第一节___油井流入动态(IPR曲线)

合集下载

第三篇 第一章 海上采油工艺原理

第三篇 第一章 海上采油工艺原理

1第一章 海上采油工艺原理第一节 流入动态油井产量与井底流动压力的关系曲线称为流入动态曲线(Inflow Performance Relationship Curve),简称为IPR 曲线。

它反映了油藏向该井供油的能力,有些书中也称指示曲线(Index Curve),即油井产量与生产压差的关系曲线,因一定时间内油层压力可看作稳定不变,生产压差的变化即井底流压的变化。

对单井来说,IPR 曲线表示了油层的工作特性,因此,它既是确定油井合理工作制度的依据,也是分析油井动态的基础。

典型的油井流入动态曲线如图1-7所示。

由图可看出,IPR 曲线的基本形状与油藏的驱动类型有关,在同一驱动方式下p wf -q 关系的具体数值将取决于油层压力、渗透率及流体物性。

有关不同驱动方式下p wf -q 关系与油藏物理参数及完井状况之间的定量关系已在渗流力学中作了详细的讨论。

这里,我们仅从研究油井生产动态的角度来讨论不同条件下的流入动态曲线及其绘制方法。

一、单相流体的流入动态井底流压高于原油在地层条件下的饱和压力时,油藏中流体的流动为单相流动。

根据达西定律,等厚均质圆形地层中心一口井的产量公式为:)(ln )(543.0o wf r 0s b X B p p h k q o o +--=μ (1-1a)式中 q 0 ── 油井产量(地面),m 3/d ; h ──油层有效厚度,m ;k ── 油层中油的有效渗透率,10-3μm 2; r p ──油井平均地层压力,MPa ; p wf ── 油井井底流压,MPa ; μ0 ── 地层油的粘度,mPa ·s ; B 0 ── 原油体积系数,无因次; r e ── 油井供油边缘半径,m ; r w ── 油井半径,m ;b —— 常数,圆形封闭边界,b=3/4;圆形定压边界,b=0.5;X ——与泄油面积形状和井的位置有关的系数,圆形油藏X= r e / r w ;其余查表1-1。

第1章油井流入动态与多相流

第1章油井流入动态与多相流

1.08106 g k 0.55
二、油气两相渗流时的流入动态
(一)垂直井油气两相渗流时的流入动态
平面径向流,直井油气两相渗流时油井产量公式为:
2rk o h dp qo o Bo dr
ko k ro k
2kh Pe K ro qo Pwf o Bo dp re ln rw
2.费特柯维奇方法
溶解气驱油藏:
Pr k 2kh ro qo Pwf o Bo dp 3 re ln s rw 4
kro 假设 B 与压力 o o
p 成直线关系,则:
Pr 2kh c 2 2kh 2 P r Pwf qo cpdp Pwf 3 3 re re ln s 2 ln s rw 4 rw 4
q1 A 1 q2
q1 B 0.2 Pwf 2 Pwf 1 q 2
q1 2 2 C 0.8 Pwf 2 Pwf 1 q 2
b.计算 qo max c. 给定不同流压,计算相应的产量
d.根据给定的流压及计算的相应产量绘制IPR曲线
IPR发展历程
(2)1968年,Vogel选用21 个油田的实例数据(油藏岩石 和流体性质有较大的变化范围) 进行数值模拟得到一系列 IPR 关系数据。分析这些数据时,Vogel 首先注意到这些 实例的生产—压力关系曲线非常相似。他将每一个点的压 力除以油藏平均压力、将每个点的产量除以油井最大产量 进行无量纲化, 发现这些无量纲化的IPR 数据点最后落在 一个狭小的范围内, 经回归得到了后来称为Vogel 方程的
o、Bo、Kro都是压力的函数。用上述方法绘制IPR曲线十分 繁琐。通常结合生产资料来绘制IPR曲线。
1.Vogel 方法

