光电转换器特性的研究

光电转换器特性的研究
光电转换器特性的研究

实验简介

传感器技术中很重要的一类称为光传感器。光传感器通常是指紫外到红外波长范围的传感器,其类型可分为量子探测器和热探测器两类。本实验将介绍常用的量子探测器或称光子探测器,它是利用材料的光电效应制作成的探测器,故也称为光电转换器。其主要参数有响应度(灵敏度)、光谱响应范围、响应时间和可探测的最小辐射功率等。

光电转换器件主要是利用光电效应将光信号转换成电信号。自光电效应发现至今,光电转换器件获得了突飞猛进的发展,目前各种光电转换器件已广泛地应用在各行各业。常用的光电效应转换器件有光敏电阻、光电倍增器、光电池、PIN 管、CCD等。

光电倍增器是把微弱的输入转换为电子,并使电子获得倍增的电真空器件。当光信号强度发生变化时,阴极发射的光电子数目相应变化,由于各倍增极的倍增因子基本上保持常数,所以阳极电流亦随光信号的变化而变化,此即光电倍增管的简单工作过程。由此可见,光电倍增管的性能主要由光阴极、倍增极及极间电压决定。光电阴极受强光照射后,由于发射电子的速率很高,光电阴极内部来不及重新补充电子,因此使光电倍增管的灵敏度下降。如果入射光强度太高,导致器件内电流太大,以至于电阴极和倍增极因发射二分解,就会造成光电倍增管的永久性波坏。因此,使用光电倍增管时,应避免强光直接入射。光电倍增管一般用来测弱光信号。

光电池是把光能直接变成电能的器件,可作为能源器件使用,如卫星上使用的太阳能电池。它也可作为光电子探测器件。

光电二极管有耗尽层光电二极管和雪崩光电二极管两种。半导体pn结区附近成为耗尽层,该层的两侧是相对高的空间电荷区,而耗尽层内通常情况下并不存在电子和空穴。只有当光照射pn结时才能使耗尽层内产生载流子(电子-空穴对),载流子被结内电场加速形成光电流。利用该原理制成的光电二极管称为耗尽层光电二极管。耗尽层光电二极管有pin层、pn层、金属-半导体型、异质型等

血崩光电二极管是利用二极管在高的反向偏压下发生血崩效应而制成的光电器件。血崩光电二极管的倍增效应与外加电压有关。血崩光电二极管具有

倍的电流增益,因此,它的灵敏度很高,并且相应速度快,常用于超高频的调制光和超短光脉冲的探测。

CCD(Charge Coupled Device)即电荷耦合器件,通过输入面上光电信号逐点的转换、储存和传输,在其输出端产生一时序信号。随着科技的进步,CCD 技术日臻完善,已广泛用于安全防范、电视、工业、通信、远程教育、可视网络电话等领域。

本实验的目的是了解光电效应原理及光电转换器件的工作模式并测量光电转换器件的基本特性。

实验原理

?光电效应

●光电转换器件主要是利用物质的光电效应,即当物质在一定频率

的光的照射下,释放出光电子的现象。当光照射金属、金属氧化

物或半导体材料的表面时,会被这些材料内的电子所吸收,如果

光子的能量足够大,吸收光子后的电子可挣脱原子的束缚而逸出

材料表面,这种电子称为光电子,这种现象称为光电子发射,又

称为外光电效应。有些物质受到光照射时,其内部原子释放电子,

但电子仍留在物体内部,使物体的导电性增加,这种现象称为内

光电效应。

?光电导效应

●某些半导体材料在光的照射下,内部电子吸收光子后,挣脱原子

的束缚而形成自由电子,使其导电性能增加,电阻率下降,这种

半导体器件称为光敏电阻,这种现象称为光电导效应。当光停止

辐照后,自由电子又被失去电子的原子所俘获,其电阻率恢复原

值。利用光敏电阻的这种特性制成的光控开关在我们日常生活中

随处可见。

?二次电子发射效应

●当电子轰击某物体时,如果该电子的动能足够大,被轰击物体将

会有新的电子发射出来,该现象称为二次电子发射效应。轰击物

体的电子称为一次电子,物体吸收一次电子后激励体内的电子到

高能态,这些高能电子的一部分向物体表面运动,到达表面时仍

具有足够的能量克服表面势垒而发射出来的电子称为二次电子。

?常用的光电转换器件主要有光敏电阻、光电倍增管、光电二极管等。

?光电二极管

●光电二极管是典型的光电效应探测器,具有量子噪声低、响应会、

使用方便等特点,广泛用于激光探测器。图1.1.1-1是硅光电二极

管的工作原理。

外加反偏电压于结内电场方向一致,当pn结及其附近被光照射时,就会产生载流子(即电子-空穴对)。结区内的电子-空穴对在势垒区电场的作用下,电子被拉向n区,空穴被拉向p区而形成光电流。同时势垒区一侧一个扩散长度内的光生载流子先向势垒区扩散,然后在势垒区电场的作用下也参与导电。当入设光强变化时,光生载流子的浓度及通过外回路的光电流也随之发生相应的变化。这种变化在入射光强很大的动态范围内仍能保持线性关系。

–伏安特性

当没有光照射时,光电二极管相当于普通的二极管。其伏安特性是

式中I为流过二极管的总电流,为反向饱和电流,e为电子电荷,k为玻尔兹曼常量,T为工作温度,V为加在二极管两端的电压。如图1.1.1-2所示

对于外加正向电压,I随V指数增长,称为正向电流;当外加电压反向时,在反向击穿电压之内,反向饱和电流基本上是个常数。对于硅光二极管来说,其伏安特性可表示为

式中是流过硅光电二极管的总电流,是反向光电流,S是电流灵敏度,P是入射光功率,因硅光二极管是反向偏压工作,故上式可简化为

硅光电二极管的伏安特性曲线相当于把普通二极管的伏安特性曲线向下平移。其实际伏安曲线如图1.1.1-3所示。在工作反偏压一定的情况下,从图1.1.1-3可以绘出与入射光强的关系曲线,如图1.1.1-4

