(答案)第12章章测题(级数)

合集下载

(NEW)华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解

(NEW)华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解

目 录第12章 数项级数12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 函数列与函数项级数13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 幂级数14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第15章 傅里叶级数15.1 复习笔记15.2 课后习题详解15.3 名校考研真题详解第16章 多元函数的极限与连续16.1 复习笔记16.2 课后习题详解16.3 名校考研真题详解第17章 多元函数微分学17.1 复习笔记17.2 课后习题详解17.3 名校考研真题详解第18章 隐函数定理及其应用18.1 复习笔记18.2 课后习题详解18.3 名校考研真题详解第19章 含参量积分19.1 复习笔记19.2 课后习题详解19.3 名校考研真题详解第20章 曲线积分20.1 复习笔记20.2 课后习题详解20.3 名校考研真题详解第21章 重积分21.1 复习笔记21.2 课后习题详解21.3 名校考研真题详解第22章 曲面积分22.1 复习笔记22.2 课后习题详解22.3 名校考研真题详解第23章 向量函数微分学23.1 复习笔记23.2 课后习题详解23.3 名校考研真题详解第12章 数项级数12.1 复习笔记一、级数的收敛性1.相关定义(1)给定一个数列{u n},对它的各项依次用“+”号连接起来的表达式u1+u2+…u n+… (12-1)称为常数项无穷级数或数项级数(也常简称级数),其中u n称为数项级数(12-1)的通项或一般项.数项级数(12-1)也常写作或简单写作∑u n.(2)数项级数(12-1)的前n项之和,记为 (12-2)称它为数项级数(12-1)的第n个部分和,也简称部分和.(3)若数项级数(12-1)的部分和数列{S}收敛于S(即),则称数项级数(12-1)收敛,称S为数项级数(12-1)的和,记作或S=∑u n.若{S n}是发散数列,则称数项级数(12-1)发散.2.重要定理。

