的两边的距离相等例题1 已知:43,21∠=∠∠=∠,求证:AP 平分BAC ∠【解析】易证例题2 已知:如图,在四边形中,CD AD AB BC =>,,BD 平分ABC ∠,求证:BAD ∠180=∠+C【解析】①方法一:双垂模型 ②方法二:双等模型例题3 如图,正方形ABCD 的边长为4,DAC ∠的平分线交DC 于点E ,若点Q P ,分别是AD 和AE 上的动点,则PQ DQ +的最小值是【解析】①方法一:双垂模型②方法二:双等模型【将军饮马+垂线段最短】 答案:22有垂直于角平分线的线,果断延长,就会得到一个等腰三角形例题4 如图,在ABC ∆中,BE 是角平分线,BE AD ⊥,垂足为D ,求证:C ∠+∠=∠12【解析】易证例题5 如图,在ABC ∆中,AC AB BAC ==∠,90,BE 平分ABC ∠,BE CE ⊥,求证:BD CE 21=【解析】易证例题6 如图,AD CD AC AB CAD BAD ⊥>∠=∠,,于点D ,H 是BC 的中点,求证:)(21AC AB DH -=【解析】易证例题7 如图所示,OP 平分MON ∠,A 为OM 上一点,C 为OP 上一点,连接AC ,在射线ON 上截取OA OB =,连接BC ,易证:BOC AOC ∆≅∆例题8 如图所示,在ABC ∆中,AB AC >,AD 是内角平分线,P 是AD 上异于点A 的任意一点,求证:AB AC PB PC -<-【解析】易证例题9 在ABC ∆中,108,=∠=A AC AB ,BD 平分ABC ∠,求证:=BC CD AB +【解析】①方法一:双等模型 ②方法二:截长补短例题10 如图,梯形ABCD 中,BC AD //,点E 在CD 上,且AE 平分BAD ∠,BE 平分ABC ∠,求证:BC AB AD -=【解析】①方法一:双等模型+截长 ②方法二:双平模型+补短角平分线、平行线、等腰三角形,三个条件,知二推一例题11 如图,在ABC ∆中,ABC ∠与ACB ∠的角平分线相交于点F ,过F 作BC DE //,交AB 于点D ,交AC 于点E ,若9=+CE BD ,则线段DE 之长为【解析】9例题12 如图,在ABC ∆中,CD BD ,分别平分ABC ∠和ACB ∠,AC FD AB ED //,//,如果cm BC 6=,则DEF ∆的周长【解析】cm 6例题13 如图,在ABC ∆中,AD 平分BAC ∠,点F E ,分别在AD BD ,上,AB EF //,且CD DE =,求证:AC EF =【解析】双平模型+类倍长中线法(延长FD 于点G 使得DG FD =,连接CG ;延长AD 于点G 使得DG AD =,连接EG )∠的平分线交BC于点E,交DC的延长线于点F,例题14 如图,在矩形ABCD中,BAD∠的度数点G是EF的中点,求BDG【解析】①方法一:双平模型+手拉手模型【G点+反推法】②方法二:双平模型+隐形圆模型【共斜边】专题五 截长补短模型截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略。
初中数学几何模型大全+经典题型(含答案)
初中数学几何模型大全+经典题型(含答案)之老阳三干创作全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等.两边进行边或者角的等量代换,产生联系.垂直也可以做为轴进行对称全等.说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等.半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要机关旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等.机关办法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容.通过“8”字模型可以证明.说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变更,另外是等腰直角三角形与正方形的混用.当遇到庞杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等.说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形.证明办法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证.对称最值(两点间线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离.说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值.三角形→四边形四边形→四边形说明:剪拼主要是通过中点的180度旋转及平移改动图形的形状.说明:通过射影定理找到正方形的边长,通过平移与旋转完成形状改动说明:两个等腰直角三角形成旋转全等,两个有一个角是300角的直角三角形成旋转相似.推广:两个任意相似三角形旋转成一定角度,成旋转相似.第三边所成夹角合适旋转“8”字的规律.说明:注意边和角的对应,相等线段或者相等比值在证明相似中起到通过等量代换来机关相似三角形的作用.说明:(1)三垂直到一线三等角的演变,三等角以30度、45度、60度形式出现的居多.(2)内外角平分线定理到射影定理的演变,注意之间的相同与不合之处.