求代数式值的几种常用方法
初中数学代数式求值的十种常用方法
初中数学代数式求值的十种常用方法
1.代入法:将给定的数值代入代数式中进行计算,得出结果。
2.合并同类项法:将代数式中相同类型的项合并在一起,然后进行计算。
3.分配律法则:当代数式中有乘法与加法混合时,可以使用分配律法则,先将乘法进行计算,再进行加法计算。
4.因式分解法:将代数式拆分成多个因式的乘积,可以简化计算过程。
5.移项法则:将方程或不等式中的项从一边移动到另一边,可以改变
其符号并保持平衡。
6.反消法则:如果代数式中出现相反数的加减运算,可以将它们互相
抵消,简化计算过程。
7.四舍五入法:在进行代数式求值时,可以采用四舍五入的方法,保
留指定位数的有效数字。
8.消元法:解决多元一次方程组时,可以使用消元法将方程组化简为
更简单的形式,从而求解未知数的值。
9.变量替换法:如果代数式中出现复杂的变量,可以将其替换为一个
新的变量,简化计算。
10.逆运算法:如果代数式中有幂运算、开方运算等,可以使用逆运
算法对其进行求值。
例如,如果代数式中有x^2=9,可以通过开平方根来
求出x的值。
这些是求解代数式的常用方法,每种方法都有其适用的情况。
在实践中,根据具体的代数式和求值要求,选择合适的方法进行计算,可以提高计算的效率和准确性。
代数式求值的常用方法
代数式求值的常用方法一、代入法代入法是最常见和最简单的一种代数式求值方法。
它的基本思想是将代数式中的未知数换成给定的具体数值,然后计算出结果。
代入法的具体步骤如下:1.将未知数换成给定的具体数值,常用的数值有整数、分数、小数等;2.将代入后的具体数值代入代数式中,计算代数式的值。
举例来说,假设给定的代数式是4x+3,要求当x取2时的值。
那么按照代入法,我们将代数式中的x换成2,并进行计算:4×2+3=8+3=11、所以,当x取2时,代数式4x+3的值为11除了求给定的代数式的值外,代入法还可以用来验证代数等式的真假。
比如,已知等式2x+3=11,我们可以将等式中的x换成具体的数值,然后计算出等式的右边和左边的值,如果两边的值相等,就说明该等式成立。
二、化简法化简法是将复杂的代数式通过一系列的化简步骤,简化成更简洁的形式。
在实际问题中,常常遇到一些复杂的代数式,如果直接代入数值计算,会非常繁琐。
此时,我们可以利用化简法将代数式化简成更简单的形式,从而便于计算。
化简法的基本思想是运用代数式的基本运算法则,比如合并同类项、分配律、移项等,将代数式中的项进行合并和简化。
举例来说,假设给定的代数式是(x+2)(3x-4),我们可以运用分配律将其展开,并结合同类项进行简化:x×3x+x×(-4)+2×3x+2×(-4)=3x^2-4x+6x-8=3x^2+2x-8通过化简,原来的复杂代数式被简化成了一个二次多项式。
这样,在给定具体数值后,就可以直接计算出其值。
三、分解法分解法是将代数式中的复杂项分解成多个简单项的乘积,并进一步进行计算的方法。
具体而言,分解法包括提取公因式、配方法、平方差公式等。
1.提取公因式:通过将代数式中的公共因子提取出来,将代数式分解成多个因子的乘积。
比如,对于代数式3x+6,可以提取公因式3,得到3(x+2)。
2.配方法:通过运用二次项的平方公式,将代数式分解成两个平方项的差、和的形式。
代数式的值
代数式的值一、主要内容:1.代数式的值的概念:一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值。
注:1)字母的取值不能使代数式本身失去意义,如分母不能为零;2)不能使它所表示的实际问题失去意义,如求路程公式S=vt中,v,t不能取负数。
2.求代数式的值的方法:先代入后计算:注:1)代入时,只将相应的字换成相应的数,其它符号不变。
2)代数式中原来省略的乘号代入数值以后一定要还原。
3)对于已知一个比较复杂的代数式的值,求另一个代数式的常用的方法有整体代入法,代换法。
4)根据代数式所表示的运算顺序,按有关运算法则,计算出结果。
二、主要数学思想:代数式的值是由字母所取的值确定的,当代数式中的字母每取一个值时,代数式就表示一个确定的(数)值。
因此,求代数式的值是由一般(式)到特殊(数)的问题,通过求代数式的值,可进一步理解代数式的意义和作用。
三、例题讲解:例1 求下列代数式的值:(1) a2- +2 其中a=4, b=12,(2) 其中a= , b= .解:(1)当a=4, b=12时,a2- +2=42- +2=16-3+2=15(2)当a= ,b= 时,= = = 。
点评:(1)求代数式的值的解题步骤是:①指出代数式中的字母所取的值;②抄写原代数式;③把字母的值代入代数式中;④按规定的运算顺序进行计算。
(2)代数式的值是由代数式里字母所取的数的大小来确定的,代数式里的字母可取不同的值,但这些值必须使代数式和它所表示的实际数量有意义。
(1)题中的a不能取0,因为当a取0时,的分母为零,代数式无意义。
(2)题中a+b不能为0。
