第七章 线性离散系统的分析与校正(B

合集下载

第7章线性离散控制系统的分析

第7章线性离散控制系统的分析

分别称为采样频率及采样角频率,其中T代表采 样周期。
连续性时间函数经采样开关采样后变成重复 周期等于采样周期的时间序列。该时间序列通 道在连续型时间函数上打*号来表示,如图7-2 所示。这种时间序列属于离散型时间函数。
在图7-1中,两个采样开关的动作一般是同步 的,因此,图7-l所示离散系统方块图可等效地简 化成图7-3。
Eh
(s)
k 0
e(k T )e kTs
1 eTs s
Eh (s)
1 eTs s
E * (s)
Gh (s)
Eh (s) E * (s)
1 eTs s
零阶保持器频率特性(如图7-11)
Gh
(
j
)
1
e jT
j
T
sin( T (T /
/ 2) 2)
e
jT
/
2
图7-11 零阶保持器频率特性
零阶保持器具有如下特性
通常E*(s)的全部极点均位于S平面的左半部, 因此可用jω代替上式中的复变量s,直接求得采样信 号的傅氏变换:
E *
(
j )
1 T
E[
n
j(
n s
)]
上式即为采样信号的频谱函数。它也反映了离散 信号频谱和连续信号频谱之间的关系。
一般说来,连续函数的频谱是孤立的,其带宽 是有限的,即上限频率为有限值 (见图7-8(a))。
图7-5:数字控制系统结构图
在数字控制系统中,具有连续时间函数形式的 被控信号y(t)或c(t) (模拟量)受控于具有离散时间函 数形式的控制信号u* (t)(数字量)。既然模拟量需要 反应数字量,这中间便需要有数-模转换环节。连 续的被控制信号y(t)或c(t)经反馈环节反馈到输入端 与参考输入相比较,从而得到e(t)并经A/D得到偏 差信号e* (t) 。

第七章(3-7) 线性离散系统的分析与校正

第七章(3-7) 线性离散系统的分析与校正

2)离散系统的型别与静态误差系数法
采样器不影响脉冲传递函数的极点
a).
b).
c).
教材P358 表7-5
(熟记)
7-6. 离散系统的动态性能分析
时域法、根轨迹法和频域法 ,其中 时域法最简单。本章介绍时域法。
1.离散系统的时间响应 2.采样器和保持器对动态性能的影响 3.闭环极点与动态响应的关系
离散系统输入输出变量及其各阶差分的等式
含义: 对于一般的线性定常离散系统, k 时刻的输出 c(k ) ,不仅与 k 时刻的输入 r (k ) 有关,还与 k 时刻以前的输入 r (k 1), r (k 2),... 有关,同时还与 k 时刻以前的输 出 c(k 1), c(k 2),... 有关。 回忆线性定常连续系统数学模型
C (s) GR (s) GH (s)C (s)
RG ( z ) C ( z) 1 GH ( z )
无法分离出 R( z ) 得不到脉冲传递函数
7-5. 离散系统的稳定性与稳态误差
1.S域到Z域的映射 2.离散系统稳定性的充分必要条件 3.离散系统的稳定性判据 4.采样周期与开环增益对稳定性的影响 5.离散系统的稳态误差
E ( s) R (s) 1 G1 ( s ) HG 2 ( S )



输出信号的采样拉氏变换 进行Z变换,证得
G2 ( s)G1 ( s) R ( s) C ( s) G2 ( s)G ( s) E ( s) 1 G1 ( s) HG2 ( S )
1

可以导出采样器为不同配置形式的其它闭环系统脉冲传递函数。但只要
误差信号e(t)处没有采样开关,则输入采样信号r*(t)就不存在,此时不能写出

胡寿松《自动控制原理》课后习题及详解(线性离散系统的分析与校正)【圣才出品】

胡寿松《自动控制原理》课后习题及详解(线性离散系统的分析与校正)【圣才出品】
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 7 章 线性离散系统的分析与校正 7-1 试根据定义 确定下列函数的 和闭合形式的 E(z): 解:(1)由题意可得