高等数学下册第十二章习题答案详解

高等数学下册第十二章习题答案详解

高等数学下册第十二章习题答案详解1.写出下列级数的一般项: (1)1111357++++;2242468x x +++⋅⋅⋅⋅;(3)35793579a a a a -+-+.解:(1)121n U n =-;(2)()2!!2n n xU n =;(3)()211121n n n a U n ++=-+; 2.求下列级数的和: (1) 23111555+++;(2) 11(1)(2)n n n n ∞=++∑;(3)1n ∞=∑.解:(1) 因为21115551115511511145n n n n S =+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎣⎦=-⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎣⎦从而1lim 4n n S →∞=,即级数的和为14. (2)()()()()()()()111111211n u x n x n x n x n x n x n x n =+-+++⎛⎫-=⎪+-++++⎝⎭从而()()()()()()()()()()()()()()11111211212231111111211nS x x x x x x xx x n x nx n x n x x x n x n ⎛-+-=+++++++⎝⎫++-⎪+-++++⎭⎛⎫-=⎪++++⎝⎭因此()1lim 21nn S x x →∞=+,故级数的和为()121x x +(3)因为nU =-从而(11n S n =-+-+-++-+=-=所以lim 1n n S →∞=13.判定下列级数的敛散性:(1)1n ∞=∑;(2)1111166111116(54)(51)n n +++++⋅⋅⋅-+;(3)231232222(1)3333nn n --+-+-+;(4)1155n ++.解:(1) (11n S n =++++=从而lim n n S →∞=+∞,故级数发散.(2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭从而1lim 5n n S →∞=,故原级数收敛,其和为15.(3)此级数为23q =-的等比级数,且|q |<1,故级数收敛.(4)∵n U =lim 10n n U →∞=≠,故级数发散. *4.利用柯西审敛原理判别下列级数的敛散性:(1)11(1)n n n +∞=-∑;(2)1cos 2n n nx ∞=∑; (3)()0111313233n n n n ∞=+-+++∑.解:(1)当P 为偶数时,()()()()122341111112311111231111112112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n pn n n +++++++++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+当P 为奇数时,()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+因而,对于任何自然数P ,都有12111n n n p U U U n n++++++<<+, ∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n p U U U ε++++++<成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛.(2)对于任意自然数P ,都有()()()1212121cos cos cos 12222111222111221121112212n n n pn n n pn n n p n p n p n U U U xn p x xn n ++++++++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭<于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P 都有12n n n p U U U ε++++++<成立,由柯西审敛原理知,该级数收敛.(3)取P =n ,则()()()()()121111113113123133213223231131132161112n n n pU U U n n n n n n n n n n ++++++⎛⎫=+-+++-⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+>从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++>,由柯西审敛原理知,原级数发散.习题12-21.用比较判别法法判别下列级数的敛散性: (1)1114657(3)(5)n n ++++⋅⋅++; (2)22212131112131nn +++++++++++;(3)π1sin 3n n ∞=∑;(4)n ∞=; (5)11)1(0nn aa ∞=+>∑; (6)11(21)nn ∞=-∑.解:(1)∵ ()()21135n U nn n =<++而211n n ∞=∑收敛,由比较审敛法知1n n U ∞=∑收敛. (2)∵221111n n n U n n n n++=≥=++ 而11n n ∞=∑发散,由比较审敛法知,原级数发散.(3)∵ππsinsin 33lim lim ππ1π33n nn n n n→∞→∞=⋅=而1π3n n ∞=∑收敛,故1πsin 3n n ∞=∑也收敛.(4)∵321n U n=<=而3121n n∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n nU a a =<+,而11n n a ∞=∑收敛,故111n n a∞=+∑也收敛. 当a =1时,11lim lim022n n n U →∞→∞==≠,级数发散.当0<a <1时,1lim lim 101n nn n U a →∞→∞==≠+,级数发散.综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021lim ln 2xx x →-=知121lim ln 211nx n→∞-=<而11n n ∞=∑发散,由比较审敛法知()1121n n ∞=-∑发散.2.用比值判别法判别下列级数的敛散性:(1)213n n n ∞=∑;(2)1!31n n n ∞=+∑; (3)232233331222322n n n +++++⋅⋅⋅⋅; (4) 12!n n n n n ∞=⋅∑. 解:(1) 23n n n U =,()2112311lim lim 133n n n n n nU n U n ++→∞→∞+=⋅=<,由比值审敛法知,级数收敛.(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3) ()()11132lim lim 2313lim 21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n nn n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.3.用根值判别法判别下列级数的敛散性:(1)1531nn n n ∞=⎛⎫⎪+⎝⎭∑; (2)()11ln(1)n n n ∞=+∑; (3)21131n n n n -∞=⎛⎫ ⎪-⎝⎭∑; (4)1nn n b a ∞=⎛⎫⎪⎝⎭∑,其中,,,()n n a a n a b a →→∞均为正数.解:(1)55lim1313n n n n →∞==>+,故原级数发散. (2) ()1lim01ln 1n n n →∞==<+,故原级数收敛.(3)121lim 1931nn n n n -→∞⎛⎫==<⎪-⎝⎭, 故原级数收敛.(4) lim limn n nb b a a →∞==, 当b <a 时,b a <1,原级数收敛;当b >a 时,b a >1,原级数发散;当b =a 时,ba=1,无法判定其敛散性.习题12-31.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1) 1+;(2)111(1)ln(1)n n n ∞-=-+∑;(3)2341111111153555333⋅-⋅+⋅-⋅+;(4)112(1)!n n n n ∞+=-⋅∑; (5)11ln (1)n n n n∞-=-⋅∑; (6)()11113∞--=-∑n n n n; *(6)1(1)111(1)23nnn n∞=-++++⋅∑. 解:(1)()11n n U-=-,级数1n n U ∞=∑>0n =,由莱布尼茨判别法级数收敛,又11121nn n Un∞∞===∑∑是P <1的P 级数,所以1nn U∞=∑发散,故原级数条件收敛. (2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1lim0ln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++ 所以,1nn U∞=∑发散,所以原级数条件收敛.(3)()11153n n nU -=-⋅,显然1111115353n n n n n n U ∞∞∞=====⋅∑∑∑,而113n n ∞=∑是收敛的等比级数,故1nn U∞=∑收敛,所以原级数绝对收敛.(4)由()121!+=-nn n u n2122=<==⨯⨯,由正项级数的根值判别法知,2!n n 收敛,则级数()1121!∞+=-∑nn n n 收敛,112(1)!n n n n ∞+=-⋅∑绝对收敛. (5)函数()ln =xf x x在[)e,+∞为单调递减函数,则当n 充分大时()ln 1ln 1+>+n n n n ,且ln lim 0→∞=n n n ,由莱布尼兹判别法知交错级数收敛,又ln 1>n n n ,而调和级数11∞=∑n n是发散的,则11ln (1)n n nn∞-=-⋅∑条件收敛. (6)111310333+-+---=-=>n n n n nn n n n u u ,则1+>n n u u ,又1lim 03-→∞=n n n,根据莱布尼兹判别法知()11113∞--=-∑n n n n 收敛,又由比较判别法知1131133-+=<+n n nn n n ,则级数()11113∞--=-∑n n n n 收敛,则级数()11113∞--=-∑n n n n绝对收敛. *(6)由于11111123n nn ⎛⎫⋅>++++ ⎪⎝⎭ 而11n n ∞=∑发散,由此较审敛法知级数 ()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑发散. 记1111123n U nn ⎛⎫=⋅++++ ⎪⎝⎭,则()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>即1n n U U +> 又11111lim lim12311d n n n n U n n x n x→∞→∞⎛⎫=++++ ⎪⎝⎭=⎰ 由1111lim d lim 01t t t t x t x →+∞→+∞==⎰ 知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn n n ∞=⎛⎫-⋅++++ ⎪⎝⎭∑收敛,而且是条件收敛. 2.如果级数23111111122!23!2!2nn ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的和用前n 项的和代替,试估计其误差.()()()()()()()12121211111=1!22!211111!21!21111=11!222111=11!21211!2n n n n n n nn n n n n n n σ++++++⎛⎫⎛⎫++⎪⎪++⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪ ⎪++⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎛⎫ ⎪+⎝⎭-=+<3.若2lim n n n u →∞存在,证明:级数1n n u ∞=∑收敛.221211lim =lim ,.1n n n n n n n u n u nnu ∞→∞→∞=∞=∑∑存在而收敛所以也收敛*4.证明:若21nn u∞=∑收敛,则1nn u n ∞=∑绝对收敛. 222211111110221,2.n n n n n n n n n n n n u u u n n nu u n n u un n∞∞∞===∞∞===≤+∑∑∑∑∑<而和都收敛,由比较审敛法得知收敛从而收敛,即绝对收敛习题12-41.求下列函数项级数的收敛域: (1)11x n n∞=∑;(2)()1111n xn n ∞+=-∑.2.求下列幂级数的收敛半径及收敛域: (1)2323nx x x nx +++++;(2)1!nnn n x n∞=∑; (3)21121n n x n ∞-=-∑;(4)21(1)2nn x n n∞=-⋅∑. 解:(1)因为11limlim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11nn n ∞=-∑,由lim(1)0nx nn →-≠知级数1(1)n n n ∞=-∑发散,所以级数的收敛域为(-1,1).(2)因为()()1111!11lim lim lim lim e 1!11nn n n n n n n n n a n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦所以收敛半径1e R ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e !∞=∑n n n n n,()()()()11111!11!11e e e e +++++++⎛⎫=== ⎪+⎝⎭+n n nnn n n nnn n n n u n n u n n n 11e =⎛⎫+ ⎪⎝⎭nn , 在→+∞n 的过程中,11+>n nu u ,又0>n u ,则e =x 时,常数项级数为单调递增函数,1e =u ,则lim 0→∞≠n n u ,由级数收敛的必要条件,级数的一般项不趋于零,则该级数必发散,同理在e =-x 时,()1e !∞=-∑nnn n n 变为交错级数,其中!lim e →∞n n n n n依旧不等于0,,则在e =-x 时也发散,则其收敛域为(),e e -.(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim 21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+= 所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故收敛半径R =1.当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n→∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1). (4)令t =x -1,则级数变为212nn t n n∞=⋅∑,因为()()2122lim lim 1211n n n n a n n a n n ρ+→∞→∞⋅===⋅++ 所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112nn n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2] 3.利用幂级数的性质,求下列级数的和函数:(1)11n n nx∞-=∑;(2)2221n n x n ∞+=+∑. ()()()()1112111111111n n n n n n n n nx x x S x nx x x x x x ∞-=∞∞∞-==='''⎛⎫⎛⎫===== ⎪ ⎪-⎝⎭-⎝⎭∑∑∑∑解:()可求得函数在<时收敛,<(2)由2422221lim 23n n n x n x n x++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数21021n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()212011nn S x x x ∞='==-∑, 故()1011d ln 21xx S x x x +'=-⎰ 即()()1111ln 021x S S x x+-=-,()100S =,所以()()()11ln 121x xS xS x x x x+==<-习题12-51.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)()()ln 2f x x =+; (2)()2cos f x x =; (3)()()()1ln 1f x x x =++; (4)()2x f =(5)()23f x xx =+;(6)()e e)12(x x f x -=-; 解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111nnn x x n ∞==+-+∑,(-1<x ≤1)故()()11ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2) 因此()()()11ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2)(2)()21cos 2cos 2xf x x +==由()()20cos 1!2nnn x x n ∞==-∑,(-∞<x <+∞)得()()()()()220042cos 211!!22n n n nn n n x x x n n ∞∞==⋅==--∑∑ 所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞) (3)f (x ) = (1+x )ln(1+x ) 由()()()1ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()1120111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()22f x x ==()()()21!!2111!!2n n n n x n ∞=-=+-∑ (-1≤x ≤1) 故()()()()221!!2111!!2n n n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑()()()()2211!!211!!2n n n n x x n ∞+=-=+-∑ (-1≤x ≤1)(5)()()()(220211131313313nn n n nn n x f x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞)得()01e !n nxn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()0002101e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑2.将()2132x x f x ++=展开成()4x +的幂级数.()()()()()()20100102101113212111114x+4141343333134713111114414224222212462241323nn nn n nn nn n nn n x x x x x x x x x x x x x x x x x x x x ∞=∞+=∞=∞+=∞+==-+++++⎛⎫⎛⎫==-=- ⎪ ⎪++-++⎝⎭⎝⎭-+=---+⎛+⎫⎛⎫==-=-< ⎪ ⎪++-++⎝⎭⎝⎭-+=--+=-++∑∑∑∑∑解:而<<<<<-从而()()()10110421146223nn n n n n n x x x ∞+=∞++=++⎛⎫=-+-- ⎪⎝⎭∑∑<<3.将函数()f x 1()x -的幂级数. 解:因为()()()()()211111111!2!!m nm m m m m m n x x x x x n ---+=++++++-<<所以()()[]()()()3221133333331121222222211111!2!!nf x x n x x x n ==+-⎛⎫⎛⎫⎛⎫⎛⎫----+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+++++---(-1<x -1<1)即()()()()()()()()()()()()()2323133131313251111111222!23!2!3152111022!nnn nn n f x x x x x n n x x n ∞=⋅⋅⋅⋅⋅⋅--+--=+++++----⋅⋅⋅⋅⋅⋅--=+-<<⋅∑4.利用函数的幂级数展开式,求下列各数的近似值: (1) ln3(误差不超过10.000); (2) cos2︒(误差不超过10.000).解:(1)35211ln 213521n x x x x x x n -+⎛⎫=+++++ ⎪--⎝⎭,x ∈(-1,1) 令131x x +=-,可得()11,12x =∈-, 故()35211111112ln3ln 212325222112n n -+⎡⎤+++++==⎢⎥⋅⋅⋅-⎣⎦- 又()()()()()()()()()()2123212121232521242122112222123222212112222123252111222212112211413221n n n n n n n n n n n r n n n n n n n n n n +++++++++-⎡⎤++=⎢⎥⋅⋅++⎣⎦⎡⎤⋅⋅++=+++⎢⎥⋅⋅+++⎣⎦⎛⎫<+++ ⎪⎝⎭+=⋅+-=+故5810.000123112r <≈⨯⨯61010.000033132r <≈⨯⨯. 因而取n =6则35111111ln32 1.098623252112⎛⎫=≈++++⎪⋅⋅⋅⎝⎭(2)()()2420ππππ909090cos 2cos 11902!4!!2nn n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-+-++-∵24π906102!-⎛⎫ ⎪⎝⎭≈⨯;48π90104!-⎛⎫⎪⎝⎭≈ 故2π90cos 2110.00060.99942!⎛⎫ ⎪⎝⎭≈-≈-≈ 5.将函数()d 0arctan x tF x t t=⎰展开成x 的幂级数. 解:由于()21arctan 121n nn t t n +∞==-+∑所以()()()()()20002212000arctan d d 121d 112121n xx nn n n xnnn n t t F t tx t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)6.求下列级数的和函数: (1) 2121n n x n ∞+=+∑;(2)10(1)!n n nx n ∞-=-∑(提示:应用e x 的幂级数展开式);解:(1)可求得原级数的收敛半径R =1,且当|x |=1时,原级数发散.记()21021n n x S x n +∞==+∑则()22011n n S x x x∞='==-∑ ()200111d d ln 121xxx S x x x x x +'==--⎰⎰,即()()11ln 021xS S x x+-=-,S (0)=0 所以()11ln 21xS x x+=-,(|x |<1)(2)由()11!lim lim 0!1n n n n n a n n a n +→∞→∞+==-知收敛域为(-∞,+∞).记()()11!1n n n S x x n ∞-==-∑则()()()111d e !!11nn xx n n x x S x x x x n n -∞∞=====--∑∑⎰,所以()()()e 1e x x S x x x '==+,(-∞<x <+∞)7.试用幂级数解法求下列微分方程的解:222(1)0;(2)0;(3)1;(4)(1);(5)(1)2.y x y y xy y y xy x x y x y x y x x y '''''-=++=''--=-=-'+=-+()()()()()()()()()1220120220120223405121,,11212021=210320435421nn n nn n n n n n n n nnn n n n nnn n n n n n y a x y na xy n n a xn n a x n n a x xa xn n a x a x a a a a a a n n a a ∞∞∞∞--+====∞∞+==∞∞+-==+-'''===-=++++-=++====++=∑∑∑∑∑∑∑∑解:()设则代入原方程得即比较同次幂系数,得一般地()()()()222001423456785801910111291134243042,3,210,,,0,3445783478,0,894589111234781112,12134589121303478414n n k k k n a a n n a a a a a a a a a a a a a a a a a a a a a a a a a a k k-+++==++===================-即所以有所以()()()14145121481221,2,1,2,4589441134347834781112145458945891213k k a a k k k x x x y C x x x C x +===+⎛⎫=++++⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⎝⎭⎛⎫+++++⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⎝⎭因此是方程的解()()()()()()()()()212120222220210211021100,1,2,10,1,2,2111122222n n n n n n n n n n n n nn n n n n n n k k y a x a n n xx a nxa x n n a n a x n n a n a n a a n n a a a k k k ∞=∞∞∞--===∞+=++-=-++=++++=⎡⎤⎣⎦++++===-=+⎛⎫⎛⎫⎛⎫=-=---= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑∑()设为该方程的解,代入该方程得即故即从而()()()()01212112242000021351111!2111112121213135211111!22!2!211313513521kk k k nnk k a k a a a a k k k k a a a y a x x x n a a x a x x k +-+⎛⎫- ⎪⎝⎭⎛⎫⎛⎫⎛⎫=-=---=- ⎪⎪ ⎪++-⋅⋅+⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫=+-+-++-++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎡-+++-+⎢⋅⋅⋅⋅⋅-⎣因而()()()()()()22222202135135212011221211111!22!2!2111131351352111313513521121!!n k k x n nn x x x x a n x a x x x k x x x a e a x k y C eC x n ++-+-⎤⎥⎦⎡⎤⎛⎫⎛⎫⎛⎫=+-+-++-+⎢⎥⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤+-+++-+⎢⎥+⎣⎦⎡⎤=+-+-+-+⎢⎥+⎣⎦-=+-故原方程的通解为11n n ∞-=∑()()()101110111120210001234567213,=,112120111111,,,,,,23243524611,,3571nn n n n n n n nn n n n nn n n y a a x y na x na xx a a x x a a a x a n a x a a a a a a a a a a a ∞∞-==∞∞-==∞++=-'=+⎛⎫-+-= ⎪⎝⎭-+--+-++=⎡⎤⎣⎦+++======⋅⋅⋅⋅==⋅⋅⋅∑∑∑∑∑()设方程的解为从而代入方程得即因而()()()()()()023521242000023521222001,352124621113!!5!!21!!24!!2!!111113!!5!!21!!22!!2!!2n n n n n a a n n a a a x x x y a x x x x n n x x x x x x a x a n n --+=⋅-⋅⋅⎡⎤⎡⎤+++=+++++++++++⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎡⎤⎛⎫⎛⎫⎛⎫=++++++++-++++++⎢⎥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎣⎦因此()()()()()()()222321200032120212113!!21!!113!!21!!121!!x n x n x n x x a a a e x n x x a e x n x y Ce n ---⎤⎢⎥⎢⎥⎣⎦⎡⎤=-+++++++⎢⎥-⎣⎦⎡⎤=++-++++⎢⎥-⎣⎦=+-+-故方程的通解为()()()()()()01210210102321102311110,20,3=1,11041,0,,32234521123431n n n n nn n n n n n n n n n n n y a x x na xx a x n a n a x x a a a a a n a n a n a a a a n n n n n a a n n n n n y C ∞=∞∞-==∞+=+-=-=-++-=⎡⎤⎣⎦+==-+--=≥=-==-----==---=∑∑∑∑(4)令是该方程的解,代入该方程得即比较系数得以及故因而()()3412.31n n x x x n n ∞=-++-∑是方程的解()()()()10112011121101102231102315,=,2120,22,3111032,1,311nn n n n n n n n nnn n n n n n n n n n n n y a x y na x na x na xa a x x xna n a a x a a x xa a a a a n a n a n a a a a n a n ∞∞-==∞∞∞-===∞+=++'=+--=-++-+-=-⎡⎤⎣⎦-==-+=-++=≥==-=-=-+∑∑∑∑∑∑()设方程的解为则代入方程得即比较系数得从而()()()()()()()()()()()1344331234121242114641131141412411.31n n n n n n n n n n n n n a a a n n n n a n n n n n a n n n y C x x x x n n ----∞-=-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--==--- ⎪⎪ ⎪⎪⎪++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=-=-≥++=-≥-=+-++--∑即因而原方程的通解为8. 试用幂级数解法求下列方程满足所所给定初始条件的解:2222(1)(2)2(1)20,(0)(1)1;(2),(0)0;(3)cos 0,(0),(0)0.x x y x y y y y dyx y y dx d xx t x a x dt '''-+-+====+='+===()()()()12122212121,,12121201.nn n n n n n n n n n n n n n n n n y a x y na xy n n a x xx n n a x x na x a x y x x ∞∞∞--===∞∞∞--==='''===---+-+==-+∑∑∑∑∑∑()设则代入原方程得比较同次项系数,由初始条件可得方程的解为()1001211125,,00,0..11220nn n n n n n n n n n n y a x y na x y a na x a x xy x x ∞∞-==∞∞-=='====⎛⎫-= ⎪⎝⎭=++∑∑∑∑(2)设则由得代入原方程得比较同次幂系数得方程的解为()()()()21220120123423456246230123232345(3),,10,00,,0232435465102!4!6!23243546nn n n n n n n n dx d x x a t na t n n a t dt dt x a x a a a a a t a t a t a t t t t a a t a t a t a a t a t a t ∞∞∞--======-'====+⋅+⋅+⋅+⋅+⎛⎫+++++-+-+= ⎪⎝⎭++++∑∑∑设则由初始条件所以代入原方程得即4602240012123420310421530264010213024502!2!2!4!203204302!5402!6502!4!,0,220322!434!a t a a a a a a t a t a t a t a a a a a a a aa a aa a a a a a a a a aa a a a a a ++⎛⎫⎛⎫⎛⎫++-+-+-++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+=⋅+=⋅+-=⋅+-=⋅+-+====-=-=-=⋅-+==⋅比较系数得又得到1350024246867824682!0549552!4!2!4!6,0,,656!878!1295512!4!6!8!a a a a a a a a a a a a a t x a t t t t -+==⋅-+--+-+==-===⋅⋅⎛⎫=-+-+- ⎪⎝⎭所以习题12-61.设()f x 是周期为π2的周期函数,它在(,ππ-⎤⎦上的表达式为ππ. 32,0,(),0x f x x x -<≤⎧⎪=⎨<≤⎪⎩试问()f x 的傅里叶级数在πx =-处收敛于何值?解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x )的傅里叶级数收敛于()()[]()33ππ11π22π222f f -+-+-=+=+ 2.写出函数ππ. 21,0,(),0x f x x x --<≤⎧⎪=⎨<≤⎪⎩的傅里叶级数的和函数.解:f (x )满足狄利克雷定理的条件,根据狄利克雷定理,在连续点处级数收敛于f (x ),在间断点x =0,x =±π处,分别收敛于()()00122f f -++=-,()()2πππ122f f -++-=,()()2πππ122f f -+-+--=,综上所述和函数.()221π00π102π1π2x x x S x x x --<<⎧⎪<<⎪⎪=-=⎨⎪⎪-=±⎪⎩3. 写出下列以π2为周期的周期函数的傅里叶级数,其中()f x 在),ππ-⎡⎣上的表达式为: (1)π,0π4()π,π04x f x x ⎧≤<⎪=⎨⎪--≤<⎩ ;(2)()2()f x x πx π=-≤<;(3)ππ,π22ππ(),22ππ,π22x f x x x x ⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩ ; (4)()ππcos ()2f x x x=-≤≤. 解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx x n n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑(x ≠n π)(2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰, ()()ππ22-π0124cos d cos d 1ππnn a f x nx x x nx x n===-⋅⎰⎰ (n =1,2,…) 所以,f (x )的傅里叶级数展开式为:()()221π41cos 3nn f x nx n∞==+-⋅∑ (-∞<x <∞)(3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n nb f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰ 所以()()12112π1sin sin π2n n n f x nx n n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z )(4)因为()cos2xf x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()ππ-π0π0π1212cos cos d cos cos d π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x xa nx x nx xn x n x x n x n x n n n n +==⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰⎰⎰所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nxf x n ∞+==+--∑ x ∈[-π,π] 4. 将下列函数()f x 展开为傅里叶级数: (1)()πππ(2)4x xf x =-<<-;(2)()π2sin (0)f x xx =≤≤.解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰ []()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx xnx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nxf x n∞==+-∑ (-π<x <π)(2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n na f x nx x x nx xn x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰所以()()2124cos2ππ41n nxf x n ∞=-=+-∑ (0≤x ≤2π) 5. 设()π1(0)f x x x =+≤≤,试分别将()f x 展开为正弦级数和余弦级数. 解:将f (x )作奇延拓,则有a n =0 (n =0,1,2,…)()()()()ππ0022sin d 1sin d ππ111π2πn nb f x nx x x nx x n==+--+=⋅⎰⎰从而()()()1111π2sin πnn f x nx n∞=--+=∑ (0<x <π)若将f (x )作偶延拓,则有b n =0 (n =1,2,…)()()ππ00222cos d 1cos d ππ0,2,4,64,1,3,5,πn a f x nx x x nx x n n n ==+=⎧⎪=-⎨=⎪⎩⎰⎰()()ππ0π012d 1d π2ππa f x x x x -==+=+⎰⎰从而()()()21cos 21π242π21n n xf x n ∞=-+=--∑ (0≤x ≤π) 6. 将()211()f x xx =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.解:f (x )在(-∞,+∞)内连续,其傅里叶级数处处收敛,由f (x )是偶函数,故b n =0,(n =1,2,…)()()1101d 22d 5a f x x x x -==+=⎰⎰()()()1112cos d 22cos d 0,2,4,64,1,3,5,πn a f x nx x x nx xn n n -==+=⎧⎪-=⎨=⎪⎩⎰⎰所以()()()221cos 21π542π21n n xf x n ∞=-=--∑,x ∈[-1,1]取x =0得,()2211π821n n ∞==-∑,故 ()()22222111111111π48212n n n n n n n n ∞∞∞∞=====+=+-∑∑∑∑ 所以211π6n n ∞==∑ 7. 将函数()12(0)f x x x =-≤≤展开成周期为4的余弦级数.解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰ ()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn nn x n xa f x x x xn n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰ 故()()()22121π81cos π221n n x f x n ∞=-=-⋅-∑(0≤x ≤2)8. 设11,02()122,2x x f x x x ⎧≤≤⎪=⎨⎪-<<⎩,()01cos π,2n n a a n x s x x ∞==-∞<∞+<+∑,其中πd 102()cos n a f x n x x =⎰,求()52s -.解:先对f (x )作偶延拓到[-1,1],再以2为周期延拓到(-∞,+∞)将f (x )展开成余弦级数而得到 s (x ),延拓后f (x )在52x =-处间断,所以515511122222221131224s f f f f +-+-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+-=-+-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎛⎫=+= ⎪⎝⎭9.设函数()21(0)f x x x =≤<,而()1sin π,n n n x b s x x ∞==-∞<<+∞∑,其中()πd 1,2,3,102()sin n f x n x xb n ==⎰.求()12s-.解:先对f (x )作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞),并将f (x )展开成正弦级数得到s (x ),延拓后f (x )在12x =-处连续,故. 211112224s f ⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 10. 将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为: (1)()2111 22f x x x ⎛⎫=--≤< ⎪⎝⎭ ;(2) 3. 21,30,()1,0x x f x x +-≤≤⎧=⎨≤<⎩解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)()()112221002112d 41d 6a f x x x x -==-=⎰⎰, ()()()()112221021222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x xn n -+==--==⎰⎰所以()()12211111cos 2π12πn n f x n x n +∞=-=+∑(-∞<x <+∞)(2) ()()303033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰, ()()()()330330221πcos d 331π1π21cos d cos d 3333611,1,2,3,πn nn xa f x xn x n x x x x n n --==++⎡⎤=--=⎣⎦⎰⎰⎰()()()()33033011πsin d 331π1π21sin d sin d 333361,1,2,πn n n xb f x x n x n x x x x n n --+==++=-=⎰⎰⎰而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑ (x≠3(2k +1),k =0,±1,±2,…)习题十二1. 填空题:(1)级数1211()1n n n ∞=+∑的敛散性是 发散(2)级数1()21nn n n ∞=-∑的敛散性是 收敛 (3)已知幂级数级数级数1(2)04nn n a x x x ∞=+==-∑在处收敛,在处发散,则幂级数1(3)nn n a x ∞=-∑的处收敛域为 (1,5](4) 设函数()1()f x x x ππ=+-<<的傅里叶级数的和函数为(),(5)S x S π则等于 1(5)设函数2()(0)f x x x π=≤≤的正弦函数1sin nn bnx ∞=∑的和函数(),(,2)()S x S x ππ∈=则当x 时, 2(2)x π--2. 选择题:(1) 正项级数1nn a∞=∑收敛的充分条件是( C )。