例2当a=-1,b=2,c=3时,求下列各代数式的值。
(1)(2)(a2+b2-c2)2(3)分析:求代数式在a=-1,b=2,c=3时的值,就是把代数式中的字a、b、c,分别用-1,2,3代替,按原来的运算顺序进行运算即可。
(1)(2)(a 2+b 2-c 2)2=[(-1)2+22-32]2=[-4]2=16(3)例3 已知a - =2,求代数(a - )2- +6+a 的值。
求代数式值的几种常用方法
求代数式值的几种常用方法王一成求值的方法很多,中考数学中,也经常出现这类习题,假设不掌握一定的方法,一些习题确实不容易解答。
初中阶段,常见的求值方法有哪些呢?一、化简求值例:先化简,再求值:GbVab'-b'Lb-k+bXa-b),其中a ・〈,b--l o解:原式■a'-2ab-b 3-(a 2-b 2)«a 2-2ab-b 2-a 2+b 2三-2ab o原式.-2ab∙-2x7χ(-1)-1。
二、倒数法求值I, 例:X∙一∙4,求-7解: 所以T⅛77的值为专例:a>b 、C 为实数且a+b=5c 2=ab+b-9,求a+b+c 之值。
R 的值。
例: X 2 X 2 -2 ^ l-√3-√2 '-X 1 + x X)÷(^——+ X )的值。
X -1 解由,得X 2-2X 2 三、 例:所以,1—— = 1 — V3 - V2 X那么一W=一百一 √iJC二二•二I ==二一6一出I-X 2 X 3 X 2配方求值a 2+b 3 + 2a-4b÷5-0,求2a04b-3的值。
解: 由 a ' + b' + 2∂ — 4b ÷ 5 ≡ O,得G + 2a + l)÷(b a -4b + 4)«0,即(a + 】> + (b- 2)1。
,由非负数的性质得a÷l≡0,b -2-0, 解得a-1, b ・2。
薪以值⅛-2∙'*4bf jcgF+4x2∙3-7四、构造一元二次方程求值解Va+b=5c2=ab+b-9b+(a+∖)=6b(a+1)=C2+9那么b,a+1为t2-6t+c2+9=0两根Va,b为实数Λb,a+1为实数,那么t2-6t+c2+9=0有实根ΛΔ=36-4(C2+9)=-4C⅛0c=0Λa+b+c=5五、整体求值i1,a-3a⅛÷b^|J:a+b-,那么2a-2b-7ab- ----------------------- 。
求代数式值的方法
求代数式值的方法代数式是由数字、字母和运算符组成的表达式。
它们在数学中具有非常重要的作用,因为它们可以用来求解各种数学问题,如方程、不等式等。
但是,代数式的价值如何确定是一个常见的问题。
本文将介绍如何求代数式的值,以及在不同情况下的常见计算方法。
首先,我们需要了解代数式中的常见符号和运算。
代数式使用加减乘除等运算符号,常见的数学符号包括圆括号、方括号、花括号、冒号等,其中圆括号是最常用的括号,它们用于组合和区分数学表达式中的不同部分。
在代数式中,一个字母或数字被称为变量,它可以用来表示一个数或者一个未知数。
接下来,我们来看看如何计算代数式的值。
假设我们有一个简单的代数式x + 2,其中x的值为3。
为了计算这个代数式的值,我们只需要将x的值代入式子中,然后进行相应的计算,公式如下:x + 2 = 3 + 2 = 5在这个例子中,我们将x的值代入方程式中,然后使用加法运算符将x和2相加,得到代数式的值为5。
这个计算方法适用于代数式中只有一个未知数的情况,比如x + 2、3x - 4等。
然而,当代数式中有多个未知数时,我们需要使用不同的方法进行计算。
比如,在代数式2x + 3y中,我们需要知道x和y的值才能计算该代数式的值。
此时,我们可以采用以下两种方法:方法一:代入值并计算这种方法和上面的单变量情况一样,我们把每一个变量的值都代入到方程中,然后进行相应的计算。
例如,如果x = 2,y = 3,则有:2x + 3y = (2 ×2) + (3 ×3) = 4 + 9 = 13在这个例子中,我们首先将x的值替换为2,将y的值替换为3,然后将这两个式子相加。
最后,我们得到了代数式的值为13。
方法二:因式分解和合并同类项在这种方法中,我们将代数式转换为一组因式的乘积,并将相同类型的项合并在一起,然后计算得到总和。
例如,对于2x + 3y,我们可以将代数式转换为:2x + 3y = 2 ×x + 3 ×y现在,对于每个乘积项都相同的部分,我们可以将其合并在一起,然后计算总和。
求代数式的值