油井流入动态(IPR曲线)剖析课件

油井流入动态(IPR曲线)剖析课件

井底流压
井底流压是影响油井流入动态的关键 因素之一。
随着井底流压的增加,油井的产能会 逐渐提高,因为较高的流压能够提供 更大的能量,使流体更容易流入井筒 。
当井底流压较低时,油井的产能会受 到限制,因为低流压会导致油层中的 流体难以克服地层压力和摩擦阻力而 流入井筒。
井筒结构
井筒结构对油井流入动态也有重 要影响。
油井产能下降。
密度较大的流体需要克服更大 的重力,这可能影响油井的流
入动态。
压缩性较强的流体在多相流动 中可能会产生额外的流动阻力
,从而影响油井的产能。
采油方式
采油方式的选择也会对油井的流入动 态产生影响。
自喷采油时,油层中的流体在压力作 用下自动流入井筒,产能较高。
自喷采油和抽油机采油是常见的采油 方式,它们对油井流入动态的影响不 同。
方法
收集油井的生产数据,绘 制流入动态曲线,分析曲 线的形态、斜率和变化趋 势。
产能分析
定义
产能分析是指通过分析油 井的产能,了解油井的生 产能力和生产潜力。
目的
通过产能分析,可以评估 油井的产能潜力和增产潜 力,为油井的优化生产和 增产措施提供依据。
方法
计算油井的产能指IPR曲线的优化实践对于提高油田采收率具有重要意义,需要根 据油田实际情况制定针对性的优化措施。
案例三
目的
研究IPR曲线与采收率之间的关系, 揭示其内在联系。
方法
收集多个油田的IPR曲线数据,分析 其与采收率之间的关系,并进行统计 分析。
结果
发现IPR曲线形态与采收率之间存在 一定的相关性,不同形态的IPR曲线 对应不同的采收率水平。
井筒结构优化
根据油井的实际情况,优化井筒 结构,降低流动阻力,提高油井

油井流入动态(IPR曲线)课件

油井流入动态(IPR曲线)课件

03
IPR曲线理论
IPR曲线的定义和绘制
定义
IPR曲线是描述油井流入动态的曲 线,表示油井在恒定产量下压力 与流量的关系。
绘制
通过测量油井在不同压力下的产 量,绘制IPR曲线,通常以压力为 横轴,流量为纵轴。
IPR曲线的分析方法
分析参数
分析IPR曲线可以得出油井的流入动 态参数,如启动压力、递减率等。
分析步骤
首先观察曲线的形状,了解压力与流 量的变化关系;然后计算相关参数, 分析油井的生产动态。
IPR曲线在油田开发中的应用
指导生产
通过分析IPR曲线,可以了解油井的生产动态,为制定合理的生产方案提供依据 。
优化开发
结合其他开发指标,如渗透率、表皮系数等,可以优化油田开发方案,提高开发 效果。
04
油井流入动态模拟
模拟软件介绍
软件名称
Oilflow Simulator
功能特点
模拟油井流入动态,预测油井产能,优化生产参 数
适用范围
适用于不同类型油藏和油井的流入动态模,如 地层参数、井筒参数、
采油方式等。
模型建立
根据数据建立油井流入 动态模型,包括地层模 型、井筒模型和采油模
油井流入动态(IPR曲 线)课件
• 引言 • 油井流入动态基础 • IPR曲线理论 • 油井流入动态模拟 • 实际案例分析 • 课程总结与展望
目录
01
引言
课程背景
油井流入动态是石油工程中的重要概 念,用于描述油井的产量与井底压力 之间的关系。
随着石油工业的发展,对油井流入动 态的研究和应用越来越重要,因此本 课件旨在介绍IPR曲线的相关知识和应 用。
感谢观看
THANKS

第一节 油井流入动态(IPR曲线)

第一节   油井流入动态(IPR曲线)
2
C
D 1 . 3396 10
13
Bo
2
4 h rw
2 2
胶结地层的紊流速度系数:

