2-5控制系统的信号流图和梅森公式精品PPT课件

合集下载

自动控制原理03信号流图,梅逊公式

自动控制原理03信号流图,梅逊公式
,找到梅逊公式中 的相关信息
G2
R(s)
G1 H
G3 G4
C(s)
系统有:3条前向通道,2个闭合回路,0组两两互不接触回路
P1 G 1 G 3
P2 G 2 G 3
P3 G 1 G 4
1 G1H G 2 H
1
2
C (s) R (s)

G 1G 3 G 2 G 3 G 1G 4 1 G1H G 2 H

L a --所有回路的回路增益之和 L b L c --两两互不接触回路的回
路增益乘积之和
L d L e L f --三三互不接触……
Pk --第k条前向通路的总增益
k -- 第k 条前向通道的余因子式,在特征式中,将与第k条前向
通道相接触的回路除去后所剩下的部分。
2.4.2 梅逊增益公式
1 1
2 1 d
C (s) R (s)

P1 1 P2 2

abcdefg
abhfg (1 d )
1 b d f bd df bf bdf
2.4.2 梅逊增益公式
例题2:已知系统的动态结构图,求系统的传递函数
C (s) R (s)

解:首先进行分析
242梅逊增益公式?nkkkpsgp11?????????fedcballllll124信号流图与梅森公式?al所有回路的回路增益之和cbll?两两互不接触回路的回路增益乘积之和两两互不接触回路的回路增益乘积之和fedlll?三三互不接触??第k条前向通路的总增益kp特征式k第k条前向通道的余因子式在特征式中将与第k条前向通道相接触的回路除去后所剩下的部分
例题1:已知系统的信号流图,求系统的传递函数

25信号流图与梅森公式 共31页

25信号流图与梅森公式 共31页
Li L1L2L3L4
i1
G 1 G 2 G 3 G 4 G 5 G 6 H 1 G 2 G 3 H 2 G 4 G 5 H 3 G 3 G 4 H 4
L iL j L 2 L 3 ( G 2 G 3 H 2 ) G ( 4 G 5 H 3 )
G 2G 3G 4G 5H 2H 3
2-5 信号流图及梅森公式
是表示复杂系统的又一种图示方法。
重点: 1)根据系统的结构框图可画出信号流图 2)根据信号流图求系统的传递函数
1
x5
一、信号流图的几个定义
f
输入节点(或源节点):
x1 a x 2
b
只有输出支路的节点,如x1、 x5。
d
e
c
x4
x3
输出节点(或阱节点):只有输入支路的节点,如x4。
作业:
2-11 求C(s)/R(s) 2-12 (a) (d)
30
谢谢!
xiexie!
8
Σ Li:所有各回路的“回路传递函数”之和; Σ LiLj:两两互不接触的回路,其“回路传递 函数”乘积之和; Σ LiLjLk:所有三个互不接触的回路,其“回 路传递函数”乘积之和; n:前向通道数;
9
注意事项:
“回路传递函数”是指反馈回路的前 向通路和反馈回路的传递函数的乘积, 并且包含代表反馈极性的正、负号。
11
所以
C (G s P ) 1 Δ 1
1
R(s) Δ R 1 R 2 C 1 C 2 s2 R 1 C 1 s R 1 C 2 s 1
28
练习eBiblioteka g1ab
c
d
R(s) f
C(s) h
四个单独回路,两个回路互不接触

梅森公式-信号流图

梅森公式-信号流图

例4 已知系统信号流图, 解:三个回路
求传递函数 X4/X1及 X2/X1。
L
a
d eg bcg
c
有两个互不接触回路
L L
b
deg
f
则 1 d eg bcg deg
1. X 1 X 4 , p1 aef , p2 abcf 1 1 d , 2 1
x2
(g)
x2
x3
x5 L5 a23a35a52
a12 a23 a34 a45 (1 a44 )a12 a23 a35 P 1 (a23 a32 a23 a34 a42 a44 a23 a34 a52 a23 a35 a52 ) a23 a32 a44 a23 a35 a52 a44
2 1 a44
x3
a42 a12
a44 a34 x4 a35 a52 a45 x5
(a)
a23 x2 a32 x3
x1
(d)
x2
x3
互不接触
L1 a23a32
L12 a23a32a44 L2 a23a34a42
(e) (f)
x2
x4 x4 x5 L3 a44 互不接触 L22 a23a35a52a44 L4 a23a34a45a52
E(s)=
R(s)[ (1+G2H2) + (- G3G2H3) ] + (–G2H3) N(s)
1 - G1H1 + G2H2
+ G1G2H3 -G1H1G2 H2
信号流图
R(s) 1
e
g
a
f
b