第三讲求代数式的值用具体的数代替代数式里的字母进行计算,求出代数式的值,是一个由一般到特殊的过程.具体求解代数式值的问题时,对于较简单的问题,代入直接计算并不困难,但对于较复杂的代数式,往往是先化简,然后再求值.下面结合例题初步看一看代数式求值的常用技巧.例1求下列代数式的值:分析上面两题均可直接代入求值,但会很麻烦,容易出错.我们可以利用已经学过的有关概念、法则,如合并同类项,添、去括号等,先将代数式化简,然后再求值,这样会大大提高运算的速度和结果的准确性.=0-4a3b2-a2b-5=-4×13×(- 2)2- 12×(-2)-5=-16+2-5=-19.(2)原式=3x2y-xyz+(2xyz-x2z)+4x2?[3x2y-(xyz-5x2z)]=3x2y-xyz+2xyz-x2z+4x2z-3x2y+(xyz-5x2z)=(3x2y-3x2y)+(-xyz+2xyz+xyz)+(-x2z+4x2z-5x2z)=2xyz-2x2z=2×(-1)×2×(-3)-2×(-1)2×(-3)=12+6=18.说明本例中(1)的化简是添括号,将同类项合并后,再代入求值;(2)是先去括号,然后再添括号,合并化简后,再代入求值.去、添括号时,一定要注意各项符号的变化.例2已知a-b=-1,求a3+3ab-b3的值.分析由已知条件a-b=-1,我们无法求出a,b的确定值,因此本题不能像例1那样,代入a,b的值求代数式的值.下面给出本题的五种解法.解法1由a-b=-1得a=b-1,代入所求代数式化简a3+3ab-b3=(b-1)3+3(b-1)b-b3=b3-3b2+3b-1+3b2-3b-b3=-1.说明这是用代入消元法消去a化简求值的.解法2因为a-b=-1,所以原式=(a3-b3)+3ab=(a-b)(a2+ab+b2)+3ab=-1×(a2+ab+b2)+3ab=-a2-ab-b2+3ab=-(a2-2ab+b2)=-(a-b)2=-(-1)2=-1.说明这种解法是利用了乘法公式,将原式化简求值的.解法3 因为a-b=-1,所以原式=a3-3ab(-1)-b3=a3-3ab(a-b)-b3=a3-3a2b+3ab2-b3=(a-b)3=(-1)3=-1.说明这种解法巧妙地利用了-1=a-b,并将3ab化为-3ab(-1)=-3ab(a-b),从而凑成了(a-b)3.解法4 因为a-b=-1,所以(a-b)3=(-1)3=1,即 a3+3ab2-3a2b-b3=-1,a3-b3-3ab(a-b)=-1,所以 a3-b3-3ab(-1)=-1,即 a3-b3+3ab=-1.说明这种解法是由a-b=-1,演绎推理出所求代数式的值.解法 5a3+3ab-b3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab=(a-b)3+3ab(a-b)+3ab=(-1)3+3ab(-1)+3ab=-1.说明这种解法是添项,凑出(a-b)3,然后化简求值.通过这个例题可以看出,求代数式的值的方法是很灵活的,需要认真思考,才能找到简便的算法.在本例的各种解法中,用到了几个常用的乘法公式,现总结如下:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a-b)3=a3-3a2b+3ab2-b3;a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).解由已知,xy=2(x+y),代入所求代数式中,消去xy,然后化简.所以解因为a=3b,所以c=5a=5×(3b)=15b.将a,c代入所求代数式,化简得解因为(x-5)2,|m|都是非负数,所以由(1)有由(2)得y+1=3,所以y=2.下面先化简所求代数式,然后再代入求值.=x2y+5m2x+10xy2=52×2+0+10×5×22=250例6如果4a-3b=7,并且3a+2b=19,求14a-2b的值.分析此题可以用方程组求出a,b的值,再分别代入14a-2b求值.下面介绍一种不必求出a,b的值的解法.解 14a-2b=2(7a-b)=2[(4a+3a)+(-3b+2b)]=2[(4a-3b)+(3a+2b)]=2(7+19)=52.|x|+|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值.分析所求代数式中六个绝对值的分界点,分别为:0,1,2,据绝对值的意义去掉绝对值的符号,将有3个x和3个-x,这样将抵消掉x,使求值变得容易.原式=x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5)=-1-2+3+4+5=9.说明实际上,本题只要x的值在2与3之间,那么这个代数式的值就是9,即它与x具体的取值无关.例8若x:y:z=3:4:7,且2x-y+z=18,那么x+2y-z的值是多少?分析 x:y:z=3:4:7可以写成的形式,对于等比,我们通常可以设它们的比值为常数k,这样可以给问题的解决带来便利.x=3k,y=4k,z=7k.因为2x-y+z=18,所以2×3k-4k+7k=18,所以k=2,所以x=6,y=8,z=14,所以x+2y-z=6+16-14=8.例9已知x=y=11,求(xy-1)2+(x+y-2)(x+y-2xy)的值.分析本题是可直接代入求值的.下面采用换元法,先将式子改写得较简洁,然后再求值.解设x+y=m,xy=n.原式=(n-1)2+(m-2)(m-2n)=(n-1)2+m2-2m-2mn+4n=n2-2n+1+4n-2m-2mn+m2=(n+1)2-2m(n+1)+m2=(n+1-m)2=(11×11+1-22)2=(121+1-22)2=1002=10000.说明换元法是处理较复杂的代数式的常用手法,通过换元,可以使代数式的特征更加突出,从而简化了题目的表述形式.练习三1.求下列代数式的值:(1)a4+3ab-6a2b2-3ab2+4ab+6a2b-7a2b2-2a4,其中a=-2,b=1;的值.3.已知a=3.5,b=-0.8,求代数式|6-5b|-|3a-2b|-|8b-1|的值.4.已知(a+1)2-(3a2+4ab+4b2+2)=0,求 a,b的值.5.已知。