,可得:
(2)将
展成部分分式得:
其中,
则有
经采样拉氏变换得:

,可得:

7-2 试求下列函数的 z 变换:

将 z 1 代入到 D z ,得
1 由劳斯稳定判据可知使系统稳定的 K 值取值范围是 0 K 1.6631。
解:(1)对输入 对 作 z 变换得: 则有: 用幂级数法可得
图 7-3 开环离散系统 作 z 变换得:
所以
(2)由题可知: 且有
则 所以

10 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台

7-14 试判断下列系统的稳定性: (1)已知闭环离散系统的特征方程为
解:(1)由题可知
图 7-4 离散系统
z 域特征方程为: 特征值为: 由于 z1 1,因此闭环系统不稳定。
将 z 1 代入到 D z ,得 特征方程为:
1 特征值为: 由于 2 0 ,故闭环系统不稳定。 (2)特征方程为
12 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
则有:

7-9 设开环离散系统如图 7-1 所示,试求开环脉冲传递函数 G(z)。
解:系统 a
图 7-1 开环采样系统
系统 b
6 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台

7-10 试求图 7-2 闭环离散系统的脉冲传递函数 Φ(z)或输出 z 变换 C(z)。

《自动控制原理》第七章 线性离散系统的分析与校正

《自动控制原理》第七章 线性离散系统的分析与校正

第七章线性离散系统的分析与校正工业过程控制越来越多的使用计算机,从微观上看计算机是非连续的。

计算机采集数据和发生控制指令都有一定的时间间隔。

基于工程实践的需要,作为分析与设计计算机控制系统的基础理论,离散系统理论的发展非常迅速。

离散系统与连续系统相比,既有本质上的不同,又有分析研究方面的相似性。

利用z变换法研究离散系统,可以把连续系统中的许多概念和方法,推广应用于线性离散系统。

本章主要讨论线性离散系统的分析和校正方法。

首先建立信号采样和保持的数学描述,然后介绍z变换理论和脉冲传递函数,最后研究线性离散系统稳定性和性能的分析与校正方法。

在系统校正部分,我们将主要讨论数字机控制系统的校正方法。

7-1 离散系统的基本概念如果控制系统中的所有信号都是时间变量的连续函数,换句话说,这些信号在全部时间上都是已知的,则这样的系统称为连续时间系统,简称连续系统;如果控制系统中有一处或几处信号是一串脉冲或数码,换句话说,这些信号仅定义在离散时间上,则这样的系统称为离散时间系统,简称离散系统。