所示。从图中可以看出,在很大的动态范围内,它们基本上是线性关系。因此光电二极管不像光电倍增管那样容易损坏。

●光电二极管的频率响应、峰值相应、时间响应:光电二极管具有

频率响应宽、灵敏度高、时间响应快等特点,是一种常用的光电

探测器件。光电二极管的光谱响应主要由构成pn结的材料决定。

图1.1.1-5是硅光电二极管的光谱响应曲线。

●量子效率:光电探测器吸收光子产生光电子,光电子形成光电流。

因此,光电流I与每秒入射的光子数,即光功率P成正比。根据

统计光学理论,光电流与入射光功率的关系为

式中I为光电流,P为光功率,是光电转换因子,e为电子电荷,h为普朗克常量,v为入射光频率,为量子效率。从上式可知。

实验内容

?测量光电二极管的频谱曲线、峰值响应频率

●如图1.1.1-6所示,在暗箱里,强度较高的白光光源通过滤光片

后入射到光电二极管上,光电二极管的线路图如图1.1.1-7所示。

利用示波器或电压表观察、测量不同波长的光(用不同颜色的滤

光片获得)照射在pin管上所获得的电压。绘出波长-电压及

图,通过曲线向找到峰值响应频率,曲线向两边延伸,

确定截至波长。

●能量计是一种灵敏度较高的测量激光输出能量的仪器,使用中应

注意适当的挡位,以免过高能量损坏仪器。存贮示波器内含微处

理器,可将测得的波形经机内RAM/ROM存贮起来,获得静态显

示,便于观察、测量、拍照。

?按图1.1.1-7的接线,用已确定对应于峰值波长的滤光片,加一定的反

偏电压,改变入射光强(用可变光阑实现),测量光电流与光强的关系,绘出其关系图,观察二者之间的关系。

?利用上述装置测量光敏电阻的长波极限以及峰值响应波长核频谱曲线。

光电二极管的灵敏度高,应避免强光入射时损坏器件。

?自己设计一套电路装置,测量光电二极管的量子效率。

思考题

?利用光敏电阻的特性,设计一光控开关电路。

光电传感器论文

光电传感器 物理与电子工程学院电子信息科学与技术(应用技术)2011级李俊 学号20110520164 指导老师伊斯刚 摘要:由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。这种传感器具有结构简单、非接触、高可靠性、高精度、可测参数多、反应快以及结构简单,形式灵活多样等优点,在自动检测技术中得到了广泛应用,它一种是以光电效应为理论基础,由光电材料构成的器件。 关键字:光电效应;光电元件;光电特性;传感器应用 1 理论基础——光电效应 光电效应一般有外光电效应、光导效应、光生伏特效应。 光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大是,电子会克服束缚脱离材料表面而进入外界空间,从而改变光电子材料的导电性,这种现象成为外光电效应 根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为hv(v为光波频率,h为普朗克常数,h=6.63*10-34 J/HZ),由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正离子的束缚,另一部分转换成电子能量。根据能量守恒定律:1/2mv2=hv-A 式中,m为电子质量,v为电子逸出的初速度,A微电子所做的功。 2 光电元件及特性 2.1 光电管 光电管的种类繁多,典型的产品有真空光电管和充气光电管,外形成半圆筒形金属片制成的阴极K和位于阴极轴心的金属丝制成的阳极A封装在抽成真空的

玻壳内,当入射光照射在阴极上时,单个光子就把它的全部能量传递给阴极材料中的一个自由电子,从而使自由电子的能量增加h。当电子获得的能量大于阴极材料的逸出功A时,它就可以克服金属表面束缚而逸出,形成电子发射。这种电子称为光电子,光电子逸出金属表面后的初始动能为1/2mv2 光电管正常工作时,阳极电位高于阴极。在人射光频率大于“红限”的前提下,从阴极表面逸出的光电子被具有正电位的阳极所吸引,在光电管内形成空间电子流,称为光电流。此时若光强增大,轰击阴极的光子数增多,单位时间内发射的光电子数也就增多,光电流变大。 光电管的光电特性如图1所示,从图中可知,在光通量不太大时,光电特性基本是一条直线。 图1光电管的光 2.2 光电倍增管 由于真空光电管的灵敏度低,因此人们研制了具有放大光电流能力的光电倍增管。光电倍增管也有一个阴极K和一个阳极A,与光电管不同的是在它的阴极和阳极间设置了若干个二次发射电极,D1、D2、D3…它们称为第一倍增电极、第二倍增电极、…,倍增电极通常为10~15级。光电倍增管工作时,相邻电极之间保持一定电位差,其中阴极电位最低,各倍增电极电位逐级升高,阳极电位最高。当入射光照射阴极K时,从阴极逸出的光电子被第一倍增电极D1加速,以高速轰击D1 ,引起二次电子发射,一个入射的光电子可以产生多个二次电子,D1发射出的二次电子又被D1、D2问的电场加速,射向D2并再次产生二次电子发射……,这样逐级产生的二次电子发射,使电子数量迅速增加,这些电子最后到达阳极,形成较大的阳极电流。若倍增电极有n级,各级的倍增率为σ,则光电倍增管的倍增率可以认为是σN ,因此,光电倍增管有极高的灵敏度。在输出电流小于1mA的情况下,它的光电特性在很宽的范围内具有良好的线性关系。光电倍增管的这个特点,使它多用于微光测量。