一花独放不是春 百花齐放春满园——小议求代数式值常用的几种方法
评 注 : 用 该 方 法 一 般 有 两 种 途 径 求 值 , 是 将 已 知 条 运 一
.
、
直 接 代 入 法
件 变形 为一 边 为 0 ,另 一 边 能 分 解 成 几个 因式 的积 的形 式 , 运 用 “ A・ - , A= 若 B 0则 0或 B O 的 思 想 来 解 决 问 题 . =” 另一 种 途 径 是 对 待求 的 代数 式 进 行 因式 分 解 . 分解 成 含 有 已知 条
荔
所 以
评 注 : 题 先 把 已知 条 件 重 新 组 合 , 进 一 步 化 简 , 本 作 求 出 a b的值 再 代 入 原式 求 值 . 与 三、 整体 代 入 法
的・ 值
一 一
解: , 一=( 0, =ky k =k 设 _ 4 k ≠ ) 2 , 3, 4 。 k 则x = z
例 1 已知 a l b 3 求 代 数式 3 24 b i b的值 . : = ,一 , a_ a —
解 : a ,= 3时 , 式 = xl- x × 一3 一 一 一 ) 当 =l b - 原 3 4 1 ( ) 1×( 3 =
1 6 3
件 的代 数 式 。 后 再 将 已 知条 件 代 入求 值 . 然
的.
原 式= 5 2 5 b+ a 21 ab 1 a 一 a 24 b- 2 2 b
=
=
3 一 ) ( 2) 一1 ×( 2 ×( 1 一 一( ) 一 )
六 、 进参 数 法 引
=6 — - 一(4)
=一 2
例 :知 、、 有 数且吾3 1求 数 6 xy为 理 , 。。 , 式 已 2z 代 4
数 式 中求值 的一 种 方 法
初二数学:上册第三章用字母表示数3.3代数式的值妙用整体思想求代数式的值
妙用整体思想求代数式的值有的代数式求值往往不直接给出字母的取值,而是通过告诉一个代数式的值,且已知代数式中的字母又无法具体求出来,这时,我们应想到采用整体思想解决问题,用整体思想求值时,关键是如何确定整体。
下面举例说明如何用整体思想求代数式的值。
一、直接代入例1、如果5a b +=,那么(a+b )2-4(a+b )= .解析:本题是直接代入求值的一个基本题型,a 、b 的值虽然都不知道,但我们发现已知式与要求式之间都有(a b +),只要把式中的a b +的值代入到要求的式子中,即可得出结果5.(a+b )2-4(a+b )=52-4×5=5。
二、转化已知式后再代入例2、已知a 2-a-4=0,求a 2-2(a 2-a+3)-21(a 2-a-4)-a 的值. 解析:仔细观察已知式所求式,它们当中都含有a 2-a ,可以将a 2-a-4=0转化为a 2-a=4,再把a 2-a 的值直接代入所求式即可。
a 2-2(a 2-a+3)-21(a 2-a-4)-a=a 2-a-2(a 2-a+3)-21(a 2-a-4)=(a 2-a)-2(a 2-a)-6-21(a 2-a)+2=-23(a 2-a)-4.所以当a 2-a=4时,原式=-23×4-4=-10. 三、转化所求式后再代入例3、若236x x -=,则262x x -= .解析:这两个乍看起来好象没有什么关系的式子,其实却存在着非常紧密的内在联系,所求式是已知式的相反数的2倍.我们可作简单的变形:由236x x -=,可得236x x -=-,两边再乘以2,即得262x x -=-12.例4、2237x x ++的值为8,则2469x x +-= .解析:将要求式进行转化,“凑”出与已知式相同的式子再代入求值,即由2469x x +-得22(37)23x x ++-=2×8-23=-7。
本题也可将已知式进行转化,由2237x x ++的值为8,得2231x x +=,两边再乘以2,得246x x +=2,于是2469x x +-=-7。
代数式求值的十种常用方法
解:原式 。
当 , 时,
原式 。
练习:(2009年河北省)已知 , ,求 的值。
提示:原式 。
当 , 时,原式=1。
三、整体代入法
当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到待求的代数式中去求值的一种方法。通过整体代入,实现降次、归零、约分的目的,以便快速求得其值。
例1若 和 互为相反数,则 =_______。