工程光学课后答案(12 13 15章)

工程光学课后答案(12 13 15章)

1λ十二 十三 十五第十二章 习题及答案1。

双缝间距为1mm ,离观察屏1m ,用钠灯做光源,它发出两种波长的单色光 =589.0nm 和2λ=589.6nm ,问两种单色光的第10级这条纹之间的间距是多少?解:由杨氏双缝干涉公式,亮条纹时:d Dm λα=(m=0, ±1, ±2···)m=10时,nmx 89.511000105891061=⨯⨯⨯=-,nmx 896.511000106.5891062=⨯⨯⨯=- m x x x μ612=-=∆2。

在杨氏实验中,两小孔距离为1mm ,观察屏离小孔的距离为50cm ,当用一片折射率 1.58的透明薄片帖住其中一个小孔时发现屏上的条纹系统移动了0.5cm ,试决定试件厚度。

21r r l n =+∆⋅22212⎪⎭⎫⎝⎛∆-+=x d D r 22222⎪⎭⎫⎝⎛∆++=x d D r x d x d x d r r r r ∆⋅=⎪⎭⎫⎝⎛∆--⎪⎭⎫ ⎝⎛∆+=+-222))((221212mm r r d x r r 2211210500512-=⨯≈+⋅∆=-∴ ,mm l mm l 2210724.110)158.1(--⨯=∆∴=∆- 3.一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。

继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长λ=656.28nm,空气折射率为000276.10=n 。

试求注入气室内气体的折射率。

0008229.10005469.0000276.1301028.6562525)(600=+=⨯⨯=-=-∆-n n n n n l λ4。

垂直入射的平面波通过折射率为n 的玻璃板,透射光经透镜会聚到焦点上。

玻璃板的厚度沿着C 点且垂直于图面的直线发生光波波长量级的突变d,问d 为多少时焦点光强是玻璃板无突变时光强的一半。

第12章(2)2数项级数的绝对收敛与条件收敛

第12章(2)2数项级数的绝对收敛与条件收敛


n 0
n 0
unvn 之间的关系,注意到由( un vn )2 0 可推得
un 2 vn 2 2 unvn unvn
n 0
从而可推得结论.
证明
2 2 vn 2 | unvn |, 由 ( un vn )2 0 得 un