1 . 906 10 k
1 . 201
7
非胶结地层紊流速度系数: g
1 . 08 10 k
0 . 55
6
C、D值也可用试井资料获取 ( p r p wf )
q
C Dq
2
p wf p r ( p r p wf ) FE
图1-6 FE 1时的无因次IPR曲线(standing IPR曲线)
standing方法计算不完善井IPR曲线的步骤:
a.根据已知pr和pwf计算在FE=1时最大产量
p wf p r ( p r p wf ) FE
采油指数J的获得:
•试井资料:测得3~5个稳定工作制度下的产量及其流压, 便可绘制该井的实测IPR曲线,取其斜率的负倒数 •油藏参数计算
注意事项:
对于单相液体流动的直线型IPR曲 线,采油指数可定义为产油量与生 产压差之比,也可定义为每增加单 位生产压差时,油井产量的增加值, 或IPR曲线斜率的负倒数。
2
q o max
c.根据给定的流压及计算的相应产量绘制IPR曲线
Ⅱ、已知两个工作点,油藏压力未知
a. 油藏平均压力的确定:已知或利用两组qopwf 测 试计算,即
pr B B 4 AC
2
2A
p wf 1
A
q1 q2
1
q1 B 0 .2 q p wf 2
2
令:
K ro 1 Jo B 2p 3 re r ln s o o pr rw 4 2 kh

油井流入动态(IPR曲线)

油井流入动态(IPR曲线)

图1-5 完善井和非完善井周围 的压力分布示意图
油井的流动效率FE:
油井的理想生产压差与实际生产压差之比
pr pwf pr pwf p r pwf psk pr pwf
FE

pwf Psk pwf
为“正”称“正”表皮,油井不完善; Psk 为“负”称“负”表皮,油井超完善。 Psk
令:
ko rs s k 1 ln r s w
非完善井表皮附加压力降
qo o Bo psk s 2ko h
表皮系数或井壁阻力系数S
完善井, s 0
FE 1
s 0 FE 1
0 FE 1
增产措施后的超完善井,
油层受污染的或不完善井, s
b.计算 qo max
c. 由流入动态关系式计算相关参数
④Vogel曲线与数值模拟IPR曲线的对比
图2-4 计算的溶解气驱油藏油井IPR曲线
1-用测试点按直线外推;2-计算机计算值;3-用Vogel方程计算值
对比结果:
按 Vogel 方程计算的 IPR曲线,最大误差出现在用小
生产压差下的测试资料来预测最大产量时,但一般

2
所以:

2 ( p r pwf Jo )
2
费特柯维奇 基本方程
3.不完善井Vogel方程的修正 油水井的不完善性: 射孔完成——打开性质不完善; 未全部钻穿油层——打开程度不完善; 打开程度和打开性质双重不完善;
在钻井或修井过程中油层受到损害或进行酸化、压 裂等措施,从而改变油井的完善性。
数值模拟结果 的总结
归一化曲线
②Vogel方程
qo qo max