光敏传感器光电特性测量实验

光敏传感器光电特性测量实验 光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。 光敏传感器的物理基础是光电效应,即半导体材料的许多电学特性都因受到光的照射而发生变化。光电效应通常分为外光电效应和内光电效应两大类。外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应。几乎大多数光电控制应用的传感器都是此类,通常有光敏电阻、光敏二极管、光敏三极管、硅光电池等。当然近年来新的光敏器件不断涌现,如:具有高速响应和放大功能的APD雪崩式光电二极管,半导体色敏传感器、光电闸流晶体管、光导摄像管、CCD图像传感器等,为光电传感器进一步的应用开创了新的一页。本实验主要是研究光敏电阻、硅光电池、光敏二极管、光敏三极管四种光敏传感器的基本特性。光敏传感器的基本特性包括:伏安特性、光照特性、时间响应、频率特性等。掌握光敏传感器基本特性的测量方法,为合理应用光敏传感器打好基础。 【实验目的】 了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性曲线。 仪器简介 仪器由全封闭光通路、实验电路、待测光敏传感器(光敏电阻、光敏二极管、光敏三极管、硅光电池)、实验连接线等组成。 仪器安装在360×220×80(mm)实验箱内,仪器面板如下图

APD光电二极管特性测试实验

APD光电二极管特性测试实验 一、实验目的 1、学习掌握APD光电二极管的工作原理 2、学习掌握APD光电二极管的基本特性 3、掌握APD光电二极管特性测试方法 4、了解APD光电二极管的基本应用 二、实验内容 1、APD光电二极管暗电流测试实验 2、APD光电二极管光电流测试实验 3、APD光电二极管伏安特性测试实验 4、APD光电二极管雪崩电压测试实验 5、APD光电二极管光电特性测试实验 6、APD光电二极管时间响应特性测试实验 7、APD光电二极管光谱特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光照度计 1台 4、光敏电阻及封装组件 1套 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 9、示波器 1台 四、实验原理 雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。 雪崩光电二极管能够获得内部增益是基于碰撞电离效应。当PN结上加高的反偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。 图6-1为APD的一种结构。外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I区。图4的结构为拉通型APD的结构。从图中可以看到,电场在I区分布较弱,而在N+-P区分布较强,碰撞电离区即雪崩区就在N+-P区。尽管I区的电场比N+-P区低得多,但也足够高(可达2x104V/cm),可以保证载流子达到饱和漂移速度。当入射光照射时,由于雪

光电传感器的设计

光电传感器的设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

光电传感器的设计 题目:光电传感器的设计 院(系):信息工程学院 专业:光电信息科学与工程 姓名:褚飞亚 学号: 20 指导教师:张洋洋 2016年6月27号

摘要 随着信息技术的迅猛发展,传感器的应用技术也在飞速发展,新的应用技术呈现出爆炸式的发展。传感器作为作为测控系统中对象信息的入口,作为捕获信息的主要工具,在现代化事业中的重要性已被人们所认识。光电传感器的应用技术为信息科学的一个分支,俗称“电眼”。它是将传统光学技术与现代微电子技术以及计算机技术机密结合的纽带,是获取光信息或借助光提取其他信息的重要手段。现如今汽车成为大多数人必不可少的东西。经常开车的朋友们,应该都有过这样的苦恼每次开车到了单位或者小区大门口都要等门卫来开门或者等其按动电动门的开关,既费时间又费人力,如果巧妙地利用光电传感器就可以实现光控大门。所以借此次课程设计来设计一个光控大门,即把光敏电阻装在大门上并且在汽车灯光能照到的地方,把带动大门的电动机接在干簧管的电路中,那么夜间汽车开到大门前,灯光照射到光敏电阻时,干簧继电器就可以自动接通电动机电路,电动机就能带动大门打开。这样就解决了上述的问题。

目录 1、设计要求...............................................错误!未定义书签。 功能与用途 ............................................................................................. 错误!未定义书签。 指标要求 ................................................................................................. 错误!未定义书签。 2、光电传感器介绍及工作原理 ...............错误!未定义书签。 、光电传感器 ......................................................................................... 错误!未定义书签。 工作原理 ................................................................................................. 错误!未定义书签。 3、方案设计...............................................错误!未定义书签。 4、元件选择和电路设计 ...........................错误!未定义书签。 元件选择 ................................................................................................. 错误!未定义书签。 电路设计 ................................................................................................. 错误!未定义书签。 5、总结.......................................................错误!未定义书签。参考文献.....................................................错误!未定义书签。

光电显示技术实验讲义

实验一有机发光器件(OLED)参数测量 一、实验目的: 1.了解有机发光显示器件的工作原理及相关特性; 2.掌握OLED性能参数的测量方法; 二、实验原理简介: 1979年,柯达公司华裔科学家邓青云(Dr. C. W. Tang)博士发现黑暗中的有机蓄电池在发光,对有机发光器件的研究由此开始,邓博士被誉为OLED之父。 OLED (Organic Light Emitting Display,中文名有机发光显示器)是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。OLED用ITO透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。辐射光可从ITO一侧观察到,金属电极膜同时也起了反射层的作用。 图1:OLED结构示意图 与LCD相比,OLED具有主动发光,无视角问题,重量轻,厚度小,高亮度,高发光效率,发光材料丰富,易实现彩色显示,响应速度快,动态画面质量高,使用温度范围广,可实现柔软显示,工艺简单,成本低,抗震能力强等一系列的优点。 如果一个有机层用两个不同的有机层来代替,就可以取得更好的效果:当正极的边界层供应载流子时,负极一侧非常适合输送电子,载流子在两个有机层中间通过时,会受到阻隔,直至会出现反方向运动的载流子,这样,效率就明显提高了。很薄的边界层重新结合后,产生细小的亮点,就能发光。如果有三个有机层,分别用于输送电子、输送载流子和发光,效率就会更高。