解:由题意知, ,则 且 ,解得 , 。因为 ,所以 ,故填37。
练习:(2010年深圳市)若 ,则 的值是()
A. 0B.1C. –1D. 2007
提示: , ,选C。
二、化简代入法
化简代入法是指先把所求的代数式进行化简,然后再代入求值,这是代数式求值中最常见、最基本的方法。
例4请将式子 化简后,再从0,1,2三个数中选择一个你喜欢且使原式有意义的x的值代入求值。
解:原式
。
依题意,只要 就行,当 时,原式 或当 时,原式 。
练习:先将式子 化简,然后请你自选一个理想的x值求出原式的值。
提示:原式 。只要 和 的任意实数均可求得其值。
五、倒数法
倒数法是指将已知条件或待求的代数式作倒数变形,从而求出代数式的值的一种方法。
代数式求值的十种常用方法
代数式求值问题是历年中考试题中一种极为常见的题型,它除了按常规直接代入求值外,还要根据其形式多样,思路多变的特点,灵活运用恰当的方法和技巧,本文结合近几年各地市的中考试题,介绍十种常用的求值方法,以供参考。
一、利用非负数的性质
若已知条件是几个非负数的和的形式,则可利用“若几个非负数的和为零,则每个非负数都应为零”来确定字母的值,再代入求值。目前,经常出现的非负数有 , , 等。
苏教版初一数学《代数式求值》常用方法
初一数学《代数式求值》常用方法一、直接带入法练习巩固:_31.当% =~2,>,= 2时,求代数式畑-尸)的值:2.(1)当°=5』=一2时,求下列代数式的值:①《 + 〃)':②a2+2ab+lr .(2)这两个代数式有什么关系?(3)你能用简便方法计算出当。
=°・215,"0.785时,代数式a2+2ab + lr的值吗?二、整体代入法例1:已知疋-2y = l,那么2疋-4〉,+ 3= _____________ .练习巩固1:1.已知兀+〉'=一2,•骂=-4,则代数式x+y 2的值是 ____________________2.若加_2〃 + 3 = 0,则代数式3加_6/Z-5 =___________________ ;3.已知2兀一)'=5,则代数式3-4x+2y = ________________ :2 丄I4.若2b+3y + 7的值为才,则4F+6y-l的值为_________________ :凹=7 缩+历Z例2:已知。
-方,求a~b 3(a + b)的值:练习巩固2:2x-y °2x- v x + y----- =J ------ 1 ------1.当x + y 时,求代数式2x + 2y 6x-3y的值.2.若"+心〒“,2,求代数式(a + d_3(〃—c)— l的值; 20201031例:当X=_2Q=_3时.求: -x2 + 2xy4•的值:3.若疋+小=-2$+小=5,求代数式2十+5卩+ 3尸的值;例3:已知当x = -2时,代数式ax3+bx+\的值为5:求x = 2时,代数式ax"+bx+l的值.练习巩固3:1.当兀=一3时,代数式曲+加+8的值是12,则当x = 3时,代数式o?+加-5的值为________________2.当兀=5时,代数式ax5+bx3+cx+3的值为7;则当兀=一5时,此代数式的值是___________________三、设“k”法x_y_z 2x-y例:已知亍㊁ 4 求代数式x + 3z的值;练习巩固:3a+ b1.已知"cHO,且c":c = 2:3:7,则代数式a-b + c的值是_____________________2x + y + z2.已知2a=3>? = 4z,且勺"0,求代数式_y-4z的值:x _ y _ z变式:若3"4'5,且3x-2y + z = l「则z + 5y — 3z的值为 _________________四、逐步代入1.设〃『+加一1 = 0,则+2〃广+2015 = ---------- ;2.已知x2+x-l=0/求代数式2x3 + 4x2+2020的值;3・已知则代数式加+2/+8= _______________________ ;当堂练习1.当x=l时,2ax2 + bx的值为5,则当x = 2时,ax2 + bx的值为____________ ・2.设(3x - 1)5 = a5x5 4- a4x4 + a3x3+a2x2 + a lx+aO > 则a5 + a4 + a3 + a2 + al + a0= __ ・.9/?rnr + —;——3.已知实数m满足m2-3m + l=0.则代数式〃广+】的值等于_____________________ ・4.若m2 —2mn=2016»— 2mn + n2 = 2015»则m2 — n2= _____________ ・£5.当x=-6, y= 6时,求代数式x2016y2017的值.6.历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f (a)来表示,例如x = -l时,多项式f(x) = x2+3x-5的值记为f(一1),那么f(一1)等于______ ・7.