第4章 油井流入动态和多相流态

第4章 油井流入动态和多相流态
石油工程概论——采油工程
第四章
油井流入动态与井筒多相流动
第一节 油井流入动态(IPR曲线) 第二节 井筒气液两相流基本概念
第三节 嘴流规律
第一节 油井流入动态(IPR曲线)
四种流动:
地层内渗流(Pr→Pwf) 垂直管内流动(Pwf→ Pt) 油嘴内流动 (Pt→PB) 地面管道内流动(PB→Psep) 油井流入动态(地下渗流) 泡、段塞、环、雾流等 嘴流 多相水平管流
气体以很高的速度携带液滴喷出井口;
气、液之间的相对运动速度很小;
气相是整个流动的控制因素。
小结:
油井生产中可能出现的流型自下 而上依次为:纯油(液)流、泡流、段 塞流、环流和雾流。 实际上,在同一口井内,一般不 会出现完整的流型变化。
油气沿井筒喷出时的流型变化示意图 Ⅰ—纯油流;Ⅱ—泡流;Ⅲ—段塞流; Ⅳ—环流;Ⅴ—雾流
滑脱现象: 混合流体流动过程中,由于流体间的密度 差异,引起的小密度流体流速大于大密度流体 流速的现象。如:油气滑脱、油水滑脱等。
特点:气体是分散相,液体是连续相;
气体主要影响混合物密度,不影响摩擦阻力;
滑脱现象比较严重。
③段塞流
当混合物继续向上流动,压力逐渐降低,气体不断 膨胀,小气泡将合并成大气泡,直到能够占据整个 油管断面时,井筒内将形成一段液一段气的结构。 特点:气体呈分散相,液体呈连续相; 一段气一段液交替出现; 气体膨胀能得到较好的利用; 滑脱损失变小,摩擦损失变大。
表示产量与井底流压关系的曲线,简称IPR曲线。
基本概念
3、采油(液)指数(J) 单位生产压差下的油井产油(液)量,反 映油层性质、厚度、流体物性、完井条件
及泄油面积等与产量有关的综合指标。
J的确定

第一章 油井基本流动规律

第一章  油井基本流动规律

第一章 油井基本流动规律油井生产系统可分为三个子系统:从油藏到井底的流动——油层中渗流;从井底到井口的流动——井筒中流动;从井口到地面计量站分离器的流动——在地面管线中的水平或倾斜管流。

有些油井为了使其稳定生产和安全性考虑,还会有通过油嘴以及井下安全阀的流动——嘴流(节流)。

为此,本章将分别介绍油井生产系统的三个基本流动过程(油层渗流、气液两相管流及嘴流)的动态规律及计算方法。

第一节 油井流入动态原油从油层到井底通过多孔介质(含裂缝)的渗流是油井生产系统的第一个流动过程。

认识掌握这一渗流过程的特性是进行油井举升系统工艺设计和动态分析的基础。

油井的产量主要取决于油层性质、完井条件和井底流动压力。

油井流入动态是指在一定地层压力下,油井产量与井底流压的关系,图示为流入动态曲线,简称IPR (Inflow Performance Relationship )曲线。

典型的IPR 曲线如图1-1所示,其横坐标为油井产液量(标准状态下),纵坐标为井底流压p wf (表压)。

当井底压力为平均地层压力r p 时(即生产压差0p p wf r =-),无流体流入井筒,故产量为零。

随着井底流压降低,油井产量随生产压差的增大而增大。

当井底流压降至大气压(p wf =0)时,油井产量达到最大q max ,而它表示油层的潜在产能。

就单井而言,IPR 曲线反映了油层向井的供给能力(即产能)。

如图1-1所示,IPR 曲线的基本形状与油藏驱动类型有关,其定量关系涉及油藏压力、渗透率、流体物性、含水率及完井状况等。

在渗流力学中已详细讨论了这方面的相应理论。

下面仅从研究油井生产系统动态的角度,讨论不同油层条件下的流入动态曲线及其绘制方法。

图1-1 典型的油井IPR 曲线一、单相原油流入动态1. 符合线性渗流规律的流入动态根据达西定律,定压边界圆形油层中心一口垂直井,稳态流动条件下的产量为⎪⎪⎭⎫ ⎝⎛+--=S r r B p p CKh q w e o o wf r o 21ln)(μ(1-1)对于圆形封闭油层,即泄流边缘上没有液体流过,拟稳态条件下的产量为()3ln4r wf o e o o w CKh p p q r B S r μ-=⎛⎫-+ ⎪⎝⎭(1-1a )式中 q o ——油井原油产量(地面);K ——油层渗透率。