为提高电子的注入效率,OLED阴极材料的功函数需尽可能的低,功函数越低,发光亮度越高,使用寿命越长。可以使用Ag 、Al 、Li 、Mg 、Ca 、In等单层金属阴极,也可以将性质活泼的低功函数金属和化学性能较稳定的高功函数金属一起蒸发形成合金阴极。如Mg: Ag(10: 1),Li:Al (0.6%Li),功函数分别为3.7eV和3.2eV,合金阴极可以提高器件的量子效率和稳定性,同时能在有机膜上形成稳定坚固的金属薄膜。此外还有层状阴极和掺杂复合型电极。层状阴极由一层极薄的绝缘材料如LiF, Li2O,MgO,Al2O3等和外面一层较厚的Al组成,其电子注入性能较纯Al电极高,可得到更高的发光效率和更好的I-V特性曲线。掺杂复合型电极将掺杂有低功函数金属的有机层夹在阴极和有机发光层之间,可大大改善器件性能,其典型器件是ITO/NPD/AlQ/AlQ(Li)/Al,最大亮度可达30000Cd/m2,如无掺Li层器件,亮度为3400Cd/m2。 为提高空穴的注入效率,要求阳极的功函数尽可能高。作为显示器件还要求阳极透明,一般采用的有Au、透明导电聚合物(如聚苯胺)和ITO导电玻璃,常用ITO玻璃。 载流子输送层主要是空穴输送材料(HTM)和电子输运材料(ETM)。空穴输送材料(HTM)需要有高的热稳定性,与阳极形成小的势垒,能真空蒸镀形成无针孔薄膜。最常用的HTM均为芳香多胺类化合物,主要是三芳胺衍生物。TPD:N,N′-双(3-甲基苯基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺NPD: N,N′-双(1-奈基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺。电子输运材料(ETM)要求有适当的电子输运能力,有好的成膜性和稳定性。ETM一般采用具有大的共扼平面的芳香族化合物如8-羟基喹啉铝(AlQ),1,2,4一三唑衍生物(1,2, 4-Triazoles,TAZ),PBD,Beq2,DPVBi等,它们同时又是好的发光材料。 OLED的发光材料应满足下列条件: 1)高量子效率的荧光特性,荧光光谱主要分布400-700nm可见光区域。 2)良好的半导体特性,即具有高的导电率,能传导电子或空穴或两者兼有。 3)好的成膜性,在几十纳米的薄层中不产生针孔。 4)良好的热稳定性。 按化合物的分子结构,有机发光材料一般分为两大类: 1) 高分子聚合物,分子量10000-100000,通常是导电共轭聚合物或半导体共轭聚合物,可用旋涂方法成膜,制作简单,成本低,但其纯度不易提高,在耐久性,亮度和颜色方面比小分子有机化合物差。 2) 小分子有机化合物,分子量为500-2000,能用真空蒸镀方法成膜,按分子结构又分为两类:有机小分子化合物和配合物。 有机小分子发光材料主要为有机染料,具有化学修饰性强,选择范围广,易于提纯,量子效率高,可产生红、绿、蓝、黄等各种颜色发射峰等优点,但大多数有机染料在固态时存在浓度淬灭等问题,导致发射峰变宽或红移,所以一般将它们以低浓度方式掺杂在具有某种载流子性质的主体中,主体材料通常与ETM和HTM层采用相同的材料。掺杂的有机染料,应满足以下条件: a. 具有高的荧光量子效率 b. 染料的吸收光谱与主体的发射光谱有好的重叠,即主体与染料能量适配,从主体到染料能有效地能量传递; c. 红绿兰色的发射峰尽可能窄,以获得好的色纯;

光电传感器特性分析

光电传感器特性分析 摘要:随着科技的发展,人类越来越注重信息和自动化,在日常的生产学习过 程中,人们常常要进行自动筛选、自动传送,而为了实现这些,光电传感发挥了不可磨灭的作用。光敏传感器的物理基础是光电效应,即光敏材料的电学特性因受到光的照射而发生变化。 关键词:光电效应、光电传感器、光敏材料 一、 理论基础——光电效应 光电效应通常分为外光电效应和内光电效应两大类。外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应,大多数光电控制应用的传感器,如光敏电阻、光敏二极管、光敏三极管、硅光电池等都属于内光电效应类传感器。 1.外光电效应 光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大,电子会克服束缚逸出表面,从而改变光电子材料的导电性,这种现象成为外光电效应。 根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为hv(v 为光波频率,h 为普朗克常数),由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正离子的束缚,另一部分转换成电子能量。根据能量守恒定律: 式中,m 为电子质量,v 为电子逸出的初速度,w 为逸出功。 由上式可知,要使光电子逸出阴极表面的必要条件是hv>w 。由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大,都不会产生光电子发射,此频率 限称为“红限”。相应的波长为 式中,c 为光速,w 为逸出功。 2.内光电效应 当光照射到半导体表面时,由于半导体中的电子吸收了光子的能量,使电子从半导体表面逸出至周围空间的现象叫外光电效应。利用这种现象可以制成阴极射线管、光电倍增管和摄像管的光阴极等。半导体材料的价带与导带间有一个带隙,其能量间隔为Eg 。一般情况下,价带中的电子不会自发地跃迁到导带,所以半导体 w hv -=2mv 2 1 w hc K = λ

光电传感器特性分析

光电传感器特性分析 摘要:随着科技的发展,人类越来越注重信息和自动化,在日常的生产学习过程中,人们常常要进行自动筛选、自动传送,而为了实现这些,光电传感发挥了不可磨灭的作用。光敏传感器的物理基础是光电效应,即光敏材料的电学特性因受到光的照射而发生变化。 关键词:光电效应、光电传感器、光敏材料 一、理论基础——光电效应 光电效应通常分为外光电效应和内光电效应两大类。外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应,大多数光电控制应用的传感器,如光敏电阻、光敏二极管、光敏三极管、硅光电池等都属于内光电效应类传感器。 1.外光电效应 光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大,电子会克服束缚逸出表面,从而改变光电子材料的导电性,这种现象成为外光电效应。 根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为hv(v为光波频率,h为普朗克常数),由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正