信号流图与梅森公式

信号流图与梅森公式

2.5 信号流图与梅森公式2.5.1 信号流图信号流图是表示复杂的又一种图示方法.信号流图相对于结构图更简便明了,而且不必对图形进行简化,只要根据统一的公式,就能方便地求出系统的传递函数.1. 信号流图的组成及基本性质信号流图由节点和支路组成.一个节点代表系统中的一个变量,用小圆圈”Ο”表示;连接两个节点之间有箭头的定向线段为支路.支路相当于信号乘法器,乘法因子(或支路增益)表在支路上;信号只能沿箭头单方向传递,经支路传递的信号应乘以乘法因子;只有输出支路,无输入支路的节点称为输入节点,代表系统的输入变量;只有输入支路,无输出支路的节点称为输出节点,代表系统的输出变量;既有输入支路,也有输出支路的节点称为混合节点.信号流图的特征描述还需要以下专用术语:前向通路 信号从输入节点到输出节点传递时,对任何节点只通过一次的通路称为前向通路.而前向通路上各支路增益之积,为前向通路总增益.回路 如果信号传递通路的起点和终点在同一节点上,且通过任何一个节点不多于一次的闭合通路称为单独回路,简称回路.回路中各支炉增益的乘积称为回路增益.不接触回路 两个或两个以上回路之间没有任何公共节点,此种回路称为不接触回路. 由图2-31的信号流图可以说明以上的基本元素,即 74321X XX X X是节点;j h d c b a ,,,,, 为支路增益;4,1X X 为输入节点;7X 为输入节点;6532X X X X 为混合节点。

信号流图共有三条前向通道,第一条是765321XXXXXX →→→→→;第二条是76531X XXXX →→→→;第三条是765324X XXXXX→→→→→。

有两个单独回路,一个是565X X X →→,起点和终点是5X ;另一个起点、终点在3X 的自回路。

而且这两个回路无公共节点,是不接触回路。

图2-31 信号流图注意:对于确定的控制系统,其信号流图不是唯一的。

2.5.2 信号流图的绘制信号流图可以根据系统方框图的绘制,也可以根据数学表达式绘制。

控制系统的传递函数及信号流图和梅逊公式

控制系统的传递函数及信号流图和梅逊公式
+
1 Ln LrLsLt
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
例2-7 试用梅逊公式求系统的闭环传递函数 C(S)
R(S)
图2-45 例2-7图
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
解: P1 G1G2G3.
路 开通路—通路与任一节点相交不多于一次
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
闭通路—通路的终点也是通路的起点,并且与任何其它节 点相交不多于一次
6)前向通路—从输入节点到输出节点的通路上,通过任何节 点不多于一次,此通路自然保护区为前向通路
7)回路—就是闭环通路 8)不接触回路—如果一些回路间没有任何公共节点 9)前向通路增益—在前向通路中多支路增益的乘积。 10)回路增益—回路中多支路增益的乘积。
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
信号流图的性质 (1)信号流图只适用于线性系统。 (2)支路表示一个信号对另一个信号的函数关系;信 号只能沿着支路上的箭头指向传递 (3)在节点上可以把所有输入支路的信号叠加,并把 相加后的信号传送到所有的输出支路。
(4)具有输入和输出支路的混合节点,通过增加一个具 有单位增益的支路,可以把它作为输出节点来处理。 (5)对于一个给定的系统,其信号流图不是唯一的, 这是由于描述的方程可以表示为不同的形式。
参考输入误差的传递函数为
CR(s) ER(s)G1(s)G2(s)
CR(s)
G1( s )G 2( s )
R(s) 1 G1(s)G2(s)H (s)
ER(s)G1(s)G2(s)

信号流图及梅逊公式

信号流图及梅逊公式

1 + G1 + G2 + G3 + 2G1G2 + G1G3 + G2G3 + 2G1G2G3
例5:利用梅森公式求如图所示系统闭环传递函数
解:系统有单个回路 6 条,两两互不接触回路 7 组,三 个互不接触回路 1 组:
= 1 [ag + bh + ci + dj + ek + fghi] + [agci + agdj + agek + bhdj + bhek
= 1 L(1) + L(2) L(3) + ..+ (−1)m L( m)
L(1) ―所有单独回路增益之和;
L(2) ―两个互不接触回路增益乘积之和;
L( m ) ―m个不接触回路增益乘积之和。
例7:求如图所示系统传递函数
h
1
a
b
c
d
e
f
1
R(s)
-i
-j
-k
C(s)
-m
解:系统向通道:4条 -n
单个回路:9条 bi, dj, fk , cdem, hmi,
abcdefn, gcd efn, affn, gihfn
两两互不接触回路:6组 三个互不接触回路:1组
P= C= R
3
pii
i =1

