苏教版数学高一-【学案导学设计】 必修1试题 1.2子集、全集、补集

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.2子集、全集、补集

课时目标 1.理解子集、真子集的意义,会判断两集合的关系.2.理解全集与补集的意义,能正确运用补集的符号.3.会求集合的补集,并能运用Venn图及补集知识解决有关问题.

1.子集

如果集合A的__________元素都是集合B的元素(若a∈A则a∈B),那么集合A称为集合B的________,记作______或______.任何一个集合是它本身的______,即A⊆A. 2.如果A⊆B,并且A≠B,那么集合A称为集合B的________,记为______或(______).3.______是任何集合的子集,______是任何非空集合的真子集.

4.补集

设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的______,记为______(读作“A在S中的补集”),即∁S A={x|x∈S,且x∉A}.

5.全集

如果集合S包含我们所要研究的各个集合,这时S可以看做一个______,全集通常记作U.

集合A相对于全集U的补集用Venn图可表示为

一、填空题

1.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是________.2.满足条件{1,2}M⊆{1,2,3,4,5}的集合M的个数是________.

3.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=________.

4.已知全集U=R,集合M={x|x2-4≤0},则∁U M=________.

5.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是_____________________________.

6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}

之间的关系是________.

7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________. 8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=________,∁

B=______,∁B A=________.

U

9.已知全集U,A B,则∁U A与∁U B的关系是____________________.

二、解答题

10.设全集U={x∈N*|x<8},A={1,3,5,7},B={2,4,5}.

(1)求∁U(A∪B),∁U(A∩B);

(2)求(∁U A)∪(∁U B),(∁U A)∩(∁U B);

(3)由上面的练习,你能得出什么结论?请结事Venn图进行分析.

11.已知集合A={1,3,x},B={1,x2},设集合U=A,求∁U B.

能力提升

12.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.

13.已知集合A={x|1

1.子集概念的多角度理解

(1)“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即由任

意x∈A能推出x∈B.

(2)不能把“A⊆B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,

但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.

2.∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且

x∉A},补集是集合间的运算关系.

3.补集思想

做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.

§1.2子集、全集、补集

知识梳理

1.任意一个子集A⊆B B⊇A子集 2.真子集A B B A

3.空集空集 4.补集∁S A 5.全集

作业设计

1.P Q

解析∵P={x|y=x+1}={x|x≥-1},Q={y|y≥0},

∴P Q.

2.7

解析M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.

3.{3,9}

解析在集合U中,去掉1,5,7,剩下的元素构成∁U A.

4.{x|x<-2或x>2}

解析∵M={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.

5.②

解析由N={-1,0},知N M.

6.S P=M

解析运用整数的性质方便求解.集合M、P表示成被3整除余1的整数集,集合S 表示成被6整除余1的整数集.

7.-3

解析∵∁U A={1,2},∴A={0,3},故m=-3.

8.{0,1,3,5,7,8}{7,8}{0,1,3,5}

解析由题意得U={0,1,2,3,4,5,6,7,8},用Venn图表示出U,A,B,易得∁U A={0,1,3,5,7,8},∁U B={7,8},∁B A={0,1,3,5}.

9.∁U B∁U A

解析 画Venn 图,观察可知∁U B ∁U A .

10.解 (1)∵U ={x ∈N *|x <8}={1,2,3,4,5,6,7},A ∪B ={1,2,3,4,5,7},A ∩B ={5},∴∁U (A ∪B )={6},∁U (A ∩B )={1,2,3,4,67}.

(2)∵∁U A ={2,4,6},∁U B ={1,3,6,7},∴(∁U A )∪(∁U B )={1,2,3,4,6,7},(∁U A )∩(∁U B )={6}. (3)∁U (A ∪B )=(∁U A )∩(∁U B )(如左下图);∁U (A ∩B )=(∁U A )∪(∁U B )(如右下图).

11.解 因为B ⊆A ,因而x 2=3或x 2=x . ①若x 2=3,则x =±3.

当x =3时,A ={1,3,3},B ={1,3},此时∁U B ={3};

当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}. ②若x 2=x ,则x =0或x =1.

当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1;

当x =0时,A ={1,3,0},B ={1,0},U =A ={1,3,0},从而∁U B ={3}. 综上所述,∁U B ={3}或{-3}或{3}. 12.解 ∵∁U A ={5},∴5∈U 且5∉A .

又b ∈A ,∴b ∈U ,由此得⎩

⎪⎨⎪⎧

a 2+2a -3=5,

b =3.

解得⎩⎪⎨⎪⎧ a =2,b =3或⎩⎪⎨⎪⎧

a =-4,

b =3

经检验都符合题意. 13.解 (1)当a =0时,A =∅,满足A ⊆B . (2)当a >0时,A ={x |1a

}.

又∵B ={x |-1

1

a

≥-1,2

a ≤1,

∴a ≥2.

(3)当a <0时,A ={x |2a

a

}.

相关文档
最新文档