已知两个代数式(a-b) 2和a2-2ab+b2.小明在研究这个两个代数式的时候发现当a、b取任意整数时,两个代数式的值相等.(1)关于这两个代数式的值你还有其他的发现吗?(2)利用你发现的规律求135.72 - 2x135.7x35.7+35.72的值.课外作业1.当x=l时,ax + b + 1的值为一2,则(a + b - 1) (1 - a - b)的值为____________ ・92.已知a ■ b = 2, a - c=lt则代数式(a-b) 2+3 (b - c) + °的值是_____________ ・3.已知有理数a, b, c满足以下条件:5 (x-y+3) 2 + 2|m-2|=0; n3a2 — yb5 + z是一个三次单项式且系数为一 1.(1) m, n 的值:(2)代数式(x - y) m + l+ (y - z) l — n+ (z - x) 5 的值.4・已知:a2 + 2ab = -2, b2 - 2ab=6,求下列代数式的值:(1) a2 + b2;(2) 3a2 - 2ab+4b2.5.历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)的形式来表示,把x等于某数a时的多项式的值用f(a)来表示,例如x=-l时,多项式f(x)=x2+3x・5的值记为f(一1),则:f (~1) = -7.已知f(x) = ax5 + bx3 + 3x+c,且 f (0)=~1;(1) c= ・(2)若f(l) = 2,求 a + b 的值;(3)若f(2)=9,求f(一2)的值.6・小明在求代数式2x2 —3x2y+mx2y —3x2的值时,发现所求出的代数式的值与y的值无关,试想一想m等于多少,并求当x=2,y=2017时原代数式的值.7. (1)若m, n 互为相反数,贝lj (3m—2n) — (2m—3n) =(2)当x = l时,代数式ax3 + bx + 7的值等于4,则当x=—l时,代数式ax3 + bx + 7的值为(3)当x-2y=5 时,贝I] 1—4y+2x 的值为:a-Z? 2a-2Z? 3(。
七年级数学代数值的求法
活用因式分解巧求代数式值例1. (1)已知求(2)已知求解:(1)由题意得:说明:(1)是一个整式求值问题,为了方便,本题中应用了“换元法”,使代数式简化,展开后因式分解,进而求解。
(2)利用代数式恒等变形,通过添项构造成能运用公式分解因式的代数式(向已知条件靠拢),从而求出代数式的值。
例2. (1)已知解:(1)由(2)说明:利用(拆项)恒等变形,可将方程的一边写成两个完全平方形式,而使另一边为零,利用因式分解及非负数的和为零,则每个非负数必须为零,从而求出未知数的值,进而求出代数式的值。
例3. 长方形周长是16cm,它的两边x、y是整数,且满足,求其面积。
解:由解:(I)得答:长方形的面积为15cm2。
说明:本题综合应用了因式分解、方程思想及取整知识,从而能顺利求解,解求值题重在认真观察分析题意,灵活运用因式分解及相关知识,化未知为已知,从而达到解题的目的。
[练习]:(1)已知(2)(3)(4)已知点击代数式求值方法运用已知条件,求代数式的值是数学学习的重要内容之一。
它除了按常规代入求值法,还要根据题目的特点,灵活运用恰当的方法和技巧,才能达到预期的目的。
下面举数例介绍常用的几种方法和技巧。
一、常值代换求值法常值代换法是指将待求的代数式中的常数用已知条件中的代数式来代换,然后通过计算或化简,求得代数式的值。
例1 已知ab=1,求221111b a +++的值 [解] 把ab=1代入,得221111b a +++ =22b ab ab a ab ab +++ =ba ab a b +++ =1[评注] 将待求的代数式中的常数1,用a ·b 代入是解决该问题的技巧。
而运用分式的基本性质及运用法则,对代入后所得的代数式进行化简是解决该问题的保证。
二、运用“非负数的性质”求值法该法是指运用“若几个非负数的和为零,则每一个非负数应为零”来确定代数式中的字母的值,从而达到求代数式的值的一种方法。
代数式求值的十种常用方法
代数式求值的十种常用方法在代数中,求解代数式的值是一种常见的操作。
下面列举了十种常用的方法来求值代数式。
1.代入:将代数式中的变量替换为具体的数值,然后进行计算。
例如,求解代数式3x+5y,当x=2,y=3时,代入计算为3*2+5*3=6+15=212.简化:将代数式中的项进行合并和化简,以得到一个更简化的代数式。
例如,代数式3x+2x可以简化为5x。
3.展开:将代数式中的括号展开,然后进行计算。
例如,代数式3(x+2)可以展开为3x+64.因式分解:将代数式进行因式分解,以得到更简化的形式。
例如,代数式2x+4y可以因式分解为2(x+2y)。
5.消元法:将代数式中的一些项相互抵消,以简化计算。
例如,代数式2x+3x可以通过消元法简化为5x。
6.合并同类项:将代数式中的相同项进行合并,以简化计算。