例2:
+
R+
+
G1
+C
-
+-
+
G2
G1
p3 = G1G4 , 3 = 1.
= 1 [ L1 + L2 ] = 1 + G1 H + G2 H

25控制系统的信号流图和梅森公式

25控制系统的信号流图和梅森公式

15
例 绘制RLC电路的信号流图,设电容初始电压为uo(0), 回路中电流的初始值为i(0)。
16.04.2019
16
1 列写网络微分方程式如下:
d it () L R it () u t- u () t + = i() o d t
C
duo (t ) =i(t ) dt
2 方程两边进行拉氏变换:
d x5 f
x1
a
x2
b x3
c
x4
e
16.04.2019
13
2 对于一个给定的系统,由于描述同一个系统的方 程可以表示为不同的形式,因此信号流图不是唯一 的。 3 混合节点可以通过增加一个增益为 1 的支路变成 为输出节点,且两节点的变量相同。
x5 1
x1
a
x2
d
b x3
c
x4
e
16.04.2019
互不接触的回路L1 L2。所以,特征式
= 1 ( L + L + L + L ) + L L 1 2 3 4 1 2
33
16.04.2019
G6 R(s) G1 G2 G3
G7 G4 G5 C(s)
a
b
c
-H1
d
-H2

前向通道有三个:
P G G G G G 1= 1 2 3 4 5
1 1
16.04.2019 27
例1 利用梅森公式,求:C(s)/R(s)。
16.04.2019
28
G6
R(s)
G7
G3
G1 a
G2 b
G4 c
-H1 -H2
G5
d

信号流图梅森公式市公开课一等奖省赛课获奖PPT课件

信号流图梅森公式市公开课一等奖省赛课获奖PPT课件

R1C2 )s 1
2/18/2024
16 第16页
梅逊公式||例2-14
例2-14:使用Mason公式计算下述结构图传递函数
G4
R
E
-
G1Βιβλιοθήκη G2+ -
G3
C
+
H1
H2
C(s) R(s)
解:在结构图上标出节点,如上图。然后画出信号流图,以下:
G4
R
E G1 G2 H1
G3 H2
C
H1H2
2/18/2024
u1 ( s)
u2 (s)
ua (s)
(s)
G1
G2
G3
Gu
u f (s)
Gf
图以下先列在图结所构1 表图示上G。标1 出节点G 2,如上G 3图所表GMu示c 。G m然1 后画出信号流
ug ue
u1
u2
ua
2/18/2024
G f
第9页
9
例2: 已知结构图以下,可在结构图上标出节点,如上图所表示。 然后画出信号流图以下列图所表示。
G3
1
H2
G8
H1
G7
G3
+
++
+
G4
C
G8
为节点
注意:①信号流
G4
1
图与结构图对应
C 关系;②仔细确
定前向通道和回
路个数。
2/18/2024
20 第20页
小结
小结
信号流图组成;术语; 信号流图绘制和等效变换; 梅逊公式极其应用; 信号流图和结构图之间关系。
2/18/2024
21 第21页

第七节 信号流图与梅森公式

第七节 信号流图与梅森公式

23

例2:用梅森公式求如图所示系统的传递函数。
24

例3:用梅森公式求如图所示系统的传递函数。
25

例3:用梅森公式求如图所示系统的传递函数。
26

例3:用梅森公式求如图所示系统的传递函数。
27

例3:用梅森公式求如图所示系统的传递函数。
28

例3:用梅森公式求如图所示系统的传递函数。
X
3
BX
2
BX
2
ABX
1
4
2、说明
(1)节点变量(信号)等于所有流向该节点的信 号之代数和,与输出无关。从同一节点流出的信号均 等于该节点变量,与流入无关。同方向传递的信号不 能重复计算。
X
X
3
AX
CX
1
BX
2
4
3
X
5
DX
3
5
(2)信号在支路上沿箭头方向单向传递。 (3)支路相当于一个乘法器,信号流经支路时,被 乘以支路增益而变换为另一个信号。(支路增益为 “1”时,可不标出) (4)在混合节点上,增加一条具有单位增益的输出 支路,可以从信号流图中分离出系统变量。即变混合
29