另外,相似、射影定理、相交弦定理(可以推广到圆幂定理)之间的比值可以转换成乘积,通过等线段、等比值、等乘积进行代换,进行证明得到需要的结论.说明:相似证明中最经常使用的帮助线是做平行,按照题目的条件或者结论的比值来做相应的平行线.初中数学经典几何题(附答案)经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD=∠PDA=150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A1B1C1D1都是正方形,A2、B2、C2、D2辨别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二) A P CDB4、已知:如图,在四边形ABCD 中,AD =BC,M 中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN=∠F.经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点)于M .(1)求证:AH =2OM ;(2)若∠BAC=600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA⊥MN 于线,交圆于B 、C 及D 、E,直线EB 及CD 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内, 设MN 是圆O 的弦,过MN 的中点A EB 辨别交MN 于P 、Q .求证:AP =AQ .(初二) 4、如图,辨别以△ABC 的AC 和BC 为一边,ACDE 和正方形CBFG,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)1、如图,四边形ABCD 求证:CE =CF .(初二)2、如图,四边形ABCD 延长线于F .求证:AE =AF .(初二)3、设P 是正方形求证:PA =PF .4、如图,PC 切圆O 于直线PO 相交于B 、D 1、已知:△ABC =5.求:∠APB 的度数.2、设P 是平行四边形求证:∠PAB=∠PCB.(初二)3、设ABCD 为圆内接凸四边形,求证:AB·C D +AD·BC=AC·BD.(初三)4、平行四边形ABCD 中,设E 、F 辨别是BC 、AB 上的一点,AE 与CF相交于P,且AE =CF .求证:∠DPA=∠DPC.(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC,求证:≤L<2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a,PB =2a,PC =3a,求正方形的边长. P A DCB CB DAF P DE CB A A PC B A PDA CB P D4、如图,△ABC 中,∠ABC=∠ACB=800,D 、E 辨别是AB 、AC 上的点,∠DCA=300,∠EBA=200,求∠BED 的度数.经典难题(一)1.如下图做GH⊥AB,连接EO.由于GOFE∠OEG,即△GHF∽△OGE,可得EO GF =GO GH =CO CD ,又CO=EO,. 2. 如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150 所以∠DCP=300 ,从而得出△PBC 是正三角形3.如下图连接BC1和AB1辨别找其中点F,E.连接C2F 与A2E 并延长相交于Q 点,连接EB2并延长交C2Q 于H 点,连接FB2并延长交A2Q 于G 点, 由A2E=12A1B1=12B1C1= FB2 ,EB2=12AB=12BC=FC1 ,又∠GFQ+∠Q=900和∠GEB2+∠Q=900,所以∠GEB2=∠GFQ 又∠B2FC2=∠A2EB2 , 可得△B2FC2≌△A2EB2 ,所以A2B2=B2C2 ,又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 ,从而可得∠A2B2 C2=900 ,同理可得其他边垂直且相等,从而得出四边形A2B2C2D2是正方形.4.如下图连接AC 并取其中点Q,连接QN 和QM,所以可得∠QMF=∠F,∠QNM=∠DEN 和∠QMN=∠QNM,从而得出∠DEN=∠F.经典难题(二)1.(1)延长AD 到F 连BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,从而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM(2)连接OB,OC,既得∠BOC=1200,从而可得∠BOM=600,所以可得OB=2OM=AH=AO,得证.3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ.由于22ADAC CD FD FD AB AE BE BG BG ,由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE.又因为PFOA 与QGOA 四点共圆,可得∠AFC=∠AOP 和∠AGE=∠AOQ,∠AOP=∠AOQ,从而可得AP=AQ.4.过E,C,F 点辨别作AB 所在直线的高EG,CI,FH.可得PQ=2EGFH .