离子的束缚,另一部分转换成电子能量。根据能量守恒定律: 式中,m 为电子质量,v 为电子逸出的初速度,w 为逸出功。 由上式可知,要使光电子逸出阴极表面的必要条件是hv>w 。由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大, 都不会产生光电子发射,此频率限称为“红限”。相应的波长为 式中,c 为光速,w 为逸出功。 2.内光电效应 当光照射到半导体表面时,由于半导体中的电子吸收了光子的能量,使电子从半导体表面逸出至周围空间的现象叫外光电效应。利用这种现象可以制成阴极射线管、光电倍增管和摄像管的光阴极等。半导体材料的价带与导带间有一个带隙,其能量间隔为Eg 。一般情况下,价带中的电子不会自发地跃迁到导带,所以半导体材料的导电性远不 如导体。但如果通过某种方式给价带中的电子提供能量,就可以将其 激发到导带中,形成载流子,增加导电性。光照就是一种激励方式。当入射光的能量hν≥Eg( Eg 为带隙间隔)时,价带中的电子就会吸收 光子的能量,跃迁到导带,而在价带中留下一个空穴,形成一对可以导电的电子——空穴对。这里的电子并未逸出形成光电子,但显然存在着由于光照而产生的电效应。因此,这种光电效应就是一种内光电效应。从理论和实验结果分析,要使价带中的电子跃迁到导带,也存在一 w hv -=2mv 21 w hc K = λ

光电管特性研究

光电管特性的研究 光电效应是指在光的作用下,从物体表面释放电子的现象,所逸出的电子称为光电子。这种现象是1887年赫兹研究电磁波时发现的。在光电效应中,光不仅在被吸收或发射时以能量h 的微粒出现,而且以微粒形式在空间传播,充分显示了光的粒子性。 1905年爱因斯坦引入光量子理论,给出了光电效应方程,成功地解释了光电效应的全部实验规律。1916年密立根用光电效应实验验证了爱因斯坦的光电效应方程,并测定了普朗克常量。爱因斯坦和密立根都因为光电效应方面的杰出贡献,分别获得1921年和1923年诺贝尔物理学奖。而今光电效应已经广泛地应用于各科技领域,例如利用光电效应制成的光电管、光电倍增管等光电转换其间,把光学量转换成电学量来测量。光电元件已成为石油钻井、传真电报、自动控制等生产和科研中不可缺少的元件。 一、教学目的 1、了解光电效应实验的基本规律和光的量子性。 2、测定光电管的伏安特性,研究光电流强度与加在光电管两极间电压的关系。 3、测定光电管的光电特性,研究光电流强度与照在光电管阴极上光通量的关系。 二、教学要求 1、实验三小时完成。 2、观察光电管结构和光电效应现象,理解光的量子性。 3、测定光电管的伏安特性,研究光电流强度与加在光电管两极间电压的关系。 4、测定光电管的光电特性,研究光电流强度与照在光电管阴极上光通量的关系。 5、用所学过的知识解释本次实验所测得的曲线,并对实验结果进行评价,写出合格的实验报告。 三、教学重点和难点 1、重点:通过光电管的伏安特性和光电特性,掌握光电效应迈的实验原理。

2、难点:最小二乘法处理数据。 四、讲授内容(约20分钟) 采用讲授、讨论、演示相结合的教学方法。 1、光电效应的实验原理。 2、与学生们共同探讨光电效应在现代生产生活中的应用。 (1)光电管 利用饱和电流与照射光强的线性关系,实现光信号和电信号之间的转换。如:光控继电器、自动控制、自动计数、自动报警等。 (2)光电倍增管 光电倍增管可使光电阴极发出的光电子增至48 10~10倍,在探测弱光方面得到广泛的应用。 (3)光电成像器件 光电导摄像管等,可以将辐射图像转换成或增强为可观察、记录、传输、存储和进行处理的图像,广泛地应用于天文学、空间科学、电视等领域。 3、光电管的伏安特性曲线的特点和光电特性的特点,留给学生思考如何用所学知识解释这些特点,并在实验报告中回答。 4、结合仪器演示实验的主要步骤。 (1)测光电管的伏安特性曲线 ⑴按教材图5.12-4接好线路,使光电管阳极为高电势,检查正负极插线无误后,打开光电效应仪的电源开关,并预热10分钟。 ⑵选取合适的小灯电流值。测量前先测出小灯泡与光电管阴极间的初始间 r,并记录。 距0 ⑶研究光电管正向伏安特性。由于光电管的伏安特性为非线性曲线,因此,在非线性区域,测试点应多一些。 ⑷测临界截止电压。将光电管接线的极性对调,即在光电管两极加上反向电压,使光电管阳极为负电势,慢慢增大反向电压,记下使光电流刚好为零的电压值,即为临界截止电压。 ⑸研究光电管在不同光强照射下的伏安特性,采用两种方法。

光电传感器介绍

光电式传感器 1.概述 光电传感器是采用光电元件作为检测元件的传感器。它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源、光学通路和光电元件三部分组成。光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。 光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。 2.物理特性 2.1外光电效应 2.1.1光子假设 1887年,赫兹发现光电效应,爱因斯坦第一个成功解释光电效应。爱因斯坦根据普朗克量子假说而进一步提出的光量子,即光子概念,对光电效应研究做出了决定性的贡献。爱因斯坦光子假说的核心思想是:表面上看起来连续的光波是量子化的。单色光由大量不连续的光子组成。若单色光频率为n,那么每个 光子的能量为E=hv, 动量为。 由爱因斯坦光子假说发展成现代光子论(photon theory)的两个基本点是:

(1) 光是由一颗一颗的光子组成的光子流。每个光子的能量为E = hv,动量 为。由N个光子组成的光子流,能量为N hv。 (2) 光与物质相互作用,即是每个光子与物质中的微观粒子相互作用。 根据能量守恒定律,约束得最不紧的电子在离开金属面时具有最大的初动 能,所以对于电子应有: 2.2 内光电效应 光电传感器通常是指能敏感到由紫外线到红外线光的光能量,并能将光能转化成电信号的器件。其工作原理是基于一些物质的光电效应。 光电效应:当具有一定能量E的光子投射到某些物质的表面时,具有辐射能量的微粒将透过受光的表面层,赋予这些物质的电子以附加能量,或者改变物质的电阻大小,或者使其产生电动势,导致与其相连接的闭合回路中电流的变化,从而实现了光—电转换过程。在光线作用下能使物体电阻率改变的称为内光电效应。属于内光电效应的光电转换元件有光敏电阻以及由光敏电阻制成的光导管等。 2.2.1光电导效应 光照变化引起半导体材料电导变化的现象称光电导效应(又称为光电效应、光敏效应),即光电导效应是光照射到某些物体上后,引起其电性能变化的一类光致电改变现象的总称。当光照射到半导体材料时,材料吸收光子的能量,使非传导态电子变为传导态电子,引起载流子浓度增大,因而导致材料电导率增大。在光线作用下,对于半导体材料吸收了入射光子能量,若光子能量大于或等于半导体材料的禁带宽度,就激发出电子-空穴对,使载流子浓度增加,半导体的导电性增加,阻值减低,这种现象称为光电导效应。光敏电阻就是基于这种效应的光电器件。

光电传感器性能参数分析

课程小论文 题目:光电传感器性能参数分析 院 (部) 专业 学生姓名 学生学号 指导教师 课程名称 课程代码 课程学分 起始日期

光电传感器性能参数分析 摘要:在科学技术高速发展的现代社会中,人类已经入瞬息万变的信息时代,人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一。由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。这种传感器具有结构简单、非接触、高可靠性、高精度、可测参数多、反应快以及结构简单,形式灵活多样等优点,在自动检测技术中得到了广泛应用,它一种是以光电效应为理论基础,由光电材料构成的器件。 关键字:光电效应、光电元件、光电特性、传感器分类、传感器应用

目录 目录 (3) 1、引言 (4) 2、光电传感器 (4) 3、光电效应 (6) 4、光电传感器的前景 (6) 5、总结 (7) 参考文献 (8)

一、引言 随着工业生产技术的发展,对生产过程中的过程控制要求越来越高,而作为控制系统的核心之一,传感器越来越受工业技术人员的重视。人们对高性能检测技术的发展需求与日俱增。其中非电量测量的受欢迎程度最为广泛,可将距离、位移、振动等信号转换为电信号,并通过这些方法获得被测物体的状态。非电量检测技术分为接触式与非接触式检测。在工业生产环境中,有些场合不适用接触式检测,因为传感器与被测物体的接触,在工业现场环境中会造成被测体损伤、传感器磨损等问题。因此,需要性能良好的非接触式传感器以满足工业需求,相关技术的研究也成为传感器检测技术的发展方向。 光电检测技术作为目前检测技术之一,目前国内对于光电检测的研究已有一些成果,但目前产品还存在着一些问题,例如线性测量范围过短、对现场装配条件要求较高等,距离满足工业现场的要求还存在一定距离。所以,为了解决这些问题,光电效应对传感器性能的影响是很重要的研究方向之一,可以使光电传感器应用在更多的领域,推动光电检测技术的发展。 二、光电传感器 光电传感器是通过把光强度的变化转换成电信号的变化来实现控制的,它的基本结构如下图,它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源,光学通路和光电元件三部分组成.光电检测方法具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。 图1光电传感器原理图 光电传感器一般由三部分构成,它们分为:发送器、接收器和检测电路,发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(LED)、激光二极管及红外发射二极管。光束不间断地发射,或者改变脉冲宽度。接收器有光电二极管、光电三极管、光电池组成。在接收器的前面,装有光学元件如透镜和光圈等。在其后面是检测电路,它能滤出有效信号和应用该信号。 光电传感器是一种依靠被测物与光电元件和光源之间的关系,来达到测量目的

光电二极管检测电路的组成及工作原理

光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。许多精密应用领域需要检测光亮度并将之转换为有用的数字信号。光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。 本文将分析并通过模拟验证这种典型应用电路的稳定性及噪声性能。首先探讨电路工作原理,然后如果读者有机会的话,可以运行一个SPICE模拟程序,它会很形象地说明电路原理。以上两步是完成设计过程的开始。第三步也是最重要的一步(本文未作讨论)是制作实验模拟板。 1 光检测电路的基本组成和工作原理 设计一个精密的光检测电路最常用的方法 是将一个光电二极管跨接在一个CMOS输入 放大器的输入端和反馈环路的电阻之间。这种 方式的单电源电路示于图1中。 在该电路中,光电二极管工作于光致电压 (零偏置)方式。光电二极管上的入射光使之 产生的电流I SC从负极流至正极,如图中所示。由于CMOS放大器反相输入端的输入阻抗非常高,二极管产生的电流将流过反馈电阻R F。输出电压会随着电阻R F两端的压降而变化。 图中的放大系统将电流转换为电压,即 V OUT = I SC×R F(1) 图1 单电源光电二极管检测电路 式(1)中,V OUT是运算放大器输出端的电压,单位为V;I SC是光电二极管产生的电流,单位为A;R F是放大器电路中的反馈电阻,单位为W 。图1中的C RF是电阻R F的寄生电容和电路板的分布电容,且具有一个单极点为1/(2p R F C RF)。 用SPICE可在一定频率范围内模拟从光到电压的转换关系。模拟中可选的变量是放大器的反馈元件R F。用这个模拟程序,激励信号源为I SC,输出端电压为V OUT。 此例中,R F的缺省值为1MW ,C RF为0.5pF。理想的光电二极管模型包括一个二极管和理想的电流源。给出这些值后,传输函数中的极点等于1/(2p R F C RF),即318.3kHz。改变R F 可在信号频响范围内改变极点。