因级数 un 2 和 vn 2 收敛,必有级数 ( un 2 vn 2 ) 收敛,
有关级数的敛散性判定准则: 拿到一个级数,先看通项的极限是否为0 ; 再看是什么类型的级数(正项,交错,任意项): 1、正项级数的收敛就是绝对收敛; 2、交错级数可能发散,可能条件收敛也可能是绝对收敛; 3、对于任意项级数,先将通项取绝对值再分析对应 的级数的敛散性, 取绝对值后的级数收敛即为绝对收敛; 取绝对值后的级数发散,但还要看原级数可能收敛 (比如是交错级数可看其是否满足莱布尼兹判别法)。 如果是用正项级数的比值审敛法分析的发散就一定发散; 4、条件收敛与绝对收敛都是收敛。
2n n ! 练习:1、 证明:lim n 0 n n
2、判别级数的敛散性
an (1) (a 0)敛散性 2n n 1 1 a

2n n ! lim n 0 练习: 1、证明: n n 2n n ! 证明:设 un n , n un1 2n1 (n 1)! 2n n! lim lim / n lim n 1 n u n (n 1) n n n
再由比较收敛法知原级数也是收敛的。
定理5. *根值审敛法 ( Cauchy判别 法)

为正项级 数, 且 lim n un , 则
n
1 例如, 设级数 n , n1 n

1 1 un n n 0 ( n ) 级数收敛. n n

第十二章化学动力学基础(二)练习题及答案

第十二章化学动力学基础(二)练习题及答案

第十二章 化学动力学基础(二)练习题一、 选择题1.以下有关催化剂不正确的说法,是催化剂(A )改变反应物的平衡转化率 (B )改变反应途径(C )改变频率因子 (D )降低活化能 2.催化剂加快反应速率,是由于它能使(A )指前因子增大 (B )几率因子增大 (C )碰撞频率增加 (D )活化分子数增加 3.反应本性、温度、反应途径、浓度与活化能关系正确的是(A )反应途径与活化能无关 (B )反应物浓度与活化能有关(C )反应温度与活化能无关 (D )反应本性与活化能有关 4.气固相催化反应Pt<700K 2CO(g) + O 2(g)2CO 2(g)的速率方程是: r = k p (o 2)/p (co), 其反应级数应为:(A) 一级反应 (B) 二级反应 (C) 对 O 2是一级,对 CO 是负一级 (D) 级数不能确定 5.某反应速率常数与各基元反应速率常数的关系为 12124()2k k k k , 则该反应的表观活化能E a 与各基元反应活化能的关系为:(A) E a =E 2 +12E 1 - E 4 (B) E a = E 2+12(E 1- E 4)(B) E a = E 2+ (E 1- 2E 4)1/2 (D) E a = E 2+ E 1- E 46.在平行反应中要提高活化能较低的反应的产率,应采取的措施为: (A) 升高反应温度 (B) 降低反应温度 (C) 反应温度不变(D) 不能用改变温度的方法。

7.化学反应速率常数的 Arrhenius 关系式能成立的范围是:(A) 对任何反应在任何温度范围内 (B) 对某些反应在任何温度范围内 (C) 对任何反应在一定温度范围内 (D) 对某些反应在一定温度范围内8.一个基元反应,正反应的活化能是逆反应活化能的2倍,反应时吸热120 kJ·mol-1,则正反应的活化能是(kJ·mol-1):(A) 120 (B) 240 (C) 360 (D) 609.物质A 发生两个一级平行反应A B,A C,设两反应的指前因子相近且与温度无关,若E1> E2,则有:(A) k1> k2 (B) k2 > k1 (C) k2= k1 (D) 无法比较k1, k2 的大小10.催化剂能极大地改变反应速率,以下说法不正确的是:(A) 催化剂改变了反应历程(B) 催化剂降低了反应的活化能(C) 催化剂改变了反应的平衡,以致使转化率大大地提高了(D) 催化剂能同时加快正向和逆向反应速率11.下面四种说法中不正确的是:(A)在具有速控步的反应历程中,达到稳态后,速控步后的各个步骤的反应速率都等于速控步的反应速率,速控步前的各步骤均处于平衡状态(B) 根据微观可逆性原理,在反应历程中不可能出现2A → C + 3D 这样的基元反应(C) 在光化学反应中,体系的Gibbs自由能总是在不断地降低(D) 在采用温度跃变的驰豫法来研究溶液中的快速反应时,该反应必须是放热或吸热反应12.除多光子吸收外,一般引起化学反应的光谱,其波长范围应是:(A) 可见光(400 - 800 nm) 及紫外光(150 - 400 nm)(B) X射线(5 - 10-4 nm)(C) 远红外射线(D) 微波及无线电波13.在光的作用下,O2可转变为O3,当1 mol O3生成时,吸收了3.01×1023个光子,则该反应之总量子效率Φ为:(A) Φ=1 (B) Φ=1.5(C) Φ=2 (D) Φ=314.根据微观可逆性原理,反应物分子能量消耗的选择性和产物能量分配的特殊性 有对应关系,因此对正向反应产物主要是平动激发,则对逆向反应更有利于促进反 应进行的能量形式应为:(A)振动能 (B)转动能(C)平动能 (D)能量形式不限,只要足够高 15.对Einstain 光化当量定律的认识下述说法正确的是:(A) 对初级,次级过程均适用 (B) 对任何光源均适用 (C) 对激光光源及长寿命激发态不适用 (D) 对大、小分子都适用 16.在简单碰撞理论中,有效碰撞的定义是:(A) 互撞分子的总动能超过E c (B) 互撞分子的相对总动能超过E c (C)互撞分子联心线上的相对平动能超过E c (D)互撞分子的内部动能超过E c 17.在碰撞理论中校正因子P 小于1的主要因素是:(A) 反应体系是非理想的 (B) 空间的位阻效应 (C) 分子碰撞的激烈程度不够 (D) 分子间的作用力 18.Lindemann 单分子反应机理是假定多原子分子被振动激发后 (A) 立即分解 (B) 有一时滞 (C) 发出辐射 (D) 引发链反应19.同一个反应在相同反应条件下未加催化剂时平衡常数及活化能为k 及E a ,加入正催化剂后则为k '、E a ',则存在下述关系: (A) k '=k , E a =E a ' (B) k '≠k , E a ≠E a ' (C) k '=k , E a >E a ' (D) k '<k , E a '<E a20.过渡态理论的速率常数的公式为()()()k k T h q q q E RT =≠-B AB//exp /∆0,下述说法正确的是(A) q ≠不是过渡态的全配分函数 (B) q A , q B 是任意体积中分子的配分函数 (C) q A , q B , q ≠均是分子在基态时的配分函数(D) ()k T h B /是过渡态M≠中任一个振动自由度配分函数二、 判断题1.关于催化剂特征的不正确描述是在反应前后催化剂的物理性质和化学性质全不改变。