由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI. 从而可得PQ=2AI BI =2AB,从而得证.经典难题(三)1.顺时针旋转△ADE,到△ABG,连接CG.由于∠ABG=∠ADE=900+450=1350从而可得B,G,D 在一条直线上,可得△AGB≌△CGB. 推出AE=AG=AC=GC,可得△AGC 为等边三角形.∠AGB=300,既得∠EAC=300,从而可得∠A EC=750. 又∠EFC=∠DFA=450+300=750.可证:CE=CF.2.连接BD 作CH⊥DE,可得四边形CGDH 是正方形.由AC=CE=2GC=2CH,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,又∠FAE=900+450+150=1500,从而可知道∠F=150,从而得出AE=AF.3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形.令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X .tan∠BAP=tan∠EPF=XY =ZY X Z,可得YZ=XY-X2+XZ,即Z(Y-X)=X(Y-X) ,既得X=Z ,得出△ABP≌△PEF ,得到PA=PF ,得证 .经典难题(四)1.顺时针旋转△ABP 600 ,连接PQ ,则△PBQ是正三角形.可得△PQC是直角三角形.所以∠APB=1500 .2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC.可以得出∠ABP=∠ADP=∠AEP,可得:AEBP共圆(一边所对两角相等).可得∠BAP=∠BEP=∠BCP,得证.3.在BD取一点E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:BE BC =ADAC,即AD•BC=BE•AC, ①又∠ACB=∠DCE,可得△ABC∽△DEC,既得AB AC =DE DC ,即AB•CD=DE•AC, ②由①+②可得: AB•CD+AD•BC=AC(BE+DE)= AC·BD ,得证.4.过D 作AQ⊥AE ,AG⊥CF ,由ADE S=2ABCD S =DFC S ,可得: 2AE PQ=2AE PQ,由AE=FC.可得DQ=DG,可得∠DPA=∠DPC(角平分线逆定理).经典难题(五)1.(1)顺时针旋转△BPC 600 ,可得△PBE 为等边三角形.既得PA+PB+PC=AP++PE+EF 要使最小只要AP,PE,EF 在一条直线上,即如下图:可得最小L= ;(2)过P 点作BC 的平行线交AB,AC 与点D,F.由于∠APD>∠ATP=∠ADP,推出AD>AP ①又BP+DP>BP ②和PF+FC>PC ③又DF=AF ④由①②③④可得:最大L< 2 ;由(1)和(2)既得:≤L<2 .2.顺时针旋转△BPC 600 ,可得△PBE 为等边三角形.既得PA+PB+PC=AP+PE+EF 要使最小只要AP,PE,EF 在一条直线上, 即如下图:可得最小PA+PB+PC=AF.既得213(1)42 = 23= 4232 2(31)2 = 2(31)2 622 .3.顺时针旋转△ABP 900 ,可得如下图:既得正方形边长2222(2)()22a 522a.4.在AB 上找一点F,使∠BCF=600 ,连接EF,DG,既得△BGC 为等边三角形,可得∠DCF=100 , ∠FCE=200 ,推出△ABE≌△ACF , 得到BE=CF , FG=GE .推出 : △FGE 为等边三角形 ,可得∠AFE=800 ,既得:∠DFG=400①又BD=BC=BG ,既得∠BGD=800 ,既得∠DGF=400②推得:DF=DG ,得到:△DFE≌△DGE ,从而推得:∠FED=∠BED=300 .时间:二O二一年七月二十九日。
初中数学几何模型大全+经典题型及答案解析
初中数学几何模型大全+经典题型(含答案)全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
几何最值模型对称最值(两点间线段最短)对称最值(点到直线垂线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。
初中数学几何模型大全+经典题型
初中数学几何模型大全+经典题型(含答案)全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是45°、30°、°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
几何最值模型对称最值(两点间线段最短)对称最值(点到直线垂线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。
2024学年初中数学几何(费马点模型)模型专项练习(附答案)
