单晶结构解析总结
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.lst
2.36 11.57 2.16 1.48 0.85 1.12 7.93 1.22
h k l
0 1 -4 -6 -16 -2 2 -8
Fo^2
Fc^2
13.30 25827.84 122.96 60.32 514.28 81.20 2229.44 954.47
Delta(F^2)/esd Fc/Fc(max) Resolution(A)
.ins
• XP 重复操作,直到找出所有非H原子 用直接法或帕特森法经常可以得到大部分
非氢原子的坐标。
• 原子排序(用EDIT或XP的SORT)
• 编辑INS文件,加入BOND $H 和ANIS;
• 运行XL,进行各向异性修正; • 加H(或差值F峰合成或理论加H)。
wk.baidu.com
加H方法 (理论加氢和Fouier加H 根据氢键加H) • 加H时间 anis精修后,也可提前 • 对C、N可理论加H,指令为HADD • 检查加H的正确性 • 加H类型 • 对其它原子,则需采用Fourier加H • 如果非N、C原子仍不能找出H原子,可提高 PLAN后的数值(残峰多一点)
几个参数:
•
• •
信噪比I/ (运行XPREP和XS时可以看到)
诊断指标(Figure of merit,简称FOM) 综合诊断指标(CFOM) (应尽可能小) (运行XPREP 时可以看到)
Rsigma Rsigma = [(Fo2)]/ [Fo2]/
为衍射数据的背景强度(Fo2)之和与峰强度值之和的比值。 它是衍射数据整体质量的一种反映。 如果Rsigma 大于0.1,则可能是数据太弱,也可能是衍射
结果输出与检查(产生晶体学表)
• Xcif (产生TEX文件)
• 或(用EDIT打开CIF文件,输入晶系、空间群、
颜色、形状、总衍射点数和Rint等参数)
• Checkcif
http://checkcif.iucr.org/ • 画图 (分子结构图、堆积图、配位图等)
限制性精修和强制性精修
其它文件
res lst plt cif fcf pcf tex
xs、xl、refine产生的文件
记录xs、xl、refine过程和结果的文件
XP中做的图形文件
晶体学信息文件
结构因子文件
记录仪器型号、晶体外观等的文件 晶体结构报表文件
常用的XS和XL指令 指令 含 义 ACTA 产生cif文件 AFIX 将原子坐标强制性地固定在指定位臵上, 或在指定位臵上产生原子 ANIS 将各向同性换成各向异性精修 BOND 计算键长、键角(加$H包括H的键长、键角) BIND 计算指定原子对的键长、键角 CONF 计算扭转角 DELU 限制指定原子具有相似的位移参数 DFIX 限定指定原子对间的距离 EADP 给两个或多个原子指定相同的位移参数
wR和R1值小于0.05。通常,R值越小,说明晶体结构
正确,衍射数据质量高。
拟合度S (goodness-of-fit-on),也叫GOOF值
基于Fo2 精修时,如果权重方案合适、结构正确,S值应该接
近于1.0,如果S值超出1.0±0.2,可以采用更加合理的权重 方案加以改善。
• 在数据还原与结构精候选过程中两个重要的R 因子:Rint
单晶结构分析电子教案
第五章 用SHELXTL程序 进行结构分析的方法
H H HO HO HO OH O
H H H
OH
一 、 晶体学基本常识介绍
1. 单晶 2. 单晶的培养 3. 晶胞参数
4. 七大晶系、14种点阵、32个点群、
230个空间群
1. 晶体的选择与安置
2. 测定晶胞数据与基本对称性
二
3. 测定衍射强度数据
指令 END EQIV ESEL EXTI EXYZ FLAT FMAP FREE FVAR HFIX HKLF HTAB
含
义
指令输入结束 提供分子内或分子间键合原子的对称操作码 限制E值的下、上限 对晶体消光效应参数进行精修 让两个或多个原子具有相同的坐标 限制指定原子在相同的平面上 所计算Fourier图的类型