高等数学 第十二章 级数

高等数学 第十二章 级数

12)1()(x f 0x x =)(00x f a =!)(0)(k x f a k k =ππππ11()cos d (0,1,2,),()sin d (1,2,)ππn n a f x nx x n b f x nx x n --====⎰⎰. 34求收敛半径定理,幂级数展开定理,1 为了叙述方便,称前者为有限加而无穷个数相加只是我们不可能用有限加法的方法来完成另外,有限加法中的结合律和交换律在我们在研究无限累加时,是以有限加法(部一般情况下,这个和的数值不易求得,教科书1 ,B .)级数的求和问题. +-+-=1111x0)11()11(=+-+-= x 1)11()11(1=-----= x x x -=+-+--=1)1111(1 ,于是12x =. 柯西指出:以上解法犯∑∞=--11)1(n n2 ∑∞=1n nu0lim ≠∞→n n u ∑∞=1n nup2 1π3sin4n nn ∞=∑ π303sin π44nnn ⎛⎫<< ⎪⎝⎭13π4nn ∞=⎛⎫ ⎪⎝⎭∑1π3sin4n nn ∞=∑ 11π3sin341π43sin 4n n n n ++=< 1π3sin4n n n ∞=∑ 3 ∑∞=1n nu0lim ≠∞→n n u 0lim =∞→n n u∑∞=1n nu∑∞=1n nu∑∞=1n nu∑∞=1n nu∑∞=1n nu0lim ≠∞→n n u3 ∑∞=---+-11)11()1(n n n n1111211)11()1(1+>-++=--+=--+--n n n n n n n n∑∑∞=∞==+01111n n nn ∑∞=---+-11)11()1(n n n n0112limlim =-++=∞→∞→n n u n n n0)2)(11()1(2)12(2)2()11(1>++--+--++-+=-+---+=-+n n n n n n n n n n n n u u n n4 ∑∞=⎪⎪⎭⎫ ⎝⎛+--21111n n n∑∑∑∞=∞=∞==-=⎪⎪⎭⎫ ⎝⎛+--22112121111n n k k n n n 11k k ∞=∑∑∞=⎪⎪⎭⎫⎝⎛+--21111n n n 4 0n n n a x ∞=∑nn n a a 1lim+∞→R ),(R R -R x ±=nn n a a 1lim +∞→0x x -5 ∑∞=⎪⎭⎫⎝⎛151n nx n111155nnnn n x x n n ∞∞==⎛⎫= ⎪⋅⎝⎭∑∑ 11511lim lim lim lim1(1)55(1)551n n n n n n n na n na n n n ++→∞→∞→∞→∞⋅====+⋅⋅+⎛⎫⋅+ ⎪⎝⎭5=R )5,5(-5=x ∑∞=11n n 5-=n ∑∞=-1)1(n n n)5,5[-6 2111(1)(21)!n n n x n -∞+=--∑2221(21)!1limlim lim 0(21)!2(21)n n n n nu n x x x u n n n +→∞→∞→∞-===⋅+++∞=R ),(+∞-∞7 11(1)(1)nn n x n∞-=--∑ 1-=x t ∑∞=--11)1(n nn nt 1111lim 1lim lim1=+=+=∞→∞→+∞→nn n a a n n n n n1=R )1,1(-1-=t ∑∑∞=∞=--=--1111)1()1(n n n n n n 1=t ∑∞=--111)1(n n n ∑∞=--11)1(n nn nt ]1,1(-]2,0( 5 )(x f )(x f 0lim ()0n n R x →∞=)(x f)1()2()3()4()5( 8 2()12xf x x x=+-x ⎪⎭⎫⎝⎛+--=+-=x x x x x x f 2111131)21)(1()(+++++=-n x x x x2111)11(<<-x+-++-+-=+n n x x x x x )2(842121132⎪⎭⎫ ⎝⎛<<-2121x∑∞=-+=)2)1(1()(n n n nx x f ⎪⎭⎫ ⎝⎛<<-2121xn n 9 x x f ln )(=2-x2()ln[2(2)]ln 2ln 12x f x x -⎛⎫=+-=++⎪⎝⎭22-=x t )1ln(221ln t x +=⎪⎭⎫ ⎝⎛-++-++-+-=-nn t nt t t t 1432)1(432t <-1(1) 2312322(2)(2)(1)(2)ln 12222322n nnx x x x x n -------⎛⎫+=-++++ ⎪⋅⋅⋅⎝⎭ x <0(≤)4+⋅--++-+---+=-n nn n x x x x x 2)2()1(2)2(312)2(21222ln ln 13322x <0(≤)4 10 ∑∞=+++12)2)(1(n n n n x1)3)(2()2)(1(lim=++++=∞→n n n n R n 1±=x ]1,1[-.∑∞=+++=12)2)(1()(n n n n x x S∑∞=++='111)(n n n x x S ∑∞==''1)(n nx x S∑∞=-=11n n x x x xxx S -=''1)()11(<<-x ⎰⎰---=-=''='-'x xx x x xxx x S S x S 00)1ln(d 1d )()0()()11(<<-x 0)0(='S )1ln()(x x x S ---=')11(<<-x⎰⎰---='=-x xx x x x x S S x S 0d )]1ln([d )()0()(⎰--+---=x x xx x x x 02d 1)1ln(2 )1ln()1(22x x x x --+-= )11(<<-x 0)0(='S)1ln()1(2)(2x x x x x S --+-= )11(<<-x11 ∑∞=+02!12n nx n n 0)1)(12(32lim !12)!1(32lim 2232=+++=+++∞→+∞→x n n n x n n xn n n n n n),(+∞-∞∑∞=+=2!12)(n nx n n x S2212200021()d d e !!!n nx x n x n n n n x x S x x x x x x n n n +∞∞∞===+====∑∑∑⎰⎰()2220()()d (e )e (12)x x x S x S x x x x ''===+⎰222021()e (12)!n x n n S x x x n ∞=+==+∑),(+∞-∞∈x )1(10)1)(2(2+++n n x n )2(11nx n n 2!12+1)3(106 )(x f )(x f )(x f )(x f )(x f [π,π]-n a n b ∑∞=++1)sin cos (2n n n nx b nx a a )(x f )(x f [π,π]-n a n b)(x f x )(x f )(x f )(x f 2)()()(-++=x f x f x f∑∞=++=1)sin cos (2)(n n n nx b nx a a x f )(x f12 +-+-=!6!4!21cos 642x x x x 13246357cos isin 1i 2!4!6!3!5!7!θθθθθθθθθ⎛⎫⎛⎫+=-+-++-+-+⎪ ⎪⎝⎭⎝⎭23456i i 1i 2!3!4!5!6!θθθθθθ=+--++--,2i 1=-3i i =-4i 1=5i i =23456i (i )(i )(i )(i )(i )cos isin 1i e 2!3!4!5!6!θθθθθθθθθ+=+++++++=i cos isin e θθθ+=14 10年,每年向球300?假设存储30003000B p B 元. r t nntn r p B ⎪⎭⎫⎝⎛+=1ntn r B p ⎪⎭⎫⎝⎛+=1, re rt B p =e ertrt B p B -==.10300万元,第一次付款是在签约当%5113=(百万元), 2205.013+=33205.13=10905.13=1029131 1.05333324.3211.05 1.05 1.051 1.05⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦=++++=≈-, 2432300?%5 13= 20.053e-=),30.0523(e )-=),0.050.0520.05333e 3(e )3(e )---=++++,0.05ex -=0.05361.51e -=≈-(百万元).( √ ) )(x f )(x f 能展开成0x x -的幂级)(x f( ⨯ ) )(x f )(x f 时,)(x f,0lim =∞→n n u ∑∞=1n nu收敛; ( ⨯ )0lim =∞→n n u 正项级数∑∞=1n n u 0lim =∞→n n u ∑∞=11n n 01lim =∞→n n ∑∞=11n n(),11∑∞=-n n na ,0lim =∞→n n a ∑∞=-1)1(n n n a ⨯),2,1(1=≥+n u u n n∑∞=1n na0lim =∞→n n a 1lim1<+∞→n nn a a1lim1n n na a +→∞≤ 1lim 1>=+∞→λn n n a a1lim 1<=+∞→nn n a a q∑∞=+1)4(n n nx a2-=x 2=x4+=x t ∑∞=1n nn ta 2-=x 2=t ∑∞=1n nn ta 2-2(,2)∪(2,)-∞-+∞2=x 6=t ∑∞=+1)4(n n nx a∑∞=1n nn x1<x 1≤x11<≤-x 11≤<-x 11lim lim1=+=∞→+∞→n na a n nn n 1)1,1(-1=x ∑∞=11n n 1-=x ∑∞=-1)1(n n n )1,1[-∑∑∑∞=∞=∞=111,,n nn nn ncb a n n nc b a <<),2,1( =n∑∞=1n nb∑∞=1n na∑∞=1n nb∑∞=1n nc∑∞=1n na∑∞=1n nc∑∞=1n nb∑∞=1n na∑∞=1n nc∑∞=1n nb∑∞=1n na∑∞=1n nc∑∞=1n nb)(x f ∑∞=-100)()(!)(n n n x x n x f)(x f 0)(!)(lim 00)(=-∞→n n n x x n x f ∑∞=-100)()(!)(n n n x x n x f)(x f 0)(!)(lim00)(=-∞→n n n x x n x fe x = 212!!n x x x x n +++++∈R ;=x sin 35211(1)3!5!(21)!n n x x x x x n ---+-+-+∈-R ;=x cos 2421(1)2!4!(2)!nnx x x x n -+-+-+∈R ;=+)1ln(x ]1,1()1(32132-∈+-+-+-+x nx x x x nn ;mx )1(+=)1,1(!)1()1(!2)1(12-∈++--++-++x x n n m m m x m m mx n;∑∞=1n nnx aR ,则∑∞=12n n n x a 的收敛半径为R ;∑∞=1n nnx aR ,则∑∞=1n n n x a 的收敛区间为),(R R -.21nn n a x∞=∑R x <<20⇒R x R <<-,所以,∑∞=12n n n x a 的收敛R)(x f 2π[π,π]-的表达式为{1,π0,()1,0π,x x f x x x --≤<=+≤<则)(x f πx = 1π+ .ππlim ()lim(1)1πx x f x x --→→=+=+, ππlim ()lim(12π)1πx x f x x ++→→=-+=+, πlim ()1π(π)(2ππ)(π)x f x f f f →=+=-=-= ,)(x f πx =)(x f πx =处收敛于(π)f =1π+ .∑∞=+1)1(n nxn n 的收敛域与和函数;∑∞=+1)1(n nxn n =∑∞=-+11)1(n n nxn x=∑∞=++0)1)(2(n nxn n x,)(x s ∑∞=++0)1)(2(n nxn n 1-11)(x u 0()d x s x x ⎰00(2)(1)d x nn n n x x ∞=++∑⎰∑∞=++01)2(n n x n()d x u x x ⎰100(2)d x n n n x x ∞+=+∑⎰∑∞=+02n n xxx -12)(x u )1(2'-x x 22)1()1(2x x x x -+-22)1(2x x x -- )(x s ])(['x u ])1(2[22'--x x x 3)1(2x -∑∞=+1)1(n n x n n )(x xs 3)1(2x x- )1,1(-∈x ∑∞=-11n n nx∑∞=+1212n nn x)(x s ∑∞=-11n n nx()d x s x x ⎰101d x n n nx x ∞-=∑⎰∑∞=1n n x xx-1 )(x s )1('-xx2)1(1x -∑∞=-11n n nx 2)1(1x - )1,1(-∈x∑∞=+1212n n n x ∑∞=++112121n n n x x)(x u ∑∞=++11212n n n x='])([x u )12(112'+∑∞=+n n n x ∑∞=12n nx 221x x - )(x u 0()d x u x x '⎰220d 1xx x x -⎰201d 1x x x -⎰0d x x ⎰x x x --+11ln 21∑∞=+1212n n n x ∑∞=++112121n n n x x 111ln 21--+x xx xx f 1)(=3-x x x f 1)(=3)3(1+-x 331131-+⋅xx+11)1,1()1(12-∈+-+-+-x x x x nnx x f 1)(=331131-+⋅x 31]33)1()33(331[2 +⎪⎭⎫⎝⎛--+--+--nn x x x ∑∞=+--01)3(3)1(n nn n x )1,1(33-∈-x )6,0(∈xx sin π6x +x sin ππsin[()]66x +-3π1πsin()cos()2626x x +-+ )6sin(π+x 35211πππ()()()π666()(1)63!5!(21)!n n x x x x x n --++++-+-+-+∈-R ,πcos()6x +242πππ()()()6661(1)2!4!(2)!nnx x x x n +++-+-+-+∈R ,x sin 3π1πsin()cos()2626x x +-+ 234πππ()()()13π131666()22622!23!24!x x x x +++-+++⋅--⋅+22111ππ()()1366(1)(1)2(2)!2(21)!n n n n x x x n n ---+++-⋅+-⋅+∈-R .{0,()π,f x x =-π0,0π,x x -≤<≤<将)(x f 在[π,π]-上展成傅里叶级数,傅叶级数在0=x0a ππ1()d πf x x -⎰π01(π)d πx x -⎰2π011(π)π2x x -π2n a ππ1()cos d πf x nx x -⎰π01(π)cos d πx nx x -⎰π1(π)d(sin )πx nx n -⎰π01(π)sin πx nx n -π01sin d πnx x n ⎰π021cos πnx n -20,21,2,2,πn k n k n =-⎧⎪⎨=⎪⎩ n b ππ1()sin d πf x nx x -⎰π01(π)sin d πx nx x -⎰π01(π)d(cos )πx nx n --⎰π01(π)cos πx nx n -π01cos d πnx x n ⎰0cos 1n n1 )(x f)(x f π421211[cos(21)sin(21)sin 2](21)π212k k x k x kx k k k ∞=-+-+--∑ )(lim 0x f x +→0lim(π)x x +→-π)(lim 0x f x -→ 0=x π2∑∞=-211n n n11-n n 1)1(1--n n 23)1(1-n∑∞=-223)1(1n n ∑∞=1231n n312p =>p ∑∞=-211n n n11πtan 2n n n ∞+=∑nn n a aq 1lim +∞→=21π(1)tan2limπtan 2n n n n n +→∞++⋅⋅21π(1)2limπ2n n n n n +→∞++⋅⋅n n n 21lim +∞→2111πtan2n n n ∞+=∑∑∞=+-111)1(n nnn n u ∞→lim 11lim+∞→n n1+n u 21+n 11+n n u∑∞=+-111)1(n nn1000 n B ∞→n%)51(10001+⨯=a n %)51(%)51(10001+++⨯=-n n a a1221223323211211000(15%)(15%),(15%)1000(15%)(15%),(15%)1000(15%)(15%),(15%)1000(15%)(15%),n n n n n n n n n a a a a a a a a --------=⨯+++⎧⎪+=⨯+++⎪+=⨯+++⎨⎪⎪+=⨯+++⎩n a 1112%)51(]%)51(%)51(%)51[(1000--++++++++⨯n n an n %)51(1000%)51(1]%)51(1%)[51(10001+⨯++-+-+⨯- ]1%)51(-+nn n a ∞→lim ∞,n B ]1%)51(-+n元,当∞→n。