2024学年初中数学几何(费马点模型)模型专项练习1.数学上称“费马点”是位于三角形内且到三角形三个顶点距离之和最短的点.现定义:菱形对角线上一点到该对角线同侧两条边上的两点距离最小的点称为类费马点.例如:菱形ABCD,P是对角线BD上一点,E、F是边BC和CD上的两点,若点P满足PE与PF之和最小,则称点P为类费马点.(1)如图1,在菱形ABCD中,AB=4,点P是BD上的类费马点①E为BC的中点,F为CD的中点,则PE+PF= .②E为BC上一动点,F为CD上一动点,且∠ABC=60°,则PE+PF= .(2)如图2,在菱形ABCD中,AB=4,连接AC,点P是△ABC的费马点,(即P A,PB,FC之和最小),①当∠ABC=60°时,BP= .②当∠ABC=30°时,你能找到△ABC的费马点P吗?画图做简要说明,并求此时P A+PB+PC的值.2.阅读材料:平面几何中的费马问题是十七世纪法国数学家、被誉为业余数学家之王的皮埃尔•德•费马提出的一个著名的几何问题.1643年,在一封写给意大利数学家和物理学家托里拆利的私人信件中,费马提出了下面这个极富挑战性和趣味性的几何难题,请求托里拆利帮忙解答: 给定不在一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最短的点P的位置.托里拆利成功地解决了费马的问题.后来人们就把平面上到一个三角形的三个顶点A,B,C距离之和最小的点称为△ABC的费马﹣托里拆利点,也简称为费马点或托里拆利点.问题解决:(1)费马问题有多种不同的解法,最简单快捷的还是几何解法.如图1,我们可以将△BPC 绕点B顺时针旋转60°得到△BDE,连接PD,可得△BPD为等边三角形,故PD=PB,由旋转可得DE=PC,因此P A+PB+PC=P A+PD+DE,由可知,P A+PB+PC的最小值与线段的长度相等;(2)如图2,在直角三角形△ABC内部有一动点P,∠BAC=90°,∠ACB=30°,连接P A,PB,PC,若AB=2,求P A+PB+PC的最小值;(3)如图3,菱形ABCD的边长为4,∠ABC=60°,平面内有一动点E,在点E运动过程中,始终有∠BEC=90°,连接AE、DE,在△ADE内部是否存在一点P,使得P A+PD+PE最小,若存在,请直接写出P A+PD+PE的最小值;若不存在,请说明理由.3.若点P为△ABC所在平面上一点,且∠APB=∠BPC=∠CP A=120°,则点P叫做△ABC的费马点.当三角形的最大角小于120°时,可以证明费马点就是“到三角形的三个顶点的距离之和最小的点”.即P A+PB+PC最小.(1)如图1,向△ABC外作等边三角形△ABD,△AEC.连接BE,DC相交于点P,连接AP.①证明:点P就是△ABC费马点;②证明:P A+PB+PC=BE=DC;(2)如图2,在△MNG中,MN=4,∠M=75°,MG=3.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.4.如图,在菱形ABCD中,∠ABC=60°,点E、F分别是AB、BC上的动点,连接DE、DF、EF.(1)如图1,连接AF,若AF⊥BC,E为AB的中点,且EF=2,求DF的长;(2)如图2,若BE=BF,G为DE的中点,连接AF、AG、FG,求证:AG⊥FG;(3)如图3,若AB=4,将△BEF沿EF翻折得到△EFP(始终保持点P在菱形ABCD的内部),连接AP、BP及CP,请直接写出当P A+PB+PC值最小时PB的长.参考答案1.数学上称“费马点”是位于三角形内且到三角形三个顶点距离之和最短的点.现定义:菱形对角线上一点到该对角线同侧两条边上的两点距离最小的点称为类费马点.例如:菱形ABCD,P是对角线BD上一点,E、F是边BC和CD上的两点,若点P满足PE与PF之和最小,则称点P为类费马点.(1)如图1,在菱形ABCD中,AB=4,点P是BD上的类费马点①E为BC的中点,F为CD的中点,则PE+PF= .②E为BC上一动点,F为CD上一动点,且∠ABC=60°,则PE+PF= .(2)如图2,在菱形ABCD中,AB=4,连接AC,点P是△ABC的费马点,(即P A,PB,FC之和最小),①当∠ABC=60°时,BP= .②当∠ABC=30°时,你能找到△ABC的费马点P吗?画图做简要说明,并求此时P A+PB+PC的值.【详细解答】解:(1)①取AB的中点E',连接PE',∵四边形ABCD是菱形,∴BC=AB=CD,∠ABP=∠CBP,∵点E,E'分别是AB,BC的中点,∴BE=BE',在△BEP和△BE'P中,,∴△BEP≌△BE'P(SAS),∴PE=PE',1∴PE+PF=PE'+PF,∴当E'、P、F三点共线时,PE+PF最小值为E'F的长,∵AE'=DF,AE'∥DF,∴四边形AE'FD是平行四边形,∴E'F=AB=4,∴PE+PF=4,故答案为:4;②由①知PE+PF=E'F,若E、F为动点,则E'F的最小值为AB与CD之间的距离,∴过点C作CH⊥AB于H,在Rt△BCH中,sin∠CBH =,∴CH=2,∵点P是BD上的类费马点∴PE+PF的最小值为2;故答案为:2;(2)①如图2,将△BPC绕点B顺时针旋转60°得△BP'C',连接PP',∴BP=BP',PC=P'C',∠PBP'=60°,∴△BPP'是等边三角形,∴PP'=PB,∴P A+PB+PC=P A+PP'+P'C',∴当P、P'在线段AC'上时,P A+PB+PC最小值为AC'的长,2∴连接AC',AC'与BD的交点为P点, ∵AB=BC=4,∠ABC=120°,∴∠BAP=∠ABP=30°,AC'=4, ∴AP=BP,同理BP'=CP',∴BP=AC'=;故答案为:;②如图3,将△BPC绕点B顺时针旋转60°得△BP'C',连接PP',∴BP=BP',PC=P'C',∠PBP'=60°,∠CBC'=60°,∴△BPP'是等边三角形,∴PP'=PB,∴P A+PB+PC=P A+PP'+P'C',∴当P、P'在线段AC'上时,P A+PB+PC最小值为AC'的长,且线段AC'在△ABC内部的线段即为费马点P,∵∠ABC'=90°,AB=BC'=4,∴AC'=,∴此时P A+PB+PC的最小值为4.2.