C 计算/指认并精修氢原子 对于具有确定立体结构的有机基团,可采用 理论加氢;对于无法理论加氢的,如水分子,可 从差值Fourier图中找出氢原子,参加精修的情况 视 数据的质量而定
•理论加氢的方法
退出XSHELL,在Edit-.ins文件的命令区,添加指令:
HFIX mn 需加氢原子名(产生AFIX固定)
• 接下来是,修正至收敛,找H键(必要时用 Platon程序协助),计算平面性、二面角、pi-pi
作用距离,产生晶体学CIF文件及晶体学表。
• 在转换成晶体学表之前必须转到WIN窗口运行
WinGX之Platon Validate检查一下结构的合理性,
并逐一解决它。
Ins文件的完善
• ACTA
(产生cif文件)
参数:
1. (mm1 or cm1 ) 线性吸收系数 (linear absorption coefficient)为X射线束以 x路径通过晶体时被减弱的程度系数。
•
2. Rint由所有等效衍射点的平均差别计算。
它反应吸收校正效果的好坏,如果有充足的等效点,
进行合适的吸收校正后,应该有Rint 5% (P65 和 P101) Rint越小(如0.05),表明等效衍射点的强度在实验误差 范围内确实相等;相反,如果Rint达到0.1左右,表明 等效衍射点的强度其实并不相等,引起的主要原因: (1) 衍射数据的精度不好,如数据整体太弱;
指令
含
义
SYMM 所属空间群的对称操作 TEMP 衍射数据收集的温度 TITL 样品的编号(或名称)和空间群
UNIT
晶胞中每种原子的总个数
WGHT 指定所用权重
ZERR 晶胞中分子个数和晶胞参数的标准偏差
三、 SHELXTL结构分析的步骤
1.项目的设立 打开SHELXTL程序:点project 输入文件名,查找到hkl 文件并打开 new,
数据的处理有错。
改善方法:选用质量好、较大的晶体重新收集衍
射数据。
(2) 正确给出化合物分子式或元素类型
(3) 给出文件名
2、SHELXS(或XS)解初模型
操作XPREP产生的.ins和.hkl文件 产生 .res(结果文件) 和
.lst文件(记录精修过程)
注意:直接法和重原子法之间的切换
XP(投原子) (1) 读取XS和XL的结果.res文件,观看fourier图形, 重新命名原子,重写供进一步精修XL操作的ins 文件。 (2) 看图、画图
4、XL (各向同性修正)(或差值F峰合成);
(1) 计算更新后的.ins文件或前边XL精修的结果,产生新 的.res(结果文件)和.lst文件(记录精修过程)
(2) 精修的参数 a 原子坐标(general positions
b 原子的位移参数(atomic displacement parameters)
c 一个总标度因子 一个将实验中获得的衍射强度数 据校正为理论计算得到的F(000)一致的比例参数 d 其它可能参加的精修参数 无序结构中的占有率、消光效应参数、Flack参数等
H原子一般不参与精修,在结构精修中,往往被挷在与
它键合的原子(母原子)上,赋于是母原子1.2 ~1.5倍的 各向同性原子位移参数
TITL 040518b in P2(1)/n ……………………………. SFAC C H N S Sn Cl UNIT 80 92 8 8 4 12 omit 0 3 4 omit 1 0 1 omit -4 3 3 omit -6 4 6 omit -16 5 2 L.S. 8 EXTI 0.00224 ACTA BOND FMAP 2 PLAN 20 WGHT 0.028000 1.235100 FVAR 0.412890
和Rsigma • 引起Rint偏大的原因有:数据精度不好;吸收校正没做好; 定错晶系 • Rint 0.1,所谓等效衍射点就不等效,重新做吸收校正 或重新收录 • 等效衍射点在衍射强度数据中是重要的,不是多余的!