油井流入动态IPR曲线

油井流入动态IPR曲线

qo
2k h
lnre 3
pr Kro dp
B pwf o o
rw 4
需要分段 积分
(2)实用计算方法
图1-11 组合型IPR曲线
① 当pr>pb时,由于油藏中全部为单相液体流动 流入动态公式为: qoJ(prpwf)
流压等于饱和压力时的产量为:qbJ(prpb)
②当pr<pb后,油藏中出现两相流动 流入动态公式为: qoqbqc[10.2p pw bf0.8(p pw b)f2]
2.费特柯维奇方法
溶解气驱油藏
qo lnre2rwk43hs
pr kro dp
B pwf o o
假设(kro/oBo)与压力p 成线性关系,则
q o ln r e2 r w k4 3 h sp p w rc f p ld n r e2 r w p k4 3 h s2 cp 2 r p w 2 f
质、厚度、流体参数、完井条件及泄油面积等与产 量之间的关系的综合指标。
采油指数J的获得:
•试井资料:测得3~5个稳定工作制度下的产量及其流压, 便可绘制该井的实测IPR曲线,取其斜率的负倒数
•油藏参数计算
注意事项:
对于单相液体流动的直线型IPR曲 线,采油指数可定义为产油量与生 产压差之比,也可定义为每增加单 位生产压差时,油井产量的增加值, 或IPR曲线斜率的负倒数。
c.根据计算结果绘制IPR曲线
②Harrison方法 (FE=1~ 2.5)
qqomoax(F E1)
图2-7 Harrison无因次IPR曲线(FE>1)
图1-7 Harrison无因次IPR曲线(FE>1)
Harrison方法可用来计算高流动效率井的IPR 曲线和预测低流压下的产量。其计算步骤如下:

第八章 油气井流入动态1

第八章  油气井流入动态1


qg =
πK g hTsc Z sc
re p sc T µ g Z ln rw
2

pe
p wf
pdp
积分有 q g =
πK g hTsc Z sc ( p e 2 − p wf 2 )
re p sc T µ g Z ln rw

D=
πK g hTsc Z sc
re p sc T µ g Z ln rw
)
考虑井深:
2 π k o h ( p e − p wf ) qo = re µ o B o ln( + s) rw
B.封闭边界
式中: m3/s ; H-----m Pas
m2 Pa,
2)非圆形油藏 对非圆形泄油面积,需要进行泄油面积和井位校正
re Cx A = ⇒ re = Cx A rw rw
第八章
油气井流入动态
油气井流入动态:在一定的油层压力下,流体(油, 气,水)产量与相应的井底流压的关系,反映了油 藏向该井供油气的能力。 流入动态曲线 IPR曲线(Inflow Performance Relationship Curve) 指示曲线 产量与流压关系的曲线,又称指示曲线。
第八章
p e − p wf
2
2
qg
= A + Bq g
矿场上将
2
∆ p 2 q g与
q g的关系曲线称为二项式特征曲线。
2
∆p = Aq g + Bq g
qg =
− A+
A 2 + 4 B∆p 2 2B
将 p wf = p a =1.03×Pa时的产量称为气井的绝对无 阻流量 2 2 − A + A 2 + 4 B ( p e − p wf ) q AOF

$油井流入动态

$油井流入动态

2.非完善井Vogel 方程的修正
Vogel 在进行不同溶解气驱油藏条件的模拟计算中,虽然也包含了不完 善井(井底存在污染S>0)和超完善井(压裂S<0)的情况。由各种情况的 数据结果产生了一族曲率不同的无因次IPR曲线(图1-4)。然而上述Vogel 曲线(图1-5)只是图1-4所示曲线族的“平均”曲线,实际上仅表示接近 完善井的情况。
图1-7 完善井和非完善井 周围的压力分布
实际油井的完善程度可用流动效率FE(Flowing Efficiency)表示,其定 义为油井在同一产量下理想完善情况的生产压差与实际生产压差之 比,即
FE
pr p wf p r p wf