阅读材料:平面几何中的费马问题是十七世纪法国数学家、被誉为业余数学家之王的皮埃尔•德•费马提出的一个著名的几何问题.1643年,在一封写给意大利数学家和物理学家托里拆利的私人信件中,费马提出了下面这个极富挑战性和趣味性的几何难题,请求托里拆利帮忙详细解答: 给定不在一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最短的点P的位置.托里拆利成功地解决了费马的问题.后来人们就把平面上到一个三角形的三个顶点A,B,3C距离之和最小的点称为△ABC的费马﹣托里拆利点,也简称为费马点或托里拆利点.问题解决:(1)费马问题有多种不同的解法,最简单快捷的还是几何解法.如图1,我们可以将△BPC 绕点B顺时针旋转60°得到△BDE,连接PD,可得△BPD为等边三角形,故PD=PB,由旋转可得DE=PC,因此P A+PB+PC=P A+PD+DE,由可知,P A+PB+PC的最小值与线段的长度相等;(2)如图2,在直角三角形△ABC内部有一动点P,∠BAC=90°,∠ACB=30°,连接P A,PB,PC,若AB=2,求P A+PB+PC的最小值;(3)如图3,菱形ABCD的边长为4,∠ABC=60°,平面内有一动点E,在点E运动过程中,始终有∠BEC=90°,连接AE、DE,在△ADE内部是否存在一点P,使得P A+PD+PE 最小,若存在,请直接写出P A+PD+PE的最小值;若不存在,请说明理由.【详细解答】解:(1)将△BPC绕点B顺时针旋转60°得到△BDE,连接PD,可得△BPD 为等边三角形,故PD=PB,由旋转可得DE=PC,因此P A+PB+PC=P A+PD+DE,由两点之间线段最短可知,P A+PB+PC的最小值与线段AE的长度相等.故答案为:两点之间线段最短,AE.(2)如图,将△ABP绕点B顺时针旋转60°得到△EBF,连接PF,CE,作EH⊥CA交CA的延长线于H.4在Rt△ABC中,∵∠ABC=30°,AB=2,∴BC=2AC=4,AB=AC=2,由旋转的旋转可知:P A=EF,△PBF,△ABE是等边三角形, ∴PF=PB,∴P A+PB+PC=EF+FP+PC,∵EF+FP+PC≥CE,∴当C,P,F,E共线时,P A+PB+PC的值最小,∵∠BAC=90°,∠CAE=60°,∴∠HAE=180°﹣90°﹣60°=30°,∵EH⊥AH,AE=AB=2,∴EH =AE=1,AH=EH =,∴CE ===2,∴P A+PB+PC的最小值为2.故答案为2.(3)如图3中,将△ADP绕点A逆时针旋转90°得到△TAH,连接PH,DT,CT.5∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵∠ABC=60°,∴△ABC,△ADC都是等边三角形,∵∠BEC=90°,∴点E在以BC为直径的⊙O上运动,连接OT,OE,则OE=BC=2,由旋转的性质可知,△P AH,△ADT都是等边三角形,P A=PH,HT=PD, ∵OE+PE+PH+TH≥OT,∴PE+P A+PD≥OT﹣OE,∵TA=TD=AC=CD=AD=4,∴CT⊥AD,∵AD∥BC,∴CT⊥BC,CT=4,∴OT==2,∴PE+P A+PD≥2﹣2,∴PA+PD+PE的最小值为2﹣2.3.若点P为△ABC所在平面上一点,且∠APB=∠BPC=∠CP A=120°,则点P叫做△ABC 的费马点.当三角形的最大角小于120°时,可以证明费马点就是“到三角形的三个顶点6的距离之和最小的点”.即P A+PB+PC最小.(1)如图1,向△ABC外作等边三角形△ABD,△AEC.连接BE,DC相交于点P,连接AP.①证明:点P就是△ABC费马点;②证明:P A+PB+PC=BE=DC;(2)如图2,在△MNG中,MN=4,∠M=75°,MG=3.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.【详细解答】(1)证明:①如图1﹣1中,作AM⊥CD于M,AN⊥BE于N设AB交CD于O.∵△ADB,△ACE都是等边三角形,∴AD=AB,AC=AE,∠DAB=∠CAE=60°,∴∠DAC=∠BAE,∴△ADC≌△ABE(SAS),∴CD=BE,S△DAC=S△ABE,∠ADC=∠ABE,∵AM⊥CD,AN⊥BE,∴•CD•AM =•BE•AN,∴AM=AN,∴∠APM=∠APN,∵∠AOD=∠POB,∴∠OPB=∠DAO=60°,∴∠APN=∠APM=60°,∴∠APC=∠BPC=∠APC=120°,7∴点P是就是△ABC费马点.②在线段PD上取一点T,使得P A=PT,连接AT.∵∠APT=60°,PT=P A,∴△APT是等边三角形,∴∠P AT=60°,AT=AP,∵∠DAB=∠TAP=60°,∴∠DAT=∠BAP,∵AD=AB,∴△DAT≌△BAP(SAS),∴PB=DT,∴PD=DT+PT=P A+PB,∴P A+PB+PC=PD+PC=CD=BE.(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中,,∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、N四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=3∴MF=DF=,∴NF=MN+MF=4+=,∴ND===,∴MO+NO+GO最小值为,故答案为,4.