• Rsigma偏大(大于0.1),可能是数据太弱;也可能是数
据处理有错
ins文件中经常用到的命令 • OMIT 在XS或XL计算过程中,忽略所指定的在一定 角度范围、信/噪比、或特定衍射指标的衍射 点,如OMIT 50将忽略θ>25º的所有衍射点, OMIT 123将忽略衍射指标为123的衍射点 • ESEL 设置用于直接法计算的最小E值。缺省值为1.2。 假如直接法解不出合理的模型,可以尝试 ESEL 0.9 或ESEL 1.0, 通过减低E值的下限, 增加用于直接法计算的相对强点的数目
5.03 4.65 4.31 4.31 3.99 3.68 3.67 3.64 0.013 0.580 0.040 0.028 0.082 0.033 0.171 0.112
3 4 69.18 0 1 22003.93 3 3 195.94 4 6 -1.27 5 2 -31.82 4 14 0.16 0 0 2576.75 3 11 755.49
•删除坏点的方法: 每次精修完后,程序都 会自动产生50个坏点, 写在lst文件中,查到后可把它们的h、k、l 值加上 OMIT指令写在ins文件中,继续精修即可,如:
Most Disagreeable Reflections (* if suppressed or used for Rfree)
7. 结果的解释与表达
分子的几何数据、结构图等
常用的吸收校正方法 (P6668) • 数字吸收校正 (numeric absorption correction) • 基于 -扫描的经验吸收校正 (empirical absorption based on - scans) • 多次扫描吸收校正 (multi-scans absorption corrections)
不计算指定原子对的键长、键角 全比例系数 限制H原子在理想位置上 衍射数据的格式 计算氢键
指令 ISOR L.S. LATT
含 义 限制指定原子的位移参数类似于各向同性 指定XL中用最小二乘法进行精修的轮数 晶格的类型.依次为:P I R F A B C,无心为负值
MOVE 移动或转换坐标 MPLA 计算平面 OMIT PART PLAN SFAC SIMU SIZE 忽略指定的衍射点或限定theta角范围 划分成键原子的范围(用于无序结构) 计算和列出Q峰的数目 晶体中存在的原子的种类 限制指定范围内的原子有相同的位移参数 晶体的大小
a, b, c, , 晶系,Laue群 系列hkl, I, (I)等
晶 体 结 构 分 析 的 步 骤
4. 衍射数据的还原与校正
系列hkl, Fo2, (Fo)等
5. 结构解析: 直接法与Patterson法 Fourier合成
部分或全部原子坐标
6. 结构模型的精修
全部原子坐标和位移参数等
m 是一或两位数,指定氢的类型: =1 叔-H, =2 仲-H, =3(或13) 伯-H, =4 芳-H, =8(或14) X-O-H, =9 X=CH2或X-NH2, =15 笼状B-H
(2) 吸收校正没有做好,导致在不同方向测量的等效衍
射数据强度明显不相等; (3) 定错晶系
注意: 在衍射数据还原完成后或结构解析初期,就
应该检查Rint的数值,考虑是否需要改善吸收校
正和是否定错了晶系和空间群。
二、直接法(或重原子法)解析晶体
• 1、XPREP
(1) 操作.raw和hkl文件,产生ins和.hkl文件,供XS和XL用 此处可选择或给出空间群 (原则:就高不就低) 空间群的对错可借助于platon程序检查、校正
INS文件的建立和更新
结构解析和精修的过程,是ins文件建立和 不断更新的过程,这主要是下列过程实 现的: xprep、xshell—refine、xl、xp、edit、 copy
参数
R1 残差因子
衡量结构模型与真实结构的差异
wR或wR2 加权重的残差因子(计算方法的差异)
数据好的结构,一般可以可以精修到wR2 <0.15,而
• Size (晶体外形与吸收校正) • TEMP • HTAB (在lst文件中查找结果,检查是否合理,再在ins文 1 2)
件中手动HTAB • EQIV • Z值修改 • BOND $H
Ins文件的完善 • PLAN 20 • conf
• size 0.42 0.35 0.15
• TEMP
• WGHT 权重方案