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-数项级数(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-数项级数(圣才出品)
圣才电子书

十万种考研考证电子书、题库视频学习平台
第二部分 课后习题
第 12 章 数项级数
§1 级数的收敛性
1.证明下列级数的收敛性,并求其和: (1) (2) (3) (4) (5) 证明:(1)
所以原级数收敛,且和数 (2)
1 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
也发散.
证明:假设
收敛.因 c≠0,故级数
矛盾,所以若
发散.
也发散(c≠0).
收敛,这与题设
发散
3.设级数 与级数 都发散,试问
一定发散吗?又若 un 与 vn(n=1,
2,…)都是非负数,则能得出什么结论?
解:(1)当 与 都发散时,
不一定发散.如
两级数均发散,但
,即
收敛.
又如,
,两级数均发散,且
所以
从而级数
由比较原则知 收敛.
.又
收敛,
6.设级数 收敛,证明 证明:因为
也收敛.
又及
收敛,故
收敛,所以由比较原则得
收敛.
7.设正项级数 收敛,证明级数
也收敛.
证明:因为
,义由已知碍 及
收敛,所以
收敛,进而由比较原则得
收敛.
8.利用级数收敛的必要条件,证明下列等式:
证明:(1)设
,考察正项级数 的收敛性,因为
发敛.
8 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台

(5)因
,而级数
收敛,故级数
收敛.
(6)因
,而级数
发散,故级数
发散.
(7)因
,而级数
发散,故级数

第12章光的衍射

第12章光的衍射

宽度为b,若b=2a,当单色光垂直照射该光栅时,光
栅明纹情况应为(设明纹级数为k) ( B
A. 满足 k=2k’ 旳明纹消失( k’=1, 2,3, ···)
B. 满足 k=3k’ 旳明纹消失( k’ =1, 2,3, ···)
C. 没有明纹消失 D. 以上都不对
)。 00:30
投票人数:0
17.波长为λ旳单色光垂直入射在一光栅上,第2级明纹出
是( C )。
00:30
A. 做与光栅移动方向相同旳移动
B. 做与光栅移动方向相反旳移动
C. 中心不变,衍射图样变化
D. 没有变化
投票人数:0
24.为何电子显微镜旳放大率能够比光学显微镜旳放大
率大几百倍( C )。
A. 因为电子本身很小
00:30
B. 因为电子显微镜旳孔径很小
C. 因为电子波旳波长比X射线旳波 长还短
投票人数:0
25.经过显微镜对物体作显微摄影时,为了提升光学
仪器旳辨别率,下列所用光源旳频率比较,更加好
旳是( B )。 A. 频率小旳光源
00:30
B. 频率大旳光源
C. 产生黄光频率旳光源
投票人数:0
26. 在圆孔旳夫琅禾费衍射试验中,设圆孔旳直径为
d,透镜焦距为f,所用单色光旳波长为λ,则在透镜
A. 1 ;
2
00:30
B. ;
C. 2 ;
D. 3 。
投票人数:0
10.平行单色光垂直入射到单缝上,观察夫琅禾费衍
射。若屏上P点为第2级暗纹,则单缝处旳波阵面相
应地可划分为 4 半波带。若将单缝宽度缩小二分之
一,则P点是 1 级暗纹。
00:30
A. 4个,第1,明 B. 4个,第1,暗 C. 8个,第2,明 D. 8个,第2,暗

第十二章无穷级数练习题含答案

第十二章无穷级数练习题含答案

第十二章无穷级数练习题含答案第十二章无穷级数练习1.判断下列数列的收敛性和发散性:n?1sin1n?;2?n?1ln(1?1n?);?n?1n!n?;n?n?1(2n?13n?2)2n?12.判断下列序列是绝对收敛、条件收敛还是发散?(?1)n?1n?1n1;[n?]3n2??n?1ncosn3n2?;N1(?1)n?11n?lnn3.求幂级数?n?0(x?1)nn?1的收敛区间。

4.证明系列?N1n!NNX何时|x |?当e是绝对收敛时,当| x |?E.1n)处的散度单调增加,而limxn?En??nn注:数列xn?(1?5.找出区间(?1,1)中的幂级数n?1xn?1n的和函数。

6.找到这个系列吗?N21(n?1)和22 n。

一7.设a1?2,an?1?12(an?1an)(n?1,2,?)证明1)利曼存在;2)连续剧?(n?Anan?1?1)收敛。

n?18.设定一个??40? ntanxdx1)求?n?11n(an?an?2)的值;2)验证:对于任何常数??0系列?N1安?汇聚19.设正项数列{an}单调减少,且?(?1)nan发散,试问a?1?是否收敛?并说明理N1.N1n拜拜。

1211??11?xlndx。

10.已知1?2?2[参见教材246页],计算??1?x3580x。

二无穷级数例题选解1.判断下列数列的收敛性和发散性:n?1sin1n?;2?n?1ln(1?1n21n?);n?1n!n2?;n?n?1(2n?13n?2)2n?1解决方案:1)?sin1n2和N11n收敛,由比较审敛法知2)?ln(1?1n?n?1sin1n2收敛。

)~ 1n(n??)和N1.1n散度,由比较审敛法的极限形式知联合国?1un?N1ln(1?1n)散度。

n3)??lim?nlim(n?1)!(n?1)n?1?n??1?nlim,NN1n!Ennn??知识收敛比1n1n!n2收敛。

14)?? 林恩??un4?2n?1.2n?1.N林N3n?29 3n?2.2n?1.2n?1.汇聚1.从根值收敛法,我们可以知道3n?2.N1.2.判断下列序列是绝对收敛、条件收敛还是发散?N1(?1)n?1n1;[n?]3n?n?12??n?1ncosn3n2?;N1(?1)n?11n?lnn解:1)对于级数?(?1)n?1n32n,N1人??林?|联合国?1 | | un | n?1n13.知道进展情况吗?(?1)n?1.N32n绝对收敛,n1[n?]条件收敛。

大学物理课后习题答案(上下册全)武汉大学出版社 第12章 习题解答

大学物理课后习题答案(上下册全)武汉大学出版社 第12章 习题解答

第12章 习题与答案12-1 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为[ ]A. 1.5λ.B. 1.5λ/n .C. 1.5n .D. 3λ. [答案:A ]12-2 平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为[ ]A. 2πn 2e / ( n 1λ1).B. 4πn 1e / ( n 2λ1)] +π.C. 4πn 2e / ( n 1λ1) ]+π.D. 4πn 2e / ( n 1λ1).[答案: C ]12-3 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ]A. 间隔变小,并向棱边方向平移.B. 间隔变大,并向远离棱边方向平移.C. 间隔不变,向棱边方向平移.D.间隔变小,并向远离棱边方向平移. [答案: A ]12-4 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如题12-4图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分[ ]A. 凸起,且高度为4λ.B. 凸起,且高度为2λ.C. 凹陷,且深度为2λ.D. 凹陷,且深度为4λ.[答案: C ]12-5 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹[ ]A .中心暗斑变成亮斑. B. 间距变大. C. 间距变小. D. 间距不变. [答案: C ]题12-4图12-6 在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为[ ] A. =3a b . B. =2a b . C. =a b . D. =0.5a b [答案: C ]12-7 对某一定波长的垂直入射光 衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该[ ]A. 换一个光栅常数较小的光栅.B. 换一个光栅常数较大的光栅.C. 将光栅向靠近屏幕的方向移动.D. 将光栅向远离屏幕的方向移动.[答案: B ]12-8如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为[ ]A. I 0 / 8.B. I 0 / 4.C. 3 I 0 / 8.D. 3 I 0 / 4.[答案: A ]12-9一束自然光自空气射向一块平板玻璃(如题12-9图),设入射角等于布儒斯特角i 0,则在上表面的出射光2是[ ]A. 自然光.B. 线偏振光且光矢量的振动方向平行于入射面.C. 线偏振光且光矢量的振动方向垂直于入射面.D. 部分偏振光.[答案: C ]12-10相干光的必要条件为________________________,________________________,________________________。

华东师范大学数学分析第12章

华东师范大学数学分析第12章

,
sin 2n
由 Cauchy 收敛准则得 ,
收敛 .
n 1 2n
(2)
证法 1
因为 lim n
an
n2
lim
n
2n2
1
1 2
0 ,所以
lim
n
an
0 ,由级数收敛的必要条件
1 n 1 n2
知 ,级数
发散 .
n 1 2n2 1
证法 2 (用 Cauchy 收敛准则 ) 取 0
m0
un
n1
n0
un
n1
n
2n 1
(3) 因为
n 1 n2 1
2
n1 1
1 n 1 n2 1
1
1
2
,而数列
n1 1
收敛于零 ,
n2 1
2n 1
由 4 题知 ,
n 1 n2 1
2
n1 1
1
1
12
1
0
.
2
7.应用 Cauchy 收敛准则判别下列级数的敛散性 :
sin 2n
1 n 1 n2
(1)
n1
2n
; (2) n 1 2n2
p1
1
1
np n
故 ,对
1
0, N
,当 n N 时 ,对任意的正整数 p ,都有
n1
1 n1
n2
1 n2
; (3)
1
n1
n
1
1
; (4)
.
n
n 1 n n2
证 (1) 对
0 1 ,因为
sin 2n 1 2n 1
sin 2n p
1
2n p

工程光学习题参考答案第十二章-光的衍射

工程光学习题参考答案第十二章-光的衍射

第十二章 光的衍射1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。

解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0aλθ∆=∴亮纹半宽度290035010500100.010.02510r f f m a λθ---⨯⨯⨯=⋅∆===⨯ (2)第一亮纹,有1sin 4.493a παθλ=⋅= 同理224.6r mm =(3)衍射光强20sin I I αα⎛⎫= ⎪⎝⎭,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0II0 0 11 4.493 0.047182 7.725 0.01694 . . . . . . . . .2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为20sin[(sin sin )](sin sin )a i I I a i πθλπθλ⎧⎫-⎪⎪=⎨⎬⎪⎪-⎩⎭式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为λθ∆=图12-50 习题3图解:设直径为a ,则有f d aλ=4.利用第三节的结果导出外径和内径分别为a 和b 的圆环(见图12-51)的夫琅和费衍射强度公式,并求出当2ab =时,(1)圆环衍射与半径为a 的圆孔衍射图样的中心强度之比;(2)圆环衍射图样第一个暗环的角半径。

∴P 当(12449416a ca ⎫-=⎪⎭ ∴()()09016aI I = (2)第一暗纹有()()22110a J ka b J kb ka kb θθθθ-= 查表可有 3.144ka θ=4. (1)一束直径为2mm 的氦氖激光(632.8nm λ=)自地面射向月球,已知地面和月球相距33.7610km ⨯,问在月球上得到的光斑有多大?(2)如果用望远镜用作为扩束器将该扩展成直径为4m 的光束,该用多大倍数的望远镜?将扩束后的光束再射向月球,在月球上的光斑为多大? 解:(1)圆孔衍射角半宽度为0.61aλθ=∴传到月球上时光斑直径为(2)若用望远镜扩束,则放大倍数为2000倍。