如图,在菱形ABCD中,∠ABC=60°,点E、F分别是AB、BC上的动点,连接DE、DF、EF.(1)如图1,连接AF,若AF⊥BC,E为AB的中点,且EF=2,求DF的长;(2)如图2,若BE=BF,G为DE的中点,连接AF、AG、FG,求证:AG⊥FG;(3)如图3,若AB=4,将△BEF沿EF翻折得到△EFP(始终保持点P在菱形ABCD的内部),连接AP、BP及CP,请直接写出当P A+PB+PC值最小时PB的长.【详细解答】解:(1)方法1、如图1,∵AF⊥BC,∴∠AFB=90°,∵E为AB的中点,∴AE=BE,∴EF=BE=AB=2,∵∠ABC=60°,∴BF=EF=BC,∴CF=EF=2,过点D作DG⊥BC交BC的延长线于G,在Rt△CDG中,∠DCG=180°﹣∠BCD=60°,∴∠CDG=30°,CG=CD=2,DG=CG=2,∴FG=CF+CG=4,在Rt△DFG中,DF==2;方法2、∵AF⊥BC,∴∠AFB=90°,∵点E是AB的中点,∴AE=BE,在Rt△ABF中,EF=BE=AB,∴AB=4,∵四边形ABCD是菱形,∴AD=AB=4,∠BAD=180°﹣∠ABC=120°,在Rt△ABF中,∠ABC=60°,∴∠BAF=30°,∴AF=2,∠DAF=∠BAD﹣∠BAF=90°,在Rt△ADF中,根据勾股定理得,DF==2;(2)方法1、如图2,延长AG交CD于H,连接AC,FH, ∵AB∥CD,∴∠AEG=∠HDG,∵G为DE的中点,∴EG=DG,在△AEG和△DHG中,,∴△AEG≌△DHG,∴AG=HG,AE=DH,∵AB=BC=CD,BE=BF,∴FC=DH,BF=CH,在△AFC和△AHD中,,∴△AFC≌△AHD,∴AH=AF,同理:△ABF≌△ACH,∴∠BAF=∠CAH,∴∠F AH=∠F AC+∠CAH=∠F AC+∠BAF=∠BAC=60°, ∴△AFH是等边三角形,∵AG=HG,∴AG⊥FG.方法2、延长AG交CD于H,连接FH,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠EAG=∠DHG,∠AEG=∠HDG,∵点G是DE中点,∴EG=DG,∴△AEG≌△HDG,∴AG=HG,AE=DH,∴BE=CH,∵BE=BF,∠ABC=60°,∴△BEF是等边三角形,∴∠BEF=60°,EF=BE,∴∠AEF=∠FCH,EF=CH,∴△AEF≌△FCH,∴AF=HF,∵AG=HG,∴FG⊥AG,(3)如图a,在△ABC中,P为其中任意一点.连接AP,BP,得到△ABP.以点B为旋转中心,将△ABP逆时针旋转60°,得到△EBD∵旋转60°,且BD=BP,∴△DBP为一个等边三角形∴PB=PD∴P A+PB+PC=DE+PD+PC∴当E、D、P、C四点共线时,为P A+PB+PC最小.如图3,当B、P、G、D四点共线时,P A+PB+PC值最小,最小值为BD. ∵将△APC绕点C顺时针旋转60°,得到△DGC,∴△APC≌△DGC,∴CP=CG,∠PCG=60°,∴△PCG是等边三角形,∴PG=CG=CP,∠GPC=∠CGP=60°.∵菱形ABCD中,∠ABP=∠CBP=∠ABC=30°,∴∠PCB=∠GPC﹣∠CBP=60°﹣∠30°=30°,∴∠PCB=∠CBP=30°,∴BP=CP,同理,DG=CG,∴BP=PG=GD.连接AC,交BD于点O,则AC⊥BD.在Rt△BOC中,∵∠BOC=90°,∠OBC=30°,BC=4,∴BO=BC•cos∠OBC=4×=2,∴BD=2BO=4,∴BP=BD=.即当P A+PB+PC值最小时PB的长为.。
初中数学几何模型大全及解析
初中数学几何模型大全及解析一中点模型【模型1】倍长1、倍长中线;2、倍长类中线;3、中点遇平行延长相交【模型2】遇多个中点,构造中位线1、直接连接中点;2、连对角线取中点再相连【例】在菱形ABCD和正三角形BEF中,∠ABC=60°,G是DF的中点,连接GC、GE.(1)如图1,当点E在BC边上时,若AB=10,BF=4,求GE的长;(2)如图2,当点F在AB的延长线上时,线段GC、GE有怎样的数量和位置关系,写出你的猜想;并给予证明;(3)如图3,当点F在CB的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明.二角平分线模型【模型1】构造轴对称【模型2】角平分线遇平行构造等腰三角形【例】如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,交AD边于H,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,EH=3AE,则GF的长为 .三手拉手模型【例】如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为 .四邻边相等的对角互补模型五半角模型六一线三角模型七弦图模型八最短路径模型【两点之间线段最短】1、将军饮马2、费马点【垂线段最短】【两边之差小于第三边】综合练习已知:如图1,正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.⑴求证:EG=CG且EG⊥CG;⑵将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.问⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.⑶将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?。