光电显示

光电显示6 1、光电子技术是当今世界上竞争最为激烈的高新技术领域之一。光电显示技术是将电子设备输出的电信号转化为视觉可见的图像、图形、数码及字符等光信号。 2、所谓显示,就是指对信息的表示。在信息工程领域中,把显示技术限定为基于光电子手段产生的视觉效果,即根据视觉可识别的亮度、颜色,将信息内容以光电信号的形式传达给眼睛产生的视觉效果 3、1897年德国人布劳恩发明阴极射线管。全世界第一支球形彩色布劳恩管于1950年问世。虽然存在体积、重量方面的缺点,但是人们关心的屏幕上显示图像的质量,如亮度、对比度、分辨率、视野角、刷新频率和响应时间等综合性的视觉性能。 4、光电显示器件的分类:如果根据收视信息的状态分类,可分为以下几种:直观型、投影型、空间成像型。 5、从显示原理的本质来看,光电显示技术利用了发光和光电效应两种物理现象。所谓光电效应是指加上电压后物质的光学特性(如折射率、反射率、透射率等)发生改变的现象。因此,根据像素本身发光与否,又可将显示器间分为以下两大类,主动发光型和被动发光型。 6、光的基本特性:光是一种波长很短的电磁波其波长为380-780nm。频率*10^*10^8MHZ 7、光通量光源单位时间内的光量称为光通量,符号Φ,单位流明。 8、发光强度光源在给定方向的单位立体角辐射的光通量为发光强度,符号I单位坎德拉。 9、光照度单位受光面积上所接受的光通量称为光照度,符号E,单位勒克斯。 10、亮度垂直于传播方向单位面积上的发光强度称为亮度,符号L,单位 cd/m2。 11、视觉二重功能:人的视觉具有明视觉功能和暗视觉功能。 12、暗适应:当从明亮的地方进入黑暗环境,或突然关掉灯,要经过一段时间才能看清物体,这就是暗适应现象。明适应:从黑暗环境到明亮环境变化的逐渐习惯过程为~

光电传感器实验报告

实验报告2 ――光电传感器测距功能测试 1.实验目的: 了解光电传感器测距的特性曲线; 掌握LEGO基本模型的搭建; 熟练掌握ROBOLAB软件; 2.实验要求: 能够用LEGO积木搭建小车模式,并在车头安置光电传感器。能在光电传感器紧贴红板,以垂直红板的方向作匀速直线倒车运动过程中进行光强值采集,绘制出时间-光强曲线,然后推导出位移-光强曲线及方程。 3.程序设计: 编写程序流程图并写出程序,如下所示:

ROBOLAB程序设计: 4.实验步骤: 1)搭建小车模型,参考附录步骤或自行设计(创新可加分)。 2)用ROBOLAB编写上述程序。 3)将小车与电脑用USB数据线连接,并打开NXT的电源。点击ROBOLAB 的RUN按钮,传送程序。 4)取一红颜色的纸板(或其他红板)竖直摆放,并在桌面平面与纸板垂直 方向放置直尺,用于记录小车行走的位移。 5)将小车的光电传感器紧贴红板放置,用电脑或NXT的红色按钮启动小 车,进行光强信号的采样。从直尺上读取小车的位移。 6)待小车发出音乐后,点击ROBOLAB的数据采集按钮,进行数据采集, 将数据放入红色容器。共进行四次数据采集。 7)点击ROBOLAB的计算按钮,分别对四次采集的数据进行同时显示、平 均线及拟和线处理。 8)利用数据处理结果及图表,得出时间同光强的对应关系。再利用小车位 移同时间的关系(近似为匀速直线运动),推导出小车位移同光强的关 系表达式。 5.调试与分析 a)采样次数设为24,采样间隔为0.05s,共运行1.2s。采得数据如下所示。

b)在ROBOLAB的数据计算工具中得到平均后的光电传感器特性曲线,如图所示: c)对上述平均值曲线进行线性拟合,得到的光强与时间的线性拟合函数:

700234光敏传感器光电特性研究(实验34) (2)

光敏传感器光电特性研究实验报告 【一】实验目的及实验仪器 实验目的1.了解光敏电阻的基本特性,测出它的伏安特性曲线和光照特性曲线。 2.了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性 曲线。 3.了解硅光敏二极管的基本特性,测出它的伏安特性曲线和光照 特性曲线。 4.了解硅光敏电阻三极管的基本特性,测出它的伏安特性曲线和 光照特性曲线。 实验仪器FD-LS-B型光敏传感器光电特性实验仪,仪器由光敏电阻、光敏二极管、光敏三极管、硅光电池4种光敏传感器及可调电源、 电阻箱、数字电压表等组成。 【二】实验原理及过程简述 实验原理 1.光敏传感器的伏安特性 光敏传感器在一定的入射照度下,光敏元件的电流I与所加电压U 之间的关系称为光敏器件的伏安特性。改变照度则可以得到一族伏安特性曲线。它是传感器应用设计时选择电参数的重要依据。光敏电阻、硅光电池、光敏二极管、光敏三极管的伏安特性典型曲线如图5-34-1、图5-34-2、图5-34-3、图5-34-4所示。从上述4种光敏器件的伏安特性可以看出,光敏电阻类似一个纯电阻,其伏安特性线性良好,在一定照度下,电压越大光电流越大,但必须考虑光敏电阻的最大耗散功率,超过额定电压和最大电流都可能导致光敏电阻的永久性损坏。光敏二极管的伏安特性和光敏三极管的伏安特性类似,但光敏三极管的光电流比同类型的光敏二极管大好几十倍,零偏压时,光敏二极管有光电流输出,而光敏三极管则无光电流输出。硅光电池在零偏置时,流过PN结的电流I=Ip(反相光电流),故硅光电池在零偏置无光照时,输出电压为0,只有在硅光电池处于负偏置时,流过PN结的电流I=Ip-Is(反相饱和电流)=0,才能使硅光电池的输 出电压为零。在一定的光照度下,硅光电池的伏安特性呈非线性。