例4:用梅森公式求如下2图所示系统的传递函数。
30
所 有 单 个 回 路 增 益 之 和
触取所 回其有 路中单 增不个 益同回 乘的路 积两中 之个, 和不每 。接次
20
2、有关定义
(1)前 向 通 路——信号从输入节点到输出节点传递时, 每个流经节点只通过一次的通路。 (2)回 路——起点与终点为同一节点,而中间混合 节点最多通过一次的闭合通路。

信号流图梅森公式

信号流图梅森公式

2/5/2020
14
梅逊公式||例2-13
[例2-13]:绘出两级串联RC电路的信号流图并用Mason公式计算 总传递函数。
ui (s) ue (s) 1 I1(s) -
1 u(s)
-
R1
I(s) C 1s
-
1
1 uo(s)
R 2 I2(s) C 2 s
[解]:先在结构图上标出节点,再根据逻辑关系画出信号流图如
18
梅逊公式||例2-15
例2-15:数数有几个回路和前向通道。
G6
R
G5
1
G2
1
G7
G3
G4
1
G1
1
H2
G8
H1
有四个回路,分别是:
1
C
G 2 H 2 , G 1 G 2 G 3 G 4 H 1 , G 1 G 2 G 7 G 4 H 1 , G 1 G 2 G 8 G 4 H 1
P7 G6G3G4 P8 G6G8G4
P 9G 6H 2G 2G 7G 4
2/5/2020
19
梅逊公式||例2-15
对应的结构图为:
G6 G5
R - G1
R 1
G6
G5
1
G1
+
-
G2
H2
H1
G7
G2 1
G3
1
Байду номын сангаас
H2
G8
H1
G7
G3
+
++
+
G4
C
G8
为节点
注意:①信号流
G4
1
图与结构图的对

第2章_控制系统的动态数学模型_2.6系统信号流图及梅逊公式

第2章_控制系统的动态数学模型_2.6系统信号流图及梅逊公式
支路
混合节点
输入节点(源点):只有输出的节点,表示系统的 输入变量。 输出节点(阱点、汇点) :只有输入的节点,表示 系统的输出变量。 混合节点:既有输入又有输出的节点,表示系统的 中间变量。如果从混合节点引出一条具有单位增益 的支路,则可以将混合节点变为输出节点,即成为 系统的输出变量。
支路
前向通路P1的特征式的余因子为: 1 1 将上述结果代入梅逊公式,计算该系统的传递 函数,化简后为:
1 1 P Pk k P 1 k k 1 = R1 R2C2C2 s 2 ( R1C 1 R2C2 R1C 2 ) s 1
【例3】用梅逊公式求系统传递函数 (说明:与教材P.45例2-21比较,去掉了G8、G9和-H3 等三个环节。)
信号流图 的特征式 系统的闭环传递 函数(也称为系 统总增益)
信号流图的特征式Δ的计算公式: 1 La Lb Lc Ld Le L f L 其中: a b ,c d ,e , f
a a
L 为所有不同回路的传递函数(增益)之和。
b c
L L 为每两个互不接触回路的传递函数(增益)
信号流图起源于梅逊(S. J. Mason)利用图 示法来描述一个或一组线性代数方程式,是由节点 和支路组成的一种信号传递网络。 节点:表示信号或变量,其值等于所有进入该节点 的信号之和。节点用小圆圈“ο”表示。 支路:连接两个节点的定向线段,用支路增益(即 传递函数)表示方程式中两个变量的因果关系。支 路相当于乘法器。信号在支路上沿箭头单向传递。
【例2】基于系统的信号流图,采用梅逊公式计算上例 系统的传递函数。
系统输入信号Ui(s)与输出信号Uo(s)之间只有一条 前向通路P1,即k=1,而且其传递函数(增益)为:

自动控制原理03信号流图,梅逊公式

自动控制原理03信号流图,梅逊公式
1 1
2 1 P2 2

abcdefg
abhfg (1 d )
1 b d f bd df bf bdf
2.4.2 梅逊增益公式
例题2:已知系统的动态结构图,求系统的传递函数
C (s) R (s)