初中几何模型试题及答案
初中几何模型试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是矩形的性质?A. 对角线相等B. 对边平行且相等C. 四个角都是直角D. 相邻两边互相垂直答案:D2. 已知三角形ABC中,∠A=30°,∠B=60°,则∠C的度数为:A. 30°B. 60°C. 90°D. 120°答案:C3. 一个圆的半径为3cm,那么它的直径是多少?A. 6cmB. 9cmC. 12cmD. 15cm答案:A4. 一个等腰三角形的底边长为6cm,腰长为5cm,那么它的周长是多少?A. 16cmB. 17cmC. 18cmD. 19cm答案:C5. 一个长方体的长、宽、高分别为2cm、3cm、4cm,那么它的体积是多少?A. 24cm³B. 26cm³C. 28cm³D. 30cm³答案:A二、填空题(每题3分,共15分)6. 一个正方形的边长为4cm,那么它的面积是________cm²。
答案:167. 如果一个圆的周长是12.56cm,那么它的半径是________cm。
答案:28. 一个直角三角形的两条直角边长分别为3cm和4cm,那么它的斜边长是________cm。
答案:59. 一个长方体的体积是48cm³,长为4cm,宽为2cm,那么它的高是________cm。
答案:610. 一个等边三角形的周长是18cm,那么它的每条边长是________cm。
答案:6三、解答题(每题10分,共20分)11. 已知一个等腰三角形的顶角为100°,求它的底角的度数。
答案:由于等腰三角形的两底角相等,且三角形内角和为180°,所以底角的度数为(180°-100°)/2=40°。
12. 一个圆柱的底面半径为5cm,高为10cm,求它的侧面积和体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学几何模型大全+经典题型含答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]初中数学几何模型大全+经典题型(含答案)全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是45°、30°、°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
几何最值模型对称最值(两点间线段最短)对称最值(点到直线垂线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。
旋转最值(共线有最值)说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。
剪拼模型三角形→四边形四边形→四边形说明:剪拼主要是通过中点的180度旋转及平移改变图形的形状。
矩形→正方形说明:通过射影定理找到正方形的边长,通过平移与旋转完成形状改变正方形+等腰直角三角形→正方形面积等分旋转相似模型说明:两个等腰直角三角形成旋转全等,两个有一个角是300角的直角三角形成旋转相似。
推广:两个任意相似三角形旋转成一定角度,成旋转相似。
第三边所成夹角符合旋转“8”字的规律。
相似模型说明:注意边和角的对应,相等线段或者相等比值在证明相似中起到通过等量代换来构造相似三角形的作用。
说明:(1)三垂直到一线三等角的演变,三等角以30度、45度、60度形式出现的居多。
(2)内外角平分线定理到射影定理的演变,注意之间的相同与不同之处。
另外,相似、射影定理、相交弦定理(可以推广到圆幂定理)之间的比值可以转换成乘积,通过等线段、等比值、等乘积进行代换,进行证明得到需要的结论。
说明:相似证明中最常用的辅助线是做平行,根据题目的条件或者结论的比值来做相应的平行线。
初中数学经典几何题(附答案)经典难题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二)2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二)3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二)4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典难题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二)3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB 分别交MN于P、Q.求证:AP=AQ.(初二)4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.求证:点P到边AB的距离等于AB的一半.(初二)经典难题(三)1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.(初二)2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:AE=AF.(初二)3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)D4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)经典难题(四)1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L <2.2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典难题(一)1.如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