例如,代数式2x+3x可以合并同类项得到5x。
7.增量法:逐步增加变量的值,计算每一步的代数式的值,以找到代数式的值的变化规律。
例如,通过增量法可以计算出代数式2x的值随着x的增加而增加。
8.拆项法:将代数式拆分为更小的部分,然后进行计算。
例如,代数式2x+3y可以拆分为2x和3y分别计算,然后再求和。
9.定律法:根据代数的运算规律,利用各种定律进行计算。
例如,根据分配律可以求解代数式2(x+y)。
10.辅助变量法:引入一个辅助变量,将代数式转化为其他更容易求解的形式。
例如,引入辅助变量t,然后通过计算代数式x+t来求解代数式x+y。
这些方法可以单独使用或结合使用,具体使用哪种方法取决于具体的代数式和计算需求。
不同的方法在不同的情况下可能有不同的优势,因此学习和熟练掌握这些方法可以提高求值代数式的效率和准确性。
代数式求值秘诀
代数式求值秘诀
代数式是数学中重要的概念之一,它是由数字、字母和运算符号组成的式子。
在数学学习中,代数式求值是一项非常基础的技能,也是许多高级数学问题的解决之路。
代数式求值的秘诀在于,要善于运用数学知识和技巧,尤其是代数运算规律。
下面列举一些代数式求值的常用技巧:
1. 加减同类项,化简式子。
例如:3x + 5x - 2x = 6x
2. 整除分配律,将一个数因式分解后,对每个因数进行运算。
例如:4(x + 2) - 2(x + 3) = 4x + 8 - 2x - 6 = 2x + 2
3. 消去括号,根据括号内的运算规律进行计算。
例如:(3x + 2)(2x - 1) = 6x^2 + x - 2
4. 求幂,先计算底数,再将幂次方作为指数进行运算。
例如:(2x)^3 = 8x^3
5. 求根,将根号下的数化为幂次方,再进行运算。
例如:√(9x^2) = 3x
以上是代数式求值的一些基本技巧,希望对大家的数学学习有所帮助。
在实际应用中,还需要结合具体问题进行分析和运用。
- 1 -。
代数式求值的常用方法
代数式求值的常用方法代数式的求值问题出了可以按常规直接代入求值外,还可以其形式多样、思路多样的特点,灵活运用恰当的方法和技巧.本文介绍几种常用的求职方法,供同学们在复习时参考.一、化简代入求值例1 (2009年长沙市)222)())((a b a b a b a -++-+,其中3=a ,31-=b . 解析:化简代入法是指先把所求的代数式进行化简,然后代入求值. 原式=2222222a b ab a b a -+++-=ab 2.当3=a ,31-=b 时,原式=)31(32-⨯⨯=—2. 二、设参数求值例2 (2008年芜湖市)已知113x y -=,则代数式21422x xy y x xy y----的值为 . 解析:本题是比较有新意的,刚开始我们可能无从下手,因为无法确切求出未知数(x 、y 、z )的值,但我们可以通过设参数的形式解决. 将311=-yx 变形为3=-xy x y ,设k x y 3=-(即k y x 3-=-),k xy =.(0≠k ) ∴y xy x y xy x ----22142=xy y x xy y x 2)(14)(2----=k k k k 2314)3(2----⨯=k k 520--=4. 故本题填4.三、整体代入求值例3 (2009年江苏省)若2320a a --=,则2526a a +-= .解析:本题若通过利用2320a a --=求a 的值,计算将会比较复杂,所以我们可以根据题目特点考虑整体思想.由2320a a --=,得232=-a a .所以2526a a +-=5262++-a a =5)3(22+--a a =—2×2+5=1. 故本题填1.四、因式分解求值例4 (2009年枣庄市)若m +n =3,则222426m mn n ++-的值为( ) A.12 B.6 C.3 D.0解析:注意到22242n mn m ++能分解成2)(2n m +,可将3=+n m 整体代入,进而求值. 624222-++n mn m =6)(22-+n m =6322-⨯=12.故选A .五、平方求值例5 (2009年烟台市)设0a b >>,2260a b ab +-=,则的值等于 .解析:本题直接求值比较困难,可先求出待求式子平方的值,然后再开根号(即以退为进的策略),但要注意最后结果的符号.∵0622=-+ab b a ,即ab b a 622=+, ∴ab b a ab b a a b b a 22)(22222-+++=-+=abab ab ab ab ab 482626=-+=2. 又∵0a b >>,∴a b b a +->0,故a b b a +-=2.。
如何求代数式的值
如何求代数式的值
如何求代数式的值
求代数式的值是数学中的一个重要的内容,它是中考和数学竞赛中的必考内容.求代数式的值的一般步骤是先代入,再计算求值.但在实际解题时,常常需要综合运用知识求值,现介绍一些求代数式的值的一些常用的方法,以供同学们参考.