p r p wf p sk p r p wf
ft ( 英 尺 )
cp
psig(磅/英寸2)
0.0070 8
对于非圆形封闭泄流区域的油井,可以对式(1-1)进行修正,即 令式中的re/rw=Cx,根据泄流面积A的形状及井点位置由下图得相应的CX值。
不同泄流区域形状及井点位置下的CX值
在单相原油流动条件(pwf ≥pb)下,油层流体物性基本不随压力 变化,故式(1-1)、(1-1a)可表示为
a/K
b
(1-6)
式中 K——地层渗透率,m2。 对于胶结地层, a、b 分别取值1.906×107,1.201; 对于非胶结砾石充填地层, a、b 分别取值1.08×106,0.55。
在系统试井时,如果在单相流动条件下出现非达西渗流,则可用图解法 求得二项式(1-5)中的系数A和B值。改变式(1-5)可得
ln(re / rw ) 0.75 FE ln(re / rw ) 0.75 S
(1-14)

油井流入动态(IPR曲线)

油井流入动态(IPR曲线)

(一) 采液指数计算(由测试点确定曲线)
已知 pr、pb和一个测试点pwf(test)、qt(test)
(1) pwf (test) pb
Ⅰ、已知地层压力和一个工作点( qo(test) , pwf(test) )
a.计算 qo m ax
qo max [1 0.2
qo te st
pwf test pr
0.8
pwf test pr
2
]
b.给定不同流压,计算相应的产量:
qo
1 0.2
pwf pr
0.8
pwf pr
2
qo max
qo max(FE1)
1 0.2
pw f pr
qo 0.8
pw f pr
2
b.预测不同流压下的产量
qo
qo
m a x FE 1
1
0.2
Pwf Pr
0.8
Pwf PR
2
c.根据计算结果绘制IPR曲线
②Harrison方法 (FE=1~ 2.5)
qo qo max
(FE 1)
图图1-27-7 HHaarrrriissonon无无因因次 次IPRI曲PR线曲(F线E>1)
✓ 如果用测试点的资料按直线外推,最大误差可达 70 ~80%,只是在开采末期约30%。
✓ 采出程度 Np 对油井流入动态影响大,而kh/μ、Bo 、k、So等对其影响不大。
2.费特柯维奇方法
溶解气驱油藏
qo
ln
re
2kh
rw
3 4
s
pr kro dp
B pwf o o
假设(kro/oBo)与压力p 成线性关系,则

第一章 油井基本流动规律

第一章 油井基本流动规律

含 30 水 率 % 0
q , m3 /d

含水率的变化
当Pwf > Pso时,只产水,含水率100%;
当Pwf < Pso时,开始产油,含水率下降。
当Pwf下降到油水IPR曲线的交点时, qo=qw,含水率为50%。
reh A /
A——水平井控制泄油面积,m2。 式(1-7)中的泄流区域几何参数 (如图1-3右图)要求满足以下条件 L>βh 且L<1.8 reh
二、油气两相渗流的流入动态
1、流入动态曲线随井底压力的变化
由式1-3
CK 0 h Jo re 1 0 B 0 (ln S) rw 2
q o max cp r
2n
(1-24)
将式(1-23)与式(1-24)相除,
得指数式无因次IPR方程:
qo q o max p wf 1 pr
2

n
(1-25)
三、含水及多层油藏油井流入动态
1.油气水三相渗流油井流入动态 Petrobras根据油流Vogel方程和已知采液 指数,导出油气水三相渗流时的IPR曲线(如
力时只产油不产水,当井底压力低于水层压
力之后,油井见水。随着产量增大,含水率
上升。
(3)流入动态: 压
力 a.高压水层
P Pso A
Psw B
a-全井 b-油层
b
c-水层
a c
0
q
q , m3 /d
含 100 水 率 % 40
0
q , m3 /d
Pso
Psw
压 力
b.低压水层
液 水
0

q , m3 /d
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


Psk p wf p wf
为“正”称“正”表皮,油井不完善; Psk 为“负”称“负”表皮,油井超完善。 Psk
完善井
qo
2 k o h ( p e p wf ) B o o ln re rw
非完善井
qo
2 h ( p e p wf ) 1 r 1 r B0 o ln e ln s k rs ks rw o
c.根据计算结果绘制IPR曲线
d.求FE对应的最大产量,即pwf=0时的产量
q o max
FE
q o max
q o max FE FE 1 q o max FE 1