解:首先进行分析
G1
X2
X3
G2 H1
G3
X4
G4
C(s)
R
1
X1
G1
X2
G2 X3 -1 -H1
G3
X4
G4
C
2.4 信号流图与梅森公式
2.4.2 梅逊增益公式
P G (s) 1
n

k 1
Pk
--特征式
k
1

La

Lb Lc

Ld Le L f
{
例题1:已知系统的信号流图,求系统的传递函数
C (s) R (s)

h a b -1 c d -1 e f -1
g
R(s)
C(s)
解:首先对信号流图进行分析,找到梅逊公式中的相关信息 系统有:2条前向通道,3个闭合回路,3组两两互不接触回 路, 1组三三互不接触回路 然后写出各项的取值:
2.4.2 梅逊增益公式 例题1:P1
3 1
,找到梅逊公式中 的相关信息
G2
R(s)
G1 H
G3 G4
C(s)
系统有:3条前向通道,2个闭合回路,0组两两互不接触回路
P1 G 1 G 3
P2 G 2 G 3
P3 G 1 G 4
1 G1H G 2 H

自动控制原理 ch 2-5_2 信号流图、梅森公式

自动控制原理 ch 2-5_2 信号流图、梅森公式
1
① 用小圆圈表示各 变量对应的节点;
G2
1
1 ② 根据方程连接各节点。
e
G1
1
e1
H
e2
G3
1
e4
1
C s
R s
1
e
G1
1
e1
e2
G3 G4
C s
e6 H
G4 G4
② 根据方程连接各节点。
返回
e5
H
前页
四、梅森增益公式
P
1 n pk k k 1
前页
例:求信号流图的传递函数 X 5 s X 1 s
前向通路:开始于输入节点,沿支路箭头方向,每个 节点只经过一次,最终到达输出节点的通路。 前向通路总增益:前向通路上各支路增益之乘积。 p k
x2 , x3 , x4 , x5
1
9/10/2013
i
i
c a
x1
x2
f
b
g
h
x5
c
1
a
x6 x1
x2
f
b
g
h
x5
1
x3 d x4 e j
x3 d x4 e j
c
1
a
x6 x1
x2
f
b
g
h
x5
1
x3 d x4 e j
x3 d x4 e j
x6
不接触回路:没有公共节点的回路。 可以有两个以上不接触回路。
c
去掉一条,另 一条仍完整!
f
不接触回路:没有公共节点的回路。 可以有两个以上不接触回路。
去掉一条,另 一条仍完整!
x 2 x3 x 2 和 x3 x4 x3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 控制系统的数学模型
第五节 信号流图和梅森公式
2021/2/4
1
2-5 信号流图和梅森公式
项目
内容
学习目的
掌握由信号流图利用梅森公式求取传递函数的方 法。
重 点 利用梅森公式求取传递函数
难 点 闭环系统有关传函的一些基本概念
2021/2/4
2
本节内容
➢信号流图的组成和绘制 ➢MASON公式→求系统传递函 ➢闭环系统有关数传函的一些基本概念
C[sUo (s)-uo (0)]=I (s)
2021/2/4
17
L[sI (s)-i(0)]+RI (s)=Ui (s)-Uo (s)
C[sUo (s)-uo (0)]=I (s)
3 按照因果关系,将各变量重新排列得方程组:
I
(s)=U
i
( s)-U o Ls+R
(s)

i(0) s+ R
L
U
o
f
b
x3
c
x4
d
g
e
回路:通路与任一节点相交不多于一次,但起点 和终点为同一节点的通路称为(单独)回路。
2021/2/4
8
x1
a x2
x5
f
b
x3
c
x4
d
g
e
回路:通路与任一节点相交不多于一次,但起点 和终点为同一节点的通路称为(单独)回路。
不接触回路:各回路间没有公共节点的回路。
回路增益:回路中所有支路增益的乘积。一般用La
23
例 绘制下图所示系统结构图对应的信号流图。
2021/2/4
24
解:1 将结构图的变量换成节
点,并按结构图的顺序分
布好;
a
bc
2 用标有传递函数的线段 (支路)代替结构图中的函 数方框。
G2 (s)
R(s)
1
x1 x1 x2 ax1 dx2 ex3 x3 bx2 fx5 x4 cx3 x5 x5
x1
a x2
d
x5
f
b
c
x4
x3
e
2021/2/4
13
2 对于一个给定的系统,由于描述同一个系统的方 程可以表示为不同的形式,因此信号流图不是唯一 的。
3 混合节点可以通过增加一个增益为1的支路变成 为输出节点,且两节点的变量相同。
表示。
2021/2/4
9
x1
a x2
x5
f
b
x3
c
x4
d
g
e
前向通路:信号从输入节点到输出节点传递时,每 个节点只通过一次的通路。
前向通路增益:前向通路上各支路增益的的乘 积。一般用Gk来表示。
2021/2/4
10
x1
a x2
x5
f
b
x3
c
x4
d
g
e
前向通路:信号从输入节点到输出节点传递时,每 个节点只通过一次的通路。
(s
)=
I
(s) C