一、单值代入求值
用单一的字母数值代替代数式中的字母,按代数式指明的运算,计算出结果;
例1当x=2时,求x3+x2-x+3的值.
析解:当x=2时,原式=23+22-2+3=13.
二、多值代入求值
用多个的字母数值代替代数式中的相应字母,按代数式指明的运算,计算出结果
例2当a=3,a-b=1时,代数式a2-ab的值 .
析解:将a=3代入a-b=1得b=2,则原式=32-32=3.
三、整体代入求值
根据条件,不是直接把字母的值代入代数式,而是根据代数
式的特点,将整体代入以求得代数式的值.
例3如果代数式的值为18,那么代数式的值等于( )
A. B. C. D.
分析:根据所给的条件,不可能求出具体字母a b的值,可考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求代数式值的几种常用方法
王一成
求值的方法很多,中考数学中,也经常出现这类习题,若不掌握一定的方法,一些习题确实不容易解答。
初中阶段,常见的求值方法有哪些呢? 一、化简求值
例:先化简,再求值:,其中
,。
解:原式。
当,
时,
原式。
二、倒数法求值
例:已知,求
的值。
解:
所以
的值为
13
1 例: 已知2
311
222--=
-x x ,求)1()1111(2x x x x x +-÷+--的值。
解 由已知,得2312
2
2--=-x
x 所以,2312
12--=-
x
则232
2--=-
x )1
()1111(2x x x x x +-÷+-- =
232
1122
322--=-=-∙-x x x x x 三、配方求值 例:已知
,求
的值。
解:由,
得
,即,由非负数的性质得
,
,
解
得,。
所
以
原
式
四、构造一元二次方程求值
例:已知a 、b 、c 为实数且a+b=5 c 2
=ab+b-9,求a+b+c 之值。
解 ∵a+b=5 c 2
=ab+b-9
∴⎩⎨
⎧+=+=++9
)1(6)1(2
c a b a b
则b ,a+1为t 2
-6t+c 2
+9=0两根 ∵a ,b 为实数 ∴b ,a+1为实数, 则t 2
-6t+c 2
+9=0有实根 ∴△=36-4(c 2
+9)= -4c 2
≥0 c=0 ∴a+b+c=5 五、整体求值 例:已知,则=_______。
解:由,即。
所以原式
例:已知:当x =7时,代数式ax 5
+bx 3
+cx -5的值为7,求当x=-7时这个代数式的值。
解:因为当x =7时,ax 5+bx 3+cx -5=7,a ×75+b ×73+c ×7-5=7,即75
a +7
3b +7c =12,所以当x=-7时,ax 5+bx 3+cx -5=a ×(-7)5+b ×(-7)3
+c
×7-5=-75a -73b -7c -5=-(75a +73
b +7c)-5=-12-5=-17
例:x 2
+x+1=0,试求x 4
+2003x 2
+2002x+2004的值。
解 ∵x 4
+2003x 2
+2002x+2004 = x 4
-x+2003x 2
+2003x+2003+1 =x(x-1)(x 2
+x+1)+2003(x 2
+x+1)+1 又x 2
+x+1=0
∴x 4
+2003x 2
+2002x+2004=1
六、设参数法
例: 已知
532z
y x ==,且42=-+z y x ,求代数式z y x 23+-的值。
解:设k z
y x ===5
32
则k z k y k x 532===,, 代入42=-+z y x ,得
24534==-+k k k k ,
代入z y x 23+-,得
62331092=⨯==+-k k k k
即623=+-z y x
七、换元求值
例: 设a=)2003131211)(200413121( ++++++ -)2004131211(
+++)2004
1
3121(+++ 求2004a-1之值
解 :设A=
20031
3121+++ 则a=A A A A ∙++-++
)200411()1)(20041( =A(1+A)+
A A A A 20041)1()1(20041-+-+ =
A A 20041
2004120041-+ =2004
1 ∴2004a-1=2004×2004
1
-1=0
以上只是一些常用的求值方法,希望对同学们有一定的帮助。