(二)斜井和水平井的IPR曲线
1990年,Cheng对溶解气驱油藏中斜井和水平井进 行了数值模拟,并用回归的方法得到了类似Vogel 方程的不同井斜角井的IPR回归方程:
k、So等对其影响不大。
2.费特柯维奇方法
溶解气驱油藏
qo ln 2 kh re rw 3 4 s

pr p wf
k ro
o Bo
dp
假设(kro/oBo)与压力p 成线性关系,则
qo ln 2 kh re rw 3 4 s

pr p wf
cpdp ln
2 kh re rw 3 4 s
流体物理性质等。 qomax
图1-1 典型的流入动态曲线
油井生产系统组成
油井流入动态 油井 生产 的三 个基 本流 动过 程 油层到井底的流动 (地层渗流) 井底到井口的流动 (井筒多相管流) 井口到分离器 (地面水平或倾斜管流)
气液两相流 基本理论
一、 单相液体流入动态
供给边缘压力不变、圆形地层中心一口井的 产量公式为:
二、 油气两相渗流时的流入动态
(一)垂直井油气两相渗流时的流入动态
平面径向流,直井油气两相渗流时油井产量公式为:
2 rk o h dp
qo
qo
2 kh ln re rw
o Bo

pe p wf
K ro
dr
o Bo
dp
o、Bo 、Kro都是压力的函数。用上述方法绘制IPR曲 线十分繁琐。通常结合生产资料来绘制 IPR曲线。
归一化曲线
②Vogel方程
qo q o max p wf pr p wf 0 .8 p r
2
1 0 .2
经典方

③利用Vogel方程绘制IPR曲线的步骤
Ⅰ、已知地层压力和一个工作点( qo(test) , pwf(test) )
a.计算
q o max
基本概念 油井流入动态:
油井产量(qo) 与井底流动压力(pwf) 的关系,反
映了油藏向该井供油的能力。
油井流入动态曲线:
表示产量与流压关系的曲线,简称IPR曲线。
Inflow Performance Relationship Curve
pr
IPR曲线基本形状
与油藏驱动类型有
关。即使在同一驱 动方式下,还将取 决于油藏压力、油 层厚度、渗透率及
2
q1 2 C 0 .8 q p wf 2
2
p
2 wf 1

b.计算
q o max
c. 由流入动态关系式计算相关参数
④Vogel曲线与数值模拟IPR曲线的对比
图2-4 计算的溶解气驱油藏油井IPR曲线
1-用测试点按直线外推;2-计算机计算值;3-用Vogel方程计算值
q o max(
FE 1 )
1 0 .2
qo p wf pr p wf 0 .8 p r
2
b.预测不同流压下的产量
q o q o max Pwf Pwf 0 .8 FE 1 1 0 . 2 P Pr R
先求pwf/pr,然后查图1-7中对应的FE曲线上的相应值 qo/qomax(FE=1),则
q o max(
FE 1 )
qo
q
o
/ q o max(
FE 1 )

b.计算不同流压下的产量
q o q o max
qo FE 1 q o max FE 1
2

c.根据计算结果绘制IPR曲线
②Harrison方法 (FE=1~ 2.5)
qo q o max
( FE 1)
图 2 Harrison 无 因 次 IPR 曲 线 (FE>1 ) 图1-7- 7Harrison无因次IPR曲线(FE>1)
Harrison方法可用来计算高流动效率井的IPR 曲线和预测低流压下的产量。其计算步骤如下: a.计算FE=1时的qomax
第一节
油井流入动态(IPR曲线)
教学目的:
掌握油井流入动态、采油指数等相关定义;并掌握单 相流体流动、油气两相渗流、单相与油气两相渗流同时存 在、油气水三相以及多油层情况下油井流入动态的绘制方 法。
教学重点、难点: 教学重点
1、油井流入动态的定义以及计算方法 2、不同条件下油井流入动态的计算
p 2
c
2 r
p wf
2