uo
(0) s
2021/2/4
18
I
(s)=U
i
(
s)-U o Ls+R
(
s)

i(0) s+ R
L
U
o
(s)=
I
(s) C

uo
(0) s
4 按照方程组绘制信流图
i(0)
Ui (s) 1 Ui(s)Uo(s)
1 Ls R
1 1 R
L1
C
I (s)
-1
2021/2/4
uo (0)
混合节点:既有输入支路又有输出支路的节点。相 当于结构图中的信号比较点和引出点。它上面的信 号是所有输入支路引进信号的叠加。
2021/2/4
6
x1
a x2
x5
f
b
x3
c
x4
d
g
e
回路:通路与任一节点相交不多于一次,但起点 和终点为同一节点的通路称为(单独)回路。
2021/2/4
7Байду номын сангаас
x1
a x2
x5
前向通路增益:前向通路上各支路增益的的乘 积。一般用Gk来表示。
2021/2/4
11
Mixed node
a53
a32
input node
a43
a44
(source) x1
1
a12 2
3
x2
a23 x3 a34 4 x4 a45
单独回路(7个)
a24 a25
1 Output node
5
x5
x6
x4 x4
1 s
Uo (s)
19
❖由系统结构图绘制信号流图
比较点 结构图:输入量 引出点 方框
信号线
输出量
信流图:输入节点 混合节点 支路 输出节点
信号流图包含了结构图所包含的全部信息, 在描述系统性能方面,其作用是相等的。但是, 在图形结构上更简单方便。
2021/2/4
20
由系统结构图绘制信号流图的步骤
节点:节点表示信号。输入节点表示输入信号,输出 节点表示输出信号。
支路:连接节点之间的线段为支路。支路上箭头方向 表示信号传送方向。传递函数标在支路上箭头的旁边, 称支路增益。
2021/2/4
5
x5
x1
a x2
d
有关术语
f
b
c
x4
x3
e
输入节点:源节点。只有输出支路。
输出节点:阱节点。只有输入支路。
2021/2/4
15
例 绘制RLC电路的信号流图,设电容初始电压为uo(0), 回路中电流的初始值为i(0)。
2021/2/4
16
1 列写网络微分方程式如下:
L
di(t dt
)
+Ri(t
)=ui
(t
)-uo
(t
)
C duo (t) =i(t) dt
2 方程两边进行拉氏变换:
L[sI (s)-i(0)]+RI (s)=Ui (s)-Uo (s)
x1
a
x5
1
b
x2
d
e
c
x4
x3
2021/2/4
14
信号流图的绘制
❖由原理图绘制信号流图
(1)列写系统原理图中各元件的原始微分方程式。 (2)将微分方程组取拉氏变换,并考虑初始条件, 转换成代数方程组。 (3)将每个方程式整理成因果关系形式。 (4)将变量用节点表示,并根据代数方程所确定 的关系,依次画出连接各节点的支路。
1)将方框图的所有信号(变量)换成节点, 并按方框图的顺序分布好; 2)用标有传递函数的线段(支路)代替结构 图中的方框。
2021/2/4
21
画出系统的信流图。
R(s)
2021/2/4
G6
G7
G1 a
G2 b
G3 c
G4
G5
d
-H1
-H2
C(s)
22
注意:引出点和比较点相邻的处理
2021/2/4
2021/2/4
3
一 信号流图的组成和绘制
对于复杂的控制系统,结构图的简化过程 仍较复杂,且易出错。
信号流图:对系统的结构和信号(变量)传
递过程的数学关系的图解描述。
优点:用梅森公式可以直接写出系统的传递函 数,无需对信号流图进行化简和变换。
2021/2/4
4
基本组成: 由节点、支路组成
x
y
G
xG y
x2 x3 x2
x3 x4 x3
不接触回路(2组) x2 x3 x2 和 x4 x4
x2 x4 x3 x2
x3 x4 x5 x3
x2 x5 x3 x2 和 x4 x4
x2 x5 x3 x2
x2 x4 x5 x3 x2
2021/2/4
12
说明
1 信流图是线性代数方程组结构的一种图形表示, 两者一一对应。
相关文档
最新文档