通常,把系统中的离散信号是脉冲序列形式的离散系统,称为采样控制系统或脉冲控制系统;而把数字序列形式的离散系统,称为数字控制系统或计算机控制系统。

1.采样控制系统一般说来,采样系统是对来自传感器的连续信息在某些规定的时间瞬时上取值。

例如,控制系统中的误差信号可以是断续形式的脉冲信号,而相邻两个脉冲之间的误差信息,系统并没有收到。

如果在有规律的间隔上,系统取到了离散信息,则这种采样称为周期采样;反之,如果信息之间的间隔是时变的,或随机的,则称为非周期采样,或随机采样。

本章仅讨论等周期采样。

在这一假定下,如果系统中有几个采样器,则它们应该是同步等周期的。

在现代控制技术中,采样系统有许多实际的应用。

例如,雷达跟踪系统,其输入信号只能为脉冲序列形式;又如分时系统,其数据传输线在几个系统中按时间分配,以降低信息传输费用。

在工业过程控制中,采样系统也有许多成功的应用。

自动控制原理

自动控制原理

c(k) a1c(k 1) a2c(k 2) L an1c(k n 1) anc(k n) b0r(k) b1r(k 1) L bmr(k m)
n
m
即: c(k) aic(k i) bjr(k j)
i 1
j0
如果ai和bi均为常系数,上式为常系数线性差分 方程。由于m≤n,上式称为n阶线性常系数差分方程。
10
(2)Z变换法求解 给定差分方程后,先用z变换的实数位移定理对
差分方程取z变换,得到z的代数方程,再对代数方程 取z反变换,即得脉冲序列c(k)。
例:差分方程c(k+2)+3c(k+1)+2c(k)=0,初始条件: c(0)=0,c(1)=1
解:对上式两边取拉氏变换:
Zc(k 2) z2C(z) z2c(0) zc(1) z2C(z) z
相应后移 k 个采样周期,成为 K[(n k)T] 。
15
线性定常离散系统中,如果输入采样信号为:
r*(t) r(nT ) (t nT )
n0
则系统的输出响应序列为:
c(nT ) K[(n k)T ]r(kT )
k 0
K (kT )r[(n k)T ]
k 0
c(nT) K(nT)*r(nT)
30
(4) 输入端无采样的情况
r(t)
d(t)
d*(t)
C(t)
G1(s)
s
G2(s)
G(z)
C(z) G2(z)D(z) G2(z)G1R(z)
因为输入信号不是独立的,故不能写出 系统的脉冲传递函数,只能写出输出信号的z 变换形式。
31
5、闭环系统脉冲传递函数
(z)
r(t)

离散系统的分析与校正

离散系统的分析与校正

X(-k T 0 ) X[(1 - K)T0 ] X(-T 0) 0
-(k n ) Z[X[(t - KT0 )] X(0)Z-k X(T0 )Z-(k 1) X(n T )Z 0
Z -k [ X(0) X(T0 )Z 1 X(n T0 )Z n ] Z -k X( Z ) 证毕
而脉冲强度则由nT0时刻的连续函数e (nT0 )来确定
2、采样定理(Shannon)
如果采样角频率大于或等于2m ,即s 2m , 则经采样得到的 脉冲序列能无失真地再恢复到原连续信号.
m 连续信号频谱的上限频率 2 对s 2m ,有 2 T 2T
0 m
| e ( j ) |
证明:由Z变换定义
n Z[X(t - k T )] X ( n T k T ) Z 0 0 0 n0 -1 -k -(k 1) X(-k T ) X(T -k T )Z X(0)Z X(T )Z 0 0 0 0 -(k n ) X(n T 0 )Z
K -1
证明:Z[X(t kT0 )] X ( nT0 kT0 ) Z n X (kT0 ) X [(k 1)T0 ]Z 1 X [(k 2)T0 ]Z 2 ....... X ( nT0 kT0 ) Z n ...... Z k [ X (kT0 ) Z k X [(k 1)T0 ]Z ( k 1) ......] Z k { X (0) X (T0 ) Z 1 ...... X [(k 1)T0 ]Z ( k 1) X (kT0 ) Z k X [( K 1)T0 ]Z ( k 1) ...... X (0) X (T0 ) Z 1 ...... X [(k 1)T0 ]Z ( k 1) ]} Z [ X ( Z ) X (nT0 ) Z n ]

离散线性系统的分析和校正

离散线性系统的分析和校正

ROC Rx
例:求x[k]=(k+1)aku[k]旳z变换及收敛域
解:
a k u[k ] Z 1 , z a 1 az 1
利用z域微分特征,可得
d1 Z{ka k u[k ]} z 1 az 1
dz
利用z变换旳线性特征,可得
az 1
,z a
(1 az 1 ) 2
(k 1)aku[k ] Z
脉冲响应
4
1 采样过程
➢ 理想单位脉冲序列 ➢ (载波) ➢ 幅值调制过程
前提条件:脉冲序列从0开始
2 采样过程旳数学描述
➢ (1)采样信号旳拉式变换
(2) 采样信号旳频谱
滤波δT(t器) = 旳宽度满足什cn么e
jnst
n
条件时能从
E* ( j) 得到
ωEs=(2πj/T为)采样?角?!频率,
0
k
0
k
Z{x[k 1]u[k ]} z 1 X (z) x[1]
Z{x[k 2]u[k ]} z 1Z{x[k 1]u[k ]} x[2]
z 2 X ( z) z 1x[1] x[2]
依此类推 可证上式成立
例:求RN[k]=u[k]-u[k-N]旳z变换及收敛域
解:
u[k ] Z 1 , z 1 1 z 1
2. m<n,分母多项式在z=u处有l阶重极点
nl
X (z)
i 1
1
ri pi z 1
l 1 i0
qi (1 uz 1 )l i
qi
1
di
(u)i i! d(z 1)i
(1 uz 1)l X (z)
zu ,
i 0,l 1
4、单边z反变换