光电二极管检测电路的工作原理及设计方案

?光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。许多精密应用领域需要检测光亮度并将之转换为有用的数字信号。光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。 本文将分析并通过模拟验证这种典型应用电路的稳定性及噪声性能。首先探讨电路工作原理,然后如果读者有机会的话,可以运行一个SP IC E模拟程序,它会很形象地说明电路原理。以上两步是完成设计过程的开始。第三步也是最重要的一步(本文未作讨论)是制作实验模拟板。 1 光检测电路的基本组成和工作原理 设计一个精密的光检测电路最常用的方法是将一个光电二极管跨接在一个CMOS 输入放大器的输入端和反馈环路的电阻之间。这种方式的单电源电路示于图1中。 在该电路中,光电二极管工作于光致电压(零偏置)方式。光电二极管上的入射光使之产生的电流ISC从负极流至正极,如图中所示。由于CMOS放大器反相输入端的输入阻抗非常高,二极管产生的电流将流过反馈电阻RF。输出电压会随着电阻RF两端的压降而变化。 图中的放大系统将电流转换为电压,即 VOUT = ISC ×RF (1)

图1 单电源光电二极管检测电路 式(1)中,VOUT是运算放大器输出端的电压,单位为V;ISC是光电二极管产生的电流,单位为A;RF是放大器电路中的反馈电阻,单位为W 。图1中的CRF是电阻RF的寄生电容和电路板的分布电容,且具有一个单极点为1/(2p RF CRF)。 用SPICE可在一定频率范围内模拟从光到电压的转换关系。模拟中可选的变量是放大器的反馈元件RF。用这个模拟程序,激励信号源为ISC,输出端电压为VOUT。 此例中,RF的缺省值为1MW ,CRF为0.5pF。理想的光电二极管模型包括一个二极管和理想的电流源。给出这些值后,传输函数中的极点等于1/(2p RFCRF),即318.3kHz。改变RF可在信号频响范围内改变极点。 遗憾的是,如果不考虑稳定性和噪声等问题,这种简单的方案通常是注定要失败的。例如,系统的阶跃响应会产生一个其数量难以接受的振铃输出,更坏的情况是电路可能会产生振荡。如果解决了系统不稳定的问题,输出响应可能仍然会有足够大的“噪声”而得不到可靠的结果。 实现一个稳定的光检测电路从理解电路的变量、分析整个传输函数和设计一个可靠的电路方案开始。设计时首先考虑的是为光电二极管响应选择合适的电阻。第二是分析稳定性。然后应评估系统的稳定性并分析输出噪声,根据每种应用的要求将之调节到适当的水平。 这种电路中有三个设计变量需要考虑分析,它们是:光电二极管、放大器和R//C反馈网络。首先选择光电二极管,虽然它具有良好的光响应特性,但二极管的寄生电容将对电路的噪声增益和稳定性有极大的影响。另外,光电二极管的并联寄生电阻在很宽的温度范围内变化,会在温度极限时导致不稳定和噪声问题。为了保持良好的线性性能及较低的失调误差,运放应该具有一个较小的输入偏置电流(例如CMOS工艺)。此外,输入噪声电压、输入共模电容和差分电容也对系统的稳定性和整体精度产生不利的影响。最后,R//C反馈网络用于建立电路的增益。该网络也会对电路的稳定性和噪声性能产生影响。 2 光检测电路的SPICE模型

光电传感器的原理、功能特点等应用

光电传感器的原理、功能特点等应用 光电传感器是将光信号转换为电信号的一种器件。光电传感器一般由处理通路和处理元件两部分组成。其基本原理是以光电效应为基础,把被测量的变化转换成光信号的变化,然后借助光电元件进一步将非电信号转换成电信号。 其工作原理基于光电效应。光电效应是指光照射在某些物质上时,物质的电子吸收光子的能量而发生了相应的电效应现象。光电效应是指用光照射某一物体,可以看作是一连串带有一定能量为的光子轰击在这个物体上,此时光子能量就传递给电子,并且是一个光子的全部能量一次性地被一个电子所吸收,电子得到光子传递的能量后其状态就会发生变化,从而使受光照射的物体产生相应的电效应。光电传感器因为采用光学原理,因此其采集结果更精准、快速。 特点: 光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(可见及紫外镭射光)转变成为电信号的器件。光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电物理量,如光强、光照度、辐射测温、

气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此应用广泛。 工作原理: 由光通量对光电元件的作用原理不同所制成的光学测控系统是多种多样的,按光电元件(光学测控系统)输出量性质可分二类,即模拟式光电传感器和脉冲(开关)式光电传感器。模拟式光电传感器是将被测量转换 光电式传感器分类: ⑴反光板型光电开关 把发光器和收光器装入同一个装置内,在前方装一块反光板,利用反射原理完成光电控制作用,称为反光板反射式(或反射镜反射式)光电开关。正常情况下,发光器发出的光源被反光板反射回来再被收光器收到;一旦被检测物挡住光路,收光器收不到光时,光电开关就动作,输出一个开关控制信号。 ⑵对射型光电传感器,若把发光器和收光器分离开,就可使检测距离加大,一个发光器和一个收光器组成对射分离式光电开关,简称对射

相关文档
最新文档