2. 如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得 △DGC ≌△APD ≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG =150所以∠DCP=300 ,从而得出△PBC 是正三角形3.如下图连接BC 1和AB 1分别找其中点F,E.连接C 2F 与A 2E 并延长相交于Q 点,连接EB 2并延长交C 2Q 于H 点,连接FB 2并延长交A 2Q 于G 点,由A 2E=12A 1B 1=12B 1C 1= FB 2 ,EB 2=12AB=12BC=FC 1 ,又∠GFQ+∠Q=900和∠GEB 2+∠Q=900,所以∠GEB 2=∠GFQ 又∠B 2FC 2=∠A 2EB 2 , 可得△B 2FC 2≌△A 2EB 2 ,所以A 2B 2=B 2C 2 ,又∠GFQ+∠HB 2F=900和∠GFQ=∠EB 2A 2 ,从而可得∠A 2B 2 C 2=900,同理可得其他边垂直且相等, 从而得出四边形A 2B 2C 2D 2是正方形。
4.如下图连接AC 并取其中点Q ,连接QN 和QM ,所以可得∠QMF=∠F ,∠QNM=∠DEN 和∠QMN=∠QNM ,从而得出∠DEN =∠F 。
经典难题(二)1.(1)延长AD到F连BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,从而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM(2)连接OB,OC,既得∠BOC=1200,从而可得∠BOM=600,所以可得OB=2OM=AH=AO,得证。
3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ。
由于22AD AC CD FD FD AB AE BE BG BG,由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE。
又因为PFOA与QGOA四点共圆,可得∠AFC=∠AOP和∠AGE=∠AOQ,∠AOP=∠AOQ ,从而可得AP=AQ 。
4.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH 。
可得PQ=2EGFH。
由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△CBI ,可得FH=BI 。
从而可得PQ=2AI BI=2AB,从而得证。
经典难题(三)1.顺时针旋转△ADE ,到△ABG ,连接CG.由于∠ABG=∠ADE=900+450=1350从而可得B,G,D在一条直线上,可得△AGB≌△CGB。
推出AE=AG=AC=GC,可得△AGC为等边三角形。
∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。
又∠EFC=∠DFA=450+300=750.可证:CE=CF。
2.连接BD作CH⊥DE,可得四边形CGDH是正方形。
由AC=CE=2GC=2CH,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,又∠FAE=900+450+150=1500,从而可知道∠F=150,从而得出AE=AF。
3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形。
令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X 。
tan∠BAP=tan∠EPF=XY=ZY X Z,可得YZ=XY-X2+XZ,即Z(Y-X)=X(Y-X) ,既得X=Z ,得出△ABP≌△PEF ,得到PA=PF ,得证。
经典难题(四)1.顺时针旋转△ABP 600,连接PQ ,则△PBQ是正三角形。
可得△PQC是直角三角形。
所以∠APB=1500。
2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC.可以得出∠ABP=∠ADP=∠AEP,可得:AEBP共圆(一边所对两角相等)。
可得∠BAP=∠BEP=∠BCP,得证。
3.在BD 取一点E ,使∠BCE=∠ACD ,既得△BEC ∽△ADC ,可得:BE BC =ADAC,即AD •BC=BE •AC , ① 又∠ACB=∠DCE ,可得△ABC ∽△DEC ,既得AB AC =DEDC,即AB •CD=DE •AC , ② 由①+②可得: AB •CD+AD •BC=AC(BE+DE)= AC ·BD ,得证。