自控原理 第七章 线性离散系统的分析与校正

自控原理 第七章 线性离散系统的分析与校正

在上述对连续对象实现离散控制的场合,采 样是必丌可少的环节。由连续信号获得相应 的时间上离散的脉冲序列信号,需要采用一 种类似开关的装置对连续信号迚行采样,见 图的采样开关S。
开关因开合将连续偏差信号e(t)采样为脉冲 序列形式的信号e*(t):e(t0)、e(t1)、 e(t2)、...ห้องสมุดไป่ตู้故称系统为采样控制系统或脉冲 控制系统。
(a)连续信号幅频谱
连续信号f(t)的幅频谱单一 ,高频分 量的幅值随着频率的升高而逐渐减小, 即存在一个频率上界值max使得当 ||>max时,|F(j)|0,
(b) 采样信号幅频谱
主分量F(j)/Ts不F(j)的幅频 谱形状一致,幅值为F(j)的 1/Ts倍,F(j)/Ts包含了全部信 息。
s
f * ( t ) f ( t ) Ts ( t ) f ( t ) ( t kTs )
k
f ( kTs ) ( t kTs ),
k 0

t t0
(8 - 1)
• 方便的计时起点为t0=0,且f(t)对于t<t0=0(除非特别说明,本章 均为此情况), Ts: 采样周期; (tkTs)为出现在时刻t=kTs且强度 为1的理想单位脉冲函数;f(kTs)为第k个采样时刻的采样值,反 映采样信号脉冲的强度,简记为f(k),与连续信号f(t)对应,f(k) 称为离散信号。
s 2max时,
• 各分量F[j(-ks)], k=0, 1, 2,...,互不重叠; • 将f*(t)中频率||>max的部分滤除即可得到频谱与F(j)形状一 致的信号,从而可不失真地复原信号; • 若能构造一理想低通滤波器G(j),使其在频段(s/2,s/2)内 频率特性为G(j)=Ts而其余频段内恒为0,则f*(t)经G(j)滤波 后即为原信号f(t),其中g(t)为滤波器的单位脉冲响应。

第7章_线性离散系统的分析与校正方法

第7章_线性离散系统的分析与校正方法
(1) 在连续系统中的一处或几处设置采样开关,对被控对象进行断续控制; (2) 通常采样周期远小于被控对象的时间常数; (3) 采样开关合上的时间远小于断开的时间; (4) 采样周期通常是相同的。
结束
(7-7)
§ 7-1 离散采样系统的基本概念
数字控制系统中的两个关键部件: A/D转换器:把连续的模拟信号转换为时间上离散的、幅值上整量化的数字 信号(二进制的整数),A/D转换器可以认为采样周期为 TS 的理想采样开 关。
本章主要内容 本章在阐述了离散控 制系统相关基本概念 后, 学习了采样过程 及采样定理 、 保持器 的作用和数学模型、z 变换的定义和求法 、 基本性质和z反变换的 求 法 、线性差分方程 的建立及其解法 、脉 冲传递函数的概念及 求 取 方 法、离散系统 时 域 分 析 方 法 。
本章重点 ★了解线性离散系统的基本概念和 基本定理,把握线性连续系统与线 性离散系统的区别与联系; ★熟练掌握Z变换的定义、性质和 逆Z变换方法; ★了解差分方程的定义,掌握差分 方程的解法; ★了解脉冲传递函数的定义,熟练 掌握开环与闭环系统脉冲传递函数 的计算方法; ★掌握线性离散系统的分析方法和 原则。
1 1 1 1 z z a b 1 e bT z 1 1 e aT z 1 a b z e bT z e aT
结束
(7-25)
§7.3
一般外推公式:
结束
(7-16)
§ 7-2 信号的采样与保持
5.1零阶保持器ZOH
当给零阶保持器输入一个理想单位脉冲 (t ) ,则单位脉冲 响应(输出)为:
g h (t ) 1(t ) 1(t T )
对应的L变换