第12章章测题(级数)

第12章章测题(级数)

第 12 章无穷级数练习题一、填空题∞∞1. 已知级数∑u 收敛,而级数∑nn=1 n=1∞u 发散,则称级数∑u 为收敛。

n nn=1∞2. 如果幂级数∑n=0a n x 在点n1x =处收敛,那么它在点21x =−处的收敛性是。

3x x x2 3 n3. 幂级数1+x +++++(−∞<x <+∞) 的和函数是。

2! 3! n!∞4. 设常数k > 0,则级数∑(−1)nn=1 k+n2n的收敛性为。

∞15. 若级数∑n n α+1=1nnα+1收敛,则α的取值范围是。

∑∑∞−1 ( 1)∞n6. =n=0 n 0 n !!n=。

∞7.已知级数∑u 的前n 项部分和为nn=13nsn =(n = 1,2,,n) ,则此级数的通项n +1u =。

n∞n28.级数∑=0 n!n的收敛和为。

二、判断题∞1.如果∑n=1 a 收敛,则部分和nS 有界。

()n∞2.如果lim = 0 a 收敛。

()a ,则∑→nnn ∞n=13.设f (x) = 1− cos x ,那么( 1) (1)∞−n−1f 绝对收敛。

()∑nn=1∞a4.设> 0 a 收敛,那么lim +1 =ρ< 1a ,如果∑n。

()n nn→∞a n=1n∞∞5. 如果∑ a 的收敛区间是(−R, R) ,那么∑n 3n+ln x a (l 是某自然数)的收敛区间是n xn=0 n=0(−3 R,3 R) 。

()∞6.如果∑n=0∞a 的收敛半径是R,则∑n xa 的收敛半径是R,则∑n(n n x 的收敛半径也为 R。

()1)an −−n 2n=2三、选择题1.下列级数中,收敛的是。

1 1 1A.++++;1⋅ 3 3⋅ 5 (2n −1)(2n +1)1 1 1B.1+++++1+ 2 1+ 4 1+ 2(n −1);1 1 1 1C.+++++2 4 6 2n;+1 1 1 +11+1D .++++。

工程光学习题参考答案第十二章 光的衍射

工程光学习题参考答案第十二章 光的衍射

第十二章 光的衍射1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。

解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0aλθ∆=∴亮纹半宽度290035010500100.010.02510r f f m a λθ---⨯⨯⨯=⋅∆===⨯ (2)第一亮纹,有1sin 4.493a παθλ=⋅= 9134.493 4.493500100.02863.140.02510rad a λθπ--⨯⨯∴===⨯⨯ 21150100.02860.014314.3r f m mm θ-∴=⋅=⨯⨯==同理224.6r mm =(3)衍射光强20sin I I αα⎛⎫= ⎪⎝⎭,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0II0 0 11 4.493 0.047182 7.725 0.01694 . . . . . . . . .2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为20sin[(sin sin )](sin sin )a i I I a i πθλπθλ⎧⎫-⎪⎪=⎨⎬⎪⎪-⎩⎭式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为cos a iλθ∆=证明:(1))即可(2)令(sin sin ai πθπλ==± ∴对于中央亮斑 sin sin i aλθ-=3. 在不透明细丝的夫琅和费衍射图样中,测得暗条纹的间距为1.5mm ,所用透镜的焦距为30mm ,光波波长为632.8nm 。

第十二章 第1节 常数项级数的概念和性质

第十二章 第1节 常数项级数的概念和性质


n=1
若它按某一规律加括弧 , 例如设为
显然, 新级数的部分和序列 σ m ( m = 1 , 2 ,L) 为原级数 部分和序列 Sn ( n = 1 , 2 ,L) 的一个子序列. 因此必有 用反证法可证 lim σ m = lim Sn = S
m→∞ n→∞
( u1 + u2 ) + ( u3 + u4 + u5 ) +L
2
n−1
a 当 q < 1时, 由于 lim q = 0 , 从而 lim Sn = n→∞ n→∞ 1− q a ; 因此级数收敛 , 其和为 1− q n 当 q > 1时, 由于 lim q = ∞ , 从而 lim Sn = ∞ , 因此 n→∞
n
a − a qn = 1− q
级数发散 .
n→∞
推论: 推论 若加括弧后的级数发散, 则原级数必发散. 注意:原级数发散,则加括号后不一定发散 例如 注意 ( 级数 1−1+1−1+ L 却发散 . 但 1−1) + (1−1) +L= 0 , 18
三. 级数收敛的必要条件 设收敛级数 S =
n=1
un , 则必有 lim un = 0 ∑
n→∞
un+1 = un

enn! nn
e = > 1 (n = 1, 2,L) 1 n (1+ n )
∞ n
un > un−1 >L> u1 = e
从而 lim un ≠ 0 , 这说明级数 发散 . n n→∞ n=1 n

e n!
21
1 (2) ∑ 3 n + 3n2 + 2n n=1 1 1 (n + 2) − n 1 = = 因 n3 + 3n2 + 2n n(n +1)(n + 2) 2 n(n +1)(n + 2) 1 1 1 = − ( n = 1, 2, L) 2 n(n +1) (n +1)(n + 2) n 1 1 n 1 1 Sn = ∑ 3 = ∑ − 2 k + 3k + 2k 2 k=1 k(k +1) (k +1)(k + 2) k =1 1 1 1 进行拆项相消 = − 2 1⋅ 2 (n +1)(n + 2)

考研高数讲解新高等数学下册辅导讲解第十二章

考研高数讲解新高等数学下册辅导讲解第十二章

第十二章无穷级数【本章网络构造图】第一节常数项级数概念与性质一、常数项级数收敛与发散给定一个数列将各项依次相加, 简记为,即,称该式为无穷级数,其中第项叫做级数一般项,级数前项与称为级数局部与。

假设存在,那么称无穷级数收敛,并称为级数与,记作;假设不存在,那么称无穷级数发散。

当级数收敛时, 称差值为级数余项。

显然。

【例1】〔93三〕级数与为 .【答案】结论:等比〔几何〕级数:收敛当时发散当时二、收敛级数与假设收敛,那么其与定义为。

三、无穷级数根本性质学习笔记:〔1〕假设级数收敛于,即,那么各项乘以常数所得级数也收敛,其与为。

注:级数各项乘以非零常数后其敛散性不变(2)设有两个收敛级数,,那么级数也收敛, 其与为。

注:该性质说明收敛级数可逐项相加或相减相关结论:〔1〕假设两级数中一个收敛一个发散,那么必发散。

〔2〕假设二级数都发散,不一定发散。

【例】取,,而。

〔3〕在级数前面加上或去掉有限项,不会影响级数敛散性。

〔4〕收敛级数加括弧后所成级数仍收敛于原级数与。

推论:假设加括弧后级数发散,那么原级数必发散。

注:收敛级数去括弧后所成级数不一定收敛。

【例】,但发散。

【例2】判断级数敛散性:【解析与答案】学习笔记:不存在故原级数发散四、级数收敛必要条件必要条件:假设收敛,那么。

逆否命题:假设级数一般项不趋于0,那么级数必发散。

【例】,其一般项为,当时,不趋于0,因此这个级数发散。

注:并非级数收敛充分条件【例】调与级数,虽然,但是此级数发散。

事实上,假设调与级数收敛于,那么,但,矛盾!所以假设不真。

【例3】判断以下级数敛散性,假设收敛求其与:〔1〕〔2〕【答案】〔1〕发散;〔2〕发散五、两个重要级数:几何级数与p级数敛散性学习笔记:〔1〕几何级数:,当时收敛;当时发散.〔2〕级数(或对数级数):,当时收敛,当时发散。

【重点小结】1、常数项级数收敛与发散定义2、常数项级数敛散性质3、常数项级数收敛必要条件4、常用两个常数项级数第二节常数项级数审敛法一、正项级数及其审敛法正项级数:假设,那么称为正项级数。

第十二章 练习题答案

第十二章     练习题答案

第十二章 练习题一、 填空1、级数∑∞=1n n u ,一般项n u 趋于零是级数收敛的 必要 条件2、若数项级数1∞=∑n n u 收敛,则lim n n u →∞= 0 。

3、级数11n n aq -∞∑=当q 时收敛,当q 时发散4、 级数∑+∞=-11-3)1n nn (的和为( 41) 5、判别级数1(1)(1)nn In n ∞=-+∑的敛散性(绝对、条件或发散) 条件收敛 .6、判别级数n11(1)n n ∞=+-∑的敛散性(绝对、条件或发散) 发散 .7、部分和数列{}n s 有界是正项级数∑∞=1n n u 收敛的 充要 条件8、 幂级数∑∞=-1)5(n nnx 的收敛区间是()6,4.9、 幂级数221212-∞=∑-n n n x n 的收敛区间是()2,2-.10、幂级数+++++nnx x x x 3232的收敛区间为 ()1,1- 11、 幂级数()222121nxx x nn -+++- 的收敛区间为 []1,1- 12、幂级数2323n x x x nx +++++的和函数是2,1(1)xx x <-.13、 级数()n n nx n ∑∞=--11!1的收敛半径等于∞+ .14、 函数 xx f +=21)(的麦克劳林展开式是()()2,2,2101-∈-∑∞=+x x n n n n .15、()xe xf =的幂级数展开式为 ++++++!!3!2132n x x x x n16、函数 xx f +=31)(的麦克劳林展开式是()()3,3,3101-∈-∑∞=+x x n n n n.17、 函数x sin 的幂级数展开式为 ()()21121!n nn x n +∞=-⋅+∑18、 在),[ππ-上的()x x f =以π2为周期,则傅里叶系数=n a 0 .19、 设()x f 是周期为π2的周期函数,它在),[ππ-上的表达式为()2x x f =,则 ()x f 的傅里叶系数=n b 0 . 二、选择第一节1、 等比级数a+aq+aq 2+…+aq n-1+…(a ≠0)( A )A. 当|q|<1时发散;当|q|≥1时收敛B. 当|q|≤1时发散;当|q|>1时收敛C. 当|q|≤1时收敛;当|q|>1时发散D. 当|q|<1时收敛;当|q|≥1时发散 2、若0lim =∞→n n a ,则级数∑∞=1n n a ( D )A 、一定收敛B 、一定发散C 、一定条件收敛D 、可能收敛,也可能发散3、级数∑∞=---1112)1(n n n 的和等于____D_____。

南华物理练习第12章答案

南华物理练习第12章答案

第十二章 光学练习一 一、选择题 1. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中:【 C 】(A) 传播的路程相等,走过的光程相等; (B) 传播的路程相等,走过的光程不相等; (C) 传播的路程不相等,走过的光程相等; (D) 传播的路程不相等,走过的光程不相等。