其中,
1 k ro c p r o Bo
pr
K p p 2 ro 2kh wf r qo B 3 o o re p 2 pr r ln s rw 4
1.Vogel 方法(1968)
①假设条件: a.圆形封闭油藏,油井位于中心; b.均质油层,含水饱和度恒定; c.忽略重力影响; d.忽略岩石和水的压缩性; e.油、气组成及平衡不变; f.油、气两相的压力相同; g.拟稳态下流动,在给定的某一瞬间,各点的脱气 原油流量相同。
数值模拟结果 的总结
于是
p sk p wf p wf
qo o Bo k o r ln s k 1 r 2 k o h s w
令:
ko r ln s s 1 rw ks
非完善井表皮附加压力降
p sk
qo o Bo 2 k o h
q o max
q o test p wf
test
[1 0 . 2
pr
p wf test 0 .8 p r
]
2
b.给定不同流压,计算相应的产量:
p wf p wf q o 1 0 . 2 0 .8 p pr r
2
q o max
c.根据给定的流压及计算的相应产量绘制IPR曲线
Ⅱ、已知两个工作点,油藏压力未知
a. 油藏平均压力的确定:已知或利用两组qopwf 测 试计算,即
pr B B 4 AC
2
2A
p wf 1
ALeabharlann q1 q21 q1 B 0 .2 q p wf 2
在钻井或修井过程中油层受到损害或进行酸化、压 裂等措施,从而改变油井的完善性。
图1-5 完善井和非完善井周围 的压力分布示意图
油井的流动效率FE:
油井的理想生产压差与实际生产压差之比
p r p wf p r p wf p r p wf p sk p r p wf
FE
qo 2 k o h ( p r p wf ) r 1 o B o ln e s r 2 w a
(1-1)
圆形封闭油藏、拟稳态条件下产量公式为:
qo 2 k o h ( p r p wf ) re 3 o B o ln s r 4 w a
J
2 k o ha
re 1 o B o ln r 2 s w
q o J ( p r p wf )
J
qo ( p r p wf ) p p r wf
生产压差
直线型
采油指数可定义为: 单位生产压差下的油井产油量,是反映油层性 质、厚度、流体参数、完井条件及泄油面积等与产 量之间的关系的综合指标。
因此,对于具有非直线型IPR曲线的油井,在使用采油指数时, 应该说明相应的流动压力,不能简单地用某一流压下的采油指 数来直接推算不同流压下的产量。
当油井产量很高时,井底附近将出现非达西渗流:
p r p wf Cq Dq
o B o (ln X
2 k o ha 3 4 s)
采油指数J的获得:
•试井资料:测得3~5个稳定工作制度下的产量及其流压, 便可绘制该井的实测IPR曲线,取其斜率的负倒数 •油藏参数计算
注意事项:
对于单相液体流动的直线型IPR曲 线,采油指数可定义为产油量与生 产压差之比,也可定义为每增加单 位生产压差时,油井产量的增加值, 或IPR曲线斜率的负倒数。
(1-2)
对于非圆形封闭泄 油面积的油井产量 公式,可根据泄油 面积和油井位置进 行校正。
re rw
X
图1-2 泄油面积形状与油井的位置系数
单相流动时,油层物性及流体性质基本不随压力 变化。
qo 2 k o h ( p r p wf ) re 1 o B o ln r 2 s w a
2
令:
K ro 1 Jo B 2p 3 re r ln s o o pr rw 4 2 kh

p wf 0
相关文档
最新文档