精品文档-自动控制原理(王春侠)-第七章

精品文档-自动控制原理(王春侠)-第七章
4
该系统借助于指针、凸轮对连续误差信号e(t)进行采样, 将连续信号转换成了脉冲序列e*τ(t),凸轮就成了采样器(采 样开关),如图7-2(b)所示。有了诸如指针、凸轮这样的元件 后,使得原来的系统至少有一处存在离散信号,这时系统成为 采样控制系统。
在炉温控制过程中,如果采用连续控制方式,则无法解决 控制精度与动态性能之间的矛盾。因为该系统中工业炉是具有 时滞特性的惯性环节,其滞后时间可长达数秒甚至数十秒,时 间常数可长达千秒以上。当增大开环增益以提高系统的控制精 度时,由于系统的灵敏度相应提高,在炉温低于给定值的情况 下,电动机将迅速增加阀门开度,给炉子供应更多的加热气体。
控制计算机的5个输出接口分别为主控输出口、前馈输出 口和3个误差角θe=θi-θo显示口。主控输出口由12位D/A 转换芯片DAC1210等组成,其中包含与系统误差角θe及其一阶 差分Δθe成正比的信号,同时也包含与系统输入角θi的一阶 差分Δθi成正比的复合控制信号,从而构成系统的模拟量主 控信号,通过PWM放大器驱动伺服电机,带动减速器与小口径 高炮,使其输出转角θo跟踪数字指令θi。
数字信号发生器给出的16位数字输入信号θi经两片8255 芯片的口A进入控制计算机,系统输出角θo(模拟量)经 110XFS1/32多极双通道旋转变压器和2×12XSZ741 A/D变换器 及其锁存电路完成绝对式轴角编码的任务,将输出角模拟量 θo转换成二进制数码粗、精各12位,该数码经锁存后,取粗 12位、精11位由芯片8255的口B和口C进入控制计算机。然后 经计算机软件运算,将精、粗合17 并,得到16位数字量的系统输
27
图7-9 数字控ห้องสมุดไป่ตู้系统的典型结构图
28
3. 离散控制系统的特点 采样和数字控制技术在自动控制领域得到越来越广泛

自动控制理论第7章线性离散系统的分析与校正

自动控制理论第7章线性离散系统的分析与校正
自动控制理论第7章线性离散系统 的分析与校正
目录
• 引言 • 线性离散系统的数学模型 • 线性离散系统的稳定性分析 • 线性离散系统的性能分析 • 线性离散系统的校正 • 线性离散系统的设计实例
01 引言
线性离散系统的重要性
01
在现代工业控制中,线性离散系 统广泛应用于过程控制、数据通 信、计算机控制系统等领域。
05 线性离散系统的校正
串联校正
串联超前校正
通过在系统环路中串联一个超前 校正器,提高系统的相位裕度, 减小系统的稳态误差。
串联滞后校正
通过在系统环路中串联一个滞后 校正器,减小系统的相位裕度, 提高系统的抗干扰能力。
并联校正
并联超前校正
通过在系统环路中并联一个超前校正 器,提高系统的相位裕度,减小系统 的稳态误差。
总结词:通过串级控制实现液位的精确 控制
同时,副控制器根据储水池的液位变化 ,实时调整水泵的运行状态,以实现液 位的精确控制。
主控制器根据液位传感器的信号,控制 调节阀的开度,以调节水泵的输出流量 ,从而控制储水池的液位。
详细描述
液位控制系统由液位传感器、调节阀、 水泵和储水池组成。
设计实例三:电机控制系统
03 线性离散系统的稳定性分 析
稳定性的定义
内部稳定性
系统在受到小扰动后能 够恢复到原平衡状态的 性能。
外部稳定性
系统在受到大扰动后能 够保持稳定输出的性能。
绝对稳定性
系统在任何情况下都能 保持稳定的性能。
劳斯-赫尔维茨准则
01
劳斯-赫尔维茨准则是判断线性时不变系统稳定性的 充分必要条件,适用于离散系统。
Z变换
Z变换是分析线性离散系统的重要工 具,它将离散时间信号转换为复平面 上的函数。