2、如果S 1、S 2 是两个相干光源,它们到P 点的距离分别为r 1、r 2和,路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于: 【 B 】1122111222111222111222t n t n )D (;)t n r ()t n r ()C (];t )1n (r []t )1n (r [)B ();t n r ()t n r ()A (-----+--++-+3.在双缝干涉中,两缝间距离为d , 双缝与屏幕之间的距离为D (D >> d ),波长为λ的平行单色光垂直照射到双缝上,屏幕上干涉条纹中相邻暗纹之间的距离是:【 D 】(A) 2λD /d . (A) λd /D . (B) dD /λ. (D) λD /d .4..用白光光源进行双缝实验, 若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝, 则: 【 D 】(A) 干涉条纹的宽度将发生改变.(B) 产生红光和蓝光的两套彩色干涉条纹. (C) 干涉条纹的亮度将发生改变. (D) 不产生干涉条纹. 二、填空题1. 相干光满足的条件是1)频率相同;2)位相差恒定;3)振动方向相同,2. 在双缝实验中,双缝间距变小:干涉条纹间距增大; 3.在双缝实验中,波长变长: 干涉条纹间距增大;4.把双缝干涉实验装置放在折射率为n 的媒质中,双缝到观察屏的距离为D ,两缝间的距离为d (d <<D ),入射光在真空中的波长为λ ,则屏上干涉条纹中相邻明纹的间距是dnD λ三、计算题1. 在双缝干涉的实验中,用波长nm 546=λ的单色光照射,双缝与屏的距离D=300mm ,测得中央明条纹两侧的两个第五级明条纹之间的间距为12.2mm ,求双缝间的距离。

第12章 光的衍射

第12章 光的衍射

第十二章 光的衍射一、选择题12.1 一束波长为λ的平行单色光垂直射到一单缝AB 上,装置如图,在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长为[ ] (A )λ (B )2λ (C )23λ (D )λ212.2 波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为6πθ±=,则狭缝的大小为[ ](A )2λ (B )λ (C )λ2 (D )λ312.3 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为λ4=a 的单缝上,对应于衍射角为︒30的方向,单缝处波阵面可分成的半波带数目为[ ] (A )2个 (B )4个 (C )6个 (D )8个二、填空题12.4 一单色平行光垂直入射一单缝,其衍射第三级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,则该单色光波长 。

12.5 一块光栅,每毫米有400条刻痕线,用波长范围在400nm~590nm 的复色光垂直照射,可以测得 级不重叠的完整光谱。

12.6 光强均为0I 的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是。

12.7 单缝宽度mm a 02.0=,用平行光的纳黄光(nm 3.589=λ)垂直照射到狭缝上,一级暗纹的衍射角=1φ 弧度;若将此装置全部浸入折射率为62.1=n 的溶液中,一级明纹的衍射角将为 弧度。

P D12.8 单色平行光垂直射向缝数足够多的透射光栅,此时将在屏幕上得到一组光栅谱线。

现将光栅的奇数(或偶数)号缝遮住,则将看到屏幕上相邻谱线的间距变为原来的 倍。

12.9 一束平行光垂直入射在光栅上,若光栅的透明部分a 是不透明部分b 宽度的一半,则衍射光谱缺级的可能级次为 。

12.10 若X 射线以掠射角︒=300α入射,已知晶体原子层的间距nm d 275.0=,则第三级谱线的波长是 nm 。

二、计算题12.11 使波长为480nm 的单色光垂直入射到每毫米有250条狭缝的光栅上,光栅常数为一条缝宽的3倍,求(1)第一级谱线的角位置; (2)总共可以观察到几条光谱线?12.12 用白光(白光所含光波波长范围为400~760nm )照射一光栅,通过透镜将衍射光谱聚焦于屏幕上,透镜与屏幕距离为0.8m ,(1)试说明第一级光谱能否出现完整的不重叠的光谱; (2)第二级光谱从哪一个波长开始与第三级光谱发生重叠?(3)若第二级光谱被重叠的部分长度为2.5cm ,求这光栅每cm 有多少条刻痕?12.13 在宽度mm b 6.0=的单缝后有一薄透镜,其焦距cm f 40=,在焦平面处有一个与狭缝平行的屏,以平行光垂直入射,在屏上形成衍射条纹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发散,所以
发散。
n=2 (n + 1)
n=2 ln(n + 1)
∑ 再考虑交错级数

(−1) n−1
n=1
1 ln(n + 1)
,设 un
=
1 ln(n + 1)
,由于 ln(n + 1) 单调增加,所以
∑ u n +1
<
u
n
,而
lim
n→∞
u
n
=
lim
n→∞
1 ln(n + 1)
=

0 ,根据莱布尼茨定理可知, (−1)n+1
= x − 4 ,那么所求幂级数表示为
n=1
tn n
,则 an
=
1

n
ρ = lim an+1 = lim
n→∞ an
n→∞
1
n + 1 = lim
1
n→∞
n
∑ n

= 1,因此级数
tn
的收敛半径 R = 1,收敛
n +1
n=1 n
∑ 区间为 (−1,1) 。由于 −1 < t < 1 时,即 −1 < x − 4 < 1 ,所以 ∞ (x − 4)n 的收敛区间为
n
= lim (n + 1)n+1 × n! n→∞ (n + 1)! n n
= lim n + 1n = lim1 + 1 n n→∞ n n→∞ n
=e >1
根据正项级数的比值审敛法,所求级数的收敛性为发散的。
3.解: un
=
3× 5 × 7 ×× (2n + 1) 4 × 7 ×10 ×× (3n + 1)
(t)n ,则 an
=
(−1) n−1 2n −1

∑ ρ = lim an+1 = lim 2n − 1 = 1,因此级数 ∞ (−1)n−1 (t)n 的收敛半径 R = 1,收敛区间为
a n→∞ n
n→∞ 2n + 1
n=1 2n − 1
∑∞
(−1,1) 。由于 −1 < t < 1时,即 −1 < 2x − 3 < 1,所以
(−1)n−1 0n + C
n=1
n
解得 C = 0 ,故
∑∞
ln(1 + x) =
(−1)n−1 x n
n=1
n
∑ (3)解:把
1

= (−1)n x n 中的 x 替换 x 2 ,有
1 + x n=0
∑ 1
1+ x2
=

(−1)n x 2n
n=0
根据幂级数的逐项可积性质,对上式两边从 0 到 x 积分得
∫ ∑ ∫ ∑ x 1
0 1+ x2
dx
=
∞ n=0
(−1) n
x x 2n dx
0

= (−1)n
n=0
1 x 2n+1 + C , 2n +1

∑∞
arctanx =
(−1)n x 2n+1 + C
n=0 2n + 1
将 x = 0 代入上式得 解得 C = 0 ,故
∑∞
arctan0 =
(−1)n 02n+1 + C
1
是发散
n=1 n
n=1 n
的;因此,所求级数的收敛域为 [3,5) 。
∑ (2)解:首先设 t
=
x − 1,那么所求幂级数表示为
∞ n=1
tn 2n ⋅n
,则 an
=
1

2n ⋅n
∑ ρ = lim an+1 = lim
2n × n
= 1 lim
n
=
1
,因此级数

tn
的收敛半径 R = 2 ,
a n→∞ n
再考虑交错级数 (−1)n+1 sin
n=2
1 n
,设 un
=
sin
1 n
,由于 0
<
1 n
≤1<
π 2
, sin
x 单调增加,
sin
1 n +1
<
sin
1 n
,所以 un+1
<
un
,而
lim
n→∞
u
n
=
lim sin
n→∞
1 n
=
0 ,根据莱布尼茨定理可知,
∑∞ (−1)n+1 sin 1 收敛,且为条件收敛。
n=2
sin
1 n
收敛,
且为条件收敛。
( ) ∞ n2
(3)解:考虑正项级数

∑ 3n
n=1
设 un
= n 2 ,由于 lim un+1
3n
u n→∞ n
= lim n→∞
n +1 2 ⋅ 3n 3n+1 n 2
=1 3
< 1,
∑ ∑ ∞
根据正项级数比值审敛法可知级数
n=1
n2 3n
收敛,则

(−1) n−1
(−1)n−1 (2x − 3)n 的收敛区间为
n=1 2n − 1
1< x < 2。 其次由于收敛区间端点 x = 1处,级数
∑ ∑ ∑ ∞
(−1) n−1
1

(−1)n = (−1)2n−1
1

=−
1
n=1
2n −1
n=1
2n − 1 n=1 2n − 1
∑∞
是发散级数;由于收敛区间端点 x = 2 处,级数 (−1)n−1
3
4. 判定下列级数是否收敛?如果收敛的,是绝对收敛还是条件收敛?
∑ ∑ (1)解: 先考虑正项级数

sin 1 ,由于
sin 1 lim n
sin 1 = lim n
= 1,而

1
发散,由
n=2
n
n→∞ 1
n→∞ 1
n=2 n
n
n
∑∞
1
正项级数比较审敛法的极限形式可知 sin 发散。
n=2
n
∑∞
n=1 n
an
(− a < x ≤ a)。
(3)解:
f
(x)
=
x2
1 + 3x + 2
=
(x
1
+ 1)(x
+
2)
=
1− x +1
x
1 +
2
由于
1=
1
=−1× 1
x + 1 − 3 + (x + 4) 3 1 − x + 4
3
1=
1
=−1× 1
x + 2 − 2 + (x + 4) 2 1 − x + 4
1
是一个交错级数,根据莱
n=1
2n −1
∑ 布尼茨定理:由于 1 > 1
且 lim
1

= 0 ,所以 (−1)n−1
1
是收敛的;
2n −1 2n + 1 n→∞ 2n −1
n=1
2n −1
因此,所求级数的收敛域为 (1,2]。
2.根据简单的幂级数展开式生成一些函数的展开式:
∑ ∑ (1)解:由于
1

n=1
n2 3n
收敛,且绝对收敛。
∑ ∑ ∞
(4)解: 先考虑正项级数
1 ,它是一个 p − 级数,由于 p < 1,所以 ∞
1
是发散的;
n=2 n
n=1 n
∑ 再 考 虑 级 数

(−1) n
是一个交错级数,根据莱布尼茨定理:由于
1
>
1

n=1 n
n n+1
∑ lim 1 = 0 ,所以 ∞ (−1)n 是收敛的,且为条件收敛。
n=0 2n + 1
∑∞
arctanx =
(−1) n x 2n+1
n=0 2n + 1
∑ (4)解:根据幂级数的逐项可导性质,对
1

= (−1)n x n 两边分别求导得
1 + x n=0
∑ −
1

= (−1)n nx n−1
(1 + x)2 n=0
对上式两端都乘以 − 1得
∑ ∑ 1


= − (−1)n nx n−1 = (−1)n+1 nx n−1

则 lim un+1 = lim 3× 5 × 7 ×× (2n + 3) ⋅ 4 × 7 ×10 ×× (3n + 1)
u n→∞ n
n→∞ 4 × 7 ×10 ×× (3n + 4) 3× 5 × 7 ×× (2n + 1)
= lim 2n + 3 = 2 < 1,根据正项级数的比值审敛法,所求级数的收敛性为收敛的。 n→∞ 3n + 4 3
3
∑ 因此
f (x)
= x+3− 3 1− x
=
x+3−3

x n
n=0 3
=
x
相关文档
最新文档