第七章 线离散系统的分析与校正

第七章 线离散系统的分析与校正

第七章线性离散系统的分析与校正一、教学目的和要求了解离散系统的基本概念;信号的采样与保持。

二、重点、难点信号的采样与保持。

三、教学内容:引入连续系统与离散系统的区别,对于计算机控制系统的分析与设计。

一离散系统的基本概念离散系统:系统中有一处或几处信号是一串脉冲或数码,称之为离散系统。

学习离散系统分析设计方法的目的:用于计算机控制系统的分析、设计。

周期采样:如果在有规律的间隔上,系统取到了离散信息,则这种采样成为周期采样。

反之,如果信息之间的间隔是时变的,或随机的,则称为非周期采样,或随机采样。

采样系统的典型结构如图7-1所示为典型的采样控制系统原理框图,图中,e(t)是连续信号,s为采样开关, e*(t) 离散信号。

图7-1采样控制系统采样:在采样控制系统中,把连续信号转变为脉冲序列的过程称为采样过程,简称采样。

实现采样的装置称为采样器或采样开关(s)。

在实际系统中,由于对象的控制往往是连续的,因此脉冲序列信号经过脉冲控制器实现各种控制算法(相当于连续系统中的校正) 校正仍为脉冲序列信号,因此必须将其转化为连续的模拟信号,保持器即可实现这功能。

所以采样器和保持器是采样控制系统中的两个特殊环节(与连续系统相比)。

在图7-1中,采样误差信号e*(t)是通过采样开关s对连续信号e(t) 采样而获得的。

如下图所示。

连续信号及保持器的输入与输出τ若采样周期为T ,则采样频率为T f s 1=,,而采样角频率为T f s s /22ππω==。

实际应用由于采样开关闭合的时间极短,采样持续时间τ远小于T 。

为了简化系统的分析,可认为τ趋于零,这样可以把采样器(s)的输出近似看成一串强度等于矩形脉冲面积的理想脉冲e*(t)。

在采样控制系统中,把脉冲序列转变为连续信号的过程称为信号的复现过程。

实现信号系统的装置叫保持器。

当采样频率足够高时,保持器的输出eh(t) 接近于连续信号。

采样系统的典型结构图图7-2 误差采样控制的闭环采样系统二 数字控制系统数字控制系统是以数字计算机为控制器的闭环控制系统,其典型原理结构图如7-3所示。

自动控制原理(Ⅱ)2014秋自控第七章4.2.7 第七章

自动控制原理(Ⅱ)2014秋自控第七章4.2.7 第七章
通常可认为,采样开关的闭合时间τ非常小,是 ms、μs级的,远小于采样周期T和系统连续部分的最大时间 常数。
分析时,可认为τ=0,这样的采样器可用理想采样 器来代替,且采样过程可看成是幅值调制过程。
c图所示为a图信号调制在b图载波上的结果。
第七章 线性离散系统的分析与校正
3. 香农采样定理
如果采样器的输入信号 具有有限带宽,并且有直
第七章 线性离散系统的分析与校正
7-1 离散系统的基本概念
连续系统: ①系统中所有信号都是时间的连续函数。 ②信号在全部时间上都是已知的。
离散(时间)系统 ①系统中至少一处信号是脉冲或数码。 ②那些信号只定义在离散时间上。
采样/脉冲控制系统: 系统中的离散信号是脉冲序列形式的离散系统。
数字/计算机控制系统 系统中的离散信号是数字序列形式的离散系统。
离散数字--解码--离散模拟--复现(保持器)--连续模拟
采样频率足够高时,连续模拟趋近于真正连续。 ③计算机的输出寄存器和解码网络相当于信号保持器。
第七章 线性离散系统的分析与校正
⑶数字控制系统的典型结构图
假定:
①A/D足够字长,量化单位q足够小,忽略幅值断续性。
②采样编码过程是瞬时完成的。
③可用理想脉冲幅值等效代替数字信号大小。
⑦若采样编码是瞬间完成,并用理想脉冲等效代替数字信号, 则数字信号可以看成脉冲信号, A/D转换器可用每隔T秒瞬时 闭合一次的理想采样开关S来表示。
第七章 线性离散系统的分析与校正
第七章 线性离散系统的分析与校正
⑵D/A转换器 ①将离散数字信号转换为连续模拟信号的装置。 ②D/A转换包括解码和复现两个过程。
第七章 线性离散系统的分析与校正
炉温 采样 控制 系统
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 线性离散系统的分析与校正(B )
一、填空题
1、数字控制系统是一种以数字计算机为 去控制具有连续工作状态的被控对象的闭环控制系统。

2、对于具有传输延迟,特别是大延迟的控制系统,可以引入 控制的方式稳定。

3、如果采样器的输入信号()t e 具有有限带宽,并且有直到h w 的频率分量,则使信号()t e 完满地从采样信号()t e *中恢复过来的采样周期T ,满足条件: 。

4、闭环离散系统脉冲传递函数不能从()s F 和()s e F 求变换得来,这是由于采样器在闭环系统中有 的原因。

5、z 变换是对连续信号的 进行变换,因此z 变换与其原连续时间函数并非一一对应。

6、1)(-=z z G ,在离散系统中其物理意义代表一个 环节。

7、对于任何输出)(z C 的z 反变换,)(nT c 只能代表)(t c 在 的数值。

8、采样器的引入一般会降低系统的 。

9、如要在离散系统中运用连续系统中的劳思判据,则必须 变换。

10、影响离散系统稳定性的因素中,除与开环增益K 、系统的零极点分布和传输延迟等因素有关外,还有 有关。

11、当开环增益一定时,采样周期越 ,对离散系统的稳定性及动态性能均不利,甚至可使系统失去稳定性。

12、在单位阶跃函数作用下,0型离散系统在采样瞬时存在 误差。

13、零阶保持器的 滞后降低了系统的稳定程度。

二、单项选择题 (在下列每小题的四个备选答案中选出一个正确的答案,并将其字母标号填入题干的括号内。


1、采样信号的拉氏变换形式为( )。

A. 0
()()nTs n E s e nT e ¥
-==å B. *
()()nTs n E s e n e ¥-==å C. å¥=-=0*)()(n nTs e
nT e s E D. *0
()()Ts n E s e nT e ¥-==å 2、已知差分方程)2(6)1(5)()(---+=k c k c k r k c ,输入序列1)(=k r ,初始条件为1)1(,0)0(==c c ,则(3)c =( )。

A. 6
B. 25
C. 90
D. 301
3、用z 变换分析离散系统时,系统连续部分传递函数)(s G p 的极点数至少要比其零点数多()。

A. 1个
B. 2个
C. 3个
D. 4个
4、下列与线性定常离散系统的稳态误差无关的是()。

A. 系统本身的结构和参数
B. 系统输入
C. 采样周期
D.分析方法
5、采样器和保持器不影响()。

A. 开环脉冲传递函数的零点
B. 开环脉冲传递函数的极点
C. 闭环 脉冲传递函数零点 D 闭环脉冲传递函数极点
6、有关采样器和保持器对离散系统的动态性能影响不正确的是()。

A. 采样器可使系统的峰值时间和调节时间略有减小。

B. 在具有大延迟的系统中,误差采样会降低系统的稳定程度。

C. 零阶保持器使系统的峰值时间和调节时间都加长。

D. 零阶保持器使系统的超调量和振荡次数增加。

三、试证明
[]()()d L tx t Tz X z dz éù=-êúëû成立。

四、试求2()()(1)z X z z a z =--的Z 反变换。

五、用部分分式法求
10()(1)(2)X z z z =
--的反Z 变换,(0)0x =。

相关文档
最新文档