牛顿运动定律常规题型训练

合集下载

高考物理牛顿运动定律题20套(带答案)含解析

高考物理牛顿运动定律题20套(带答案)含解析

高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)含解析

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)含解析

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图甲所示,一倾角为37°,长L=3.75 m的斜面AB上端和一个竖直圆弧形光滑轨道BC 相连,斜面与圆轨道相切于B处,C为圆弧轨道的最高点。

t=0时刻有一质量m=1 kg的物块沿斜面上滑,其在斜面上运动的v–t图象如图乙所示。

已知圆轨道的半径R=0.5 m。

(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)物块与斜面间的动摩擦因数μ;(2)物块到达C点时对轨道的压力F N的大小;(3)试通过计算分析是否可能存在物块以一定的初速度从A点滑上轨道,通过C点后恰好能落在A点。

如果能,请计算出物块从A点滑出的初速度;如不能请说明理由。

【答案】(1)μ=0.5 (2)F'N=4 N (3)【解析】【分析】由图乙的斜率求出物块在斜面上滑时的加速度,由牛顿第二定律求动摩擦因数;由动能定理得物块到达C点时的速度,根据牛顿第二定律和牛顿第三定律求出)物块到达C点时对轨道的压力F N的大小;物块从C到A,做平抛运动,根据平抛运动求出物块到达C点时的速度,物块从A到C,由动能定律可求物块从A点滑出的初速度;【详解】解:(1)由图乙可知物块上滑时的加速度大小为根据牛顿第二定律有:解得(2)设物块到达C点时的速度大小为v C,由动能定理得:在最高点,根据牛顿第二定律则有:解得:由根据牛顿第三定律得:物体在C点对轨道的压力大小为4 N(3)设物块以初速度v1上滑,最后恰好落到A点物块从C到A,做平抛运动,竖直方向:水平方向:解得,所以能通过C 点落到A 点物块从A 到C ,由动能定律可得:解得:2.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求:(1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ?【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】(1)滑块与小车动量守恒0()mv m M v =+可得1m/s v =(2)木板静止后,滑块匀减速运动,根据动能定理有:2102mgs mv μ-=- 解得0.25m s =(3)从滑块滑上木板到共速时,由能量守恒得:220111()22mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+=3.如图所示为工厂里一种运货过程的简化模型,货物(可视为质点质量4m kg =,以初速度010/v m s =滑上静止在光滑轨道OB 上的小车左端,小车质量为6M kg =,高为0.8h m =。

必修1 牛顿运动定律(含答案)全部题型

必修1 牛顿运动定律(含答案)全部题型

高中物理必修1牛顿运动定律经典练习题 (含答案)1、牛顿第一定律是()A. 由科学家的经验得出的B. 通过物理实验直接得到的C. 斜面小车实验做成功后就能够得出的结论D. 在实验基础上经过分析、推理得出的结论2、根据牛顿第一定律可知()A. 物体若不受外力的作用,一定处于静止状态B. 物体的运动是依靠力来维持的C. 运动的物体若去掉外力作用,物体一定慢慢停下来D. 物体运动状态改变时,一定受到外力的作用3、关于牛顿第一定律,下列说法中正确的是()A. 牛顿第一定律揭示了“物体的运动不需要力来维持”,所以又称为惯性定律B. 地球上没有不受力的物体,但受平衡力的物体合力为0,可以参照牛顿第一定律进行分析C. 牛顿第一定律是在实验中直接得出的结论D. 牛顿第一定律告诉我们:做匀速直线运动的物体一定不受力4、科学家建立牛顿第一定律的科学方法是()A. 经验总结B. 凭空猜想C. 观察和实验D. 在大量经验事实基础上的科学推理5、一个做匀加速直线运动的物体,在运动过程中,若所受的一切外力都突然消失,则由牛顿第一定律可知,该物体将()A. 立即静止B. 改做匀速直线运动C. 继续做匀加速直线运动D. 改做变加速直线运动6、下面惯性最大的是()A. 冲刺的运动员B. 静止在站台上的火车C. 飞奔的兔子D. 徐徐升空的氢气球7、物体保持匀速直线运动或静止状态的性质叫惯性,一切物体都具有惯性,下列关于惯性的说法正确的是()A. 运动越快的物体,惯性越大B. 受合力越大的物体,惯性越大C. 质量越大的物体,惯性越大D. 静止的物体运动时惯性大8、关于惯性,下列说法正确的是()A. 物体在阻力相同的情况下,速度大的不容易停下来,所以速度大的物体惯性大B. 推动地面上静止的物体比维持这个物体做匀速运动所需的力大,所以静止的物体惯性大C. 在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小D. 物体的惯性与物体运动速度的大小、物体运动状态的改变、物体所处的位置无关9、关于惯性与牛顿第一定律定律,下列说法正确的是()A. 只有物体在匀速直线运动或静止时才表现出惯性的性质B. 惯性的大小由物体的质量决定,与受力及运动状态无关C. 牛顿第一定律既提出了物体不受力作用时的运动规律,又提出了力是改变物体运动状态的原因D. 牛顿第一定律就是惯性10、关于牛顿第三定律,下列说法正确的是()A. 作用力大时,反作用力小B. 作用力和反作用力的方向总是相反的C. 作用力和反作用力是作用在同一个物体上的D. 牛顿第三定律在物体处于非平衡状态时也适用11、用牛顿第三定律判断,下列说法正确的是()A. 人走路时,地对脚的力大于脚蹬地的力,所以人才能往前奏B. 不论站着不动,还是走动过程,人对地面的压力和地面对人的支持力,总是大小相等方向相反的C. 物体A静止在物体B上,A的质量是B质量的100倍,所以A作用于B的力大于B作用于A的力D. 以卵击石,石头没事而鸡蛋碎了,这是因为石头对鸡蛋的作用力大于鸡蛋对石头的作用力12、跳高运动员在竖直向上跳起的瞬间,地面对他的弹力的大小为N,他对地面的压力的大小为N′,根据牛顿第三定律,比较N和N′的大小()A.N=N′B.N<N′C.N>N′D. 不能确定N、N′那个力较大13、甲、乙两人发生口角,甲打了乙的胸口一拳致使乙手上,法院判决甲应支付乙的医药费。

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。

如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。

B 、C 分别是传送带与两轮的切点,相距L =6.4m 。

倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。

一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。

用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。

g 取10m/s 2,sin37°=0.6,cos37°=0.8,求: (1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。

【答案】(1)42J,(2)2.4s,(3)19.2J 【解析】 【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得:1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2工件与传送带共速需要时间为:011v vt a -= 解得:t 1=0.4s工件滑行位移大小为:220112v v x a -=解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22v ta =解得:t 2=2s工件滑行位移大小为:23?1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)含解析

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)含解析

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。

【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.2.如图甲所示,质量为m 的A 放在足够高的平台上,平台表面光滑.质量也为m 的物块B 放在水平地面上,物块B 与劲度系数为k 的轻质弹簧相连,弹簧 与物块A 用绕过定滑轮的轻绳相连,轻绳刚好绷紧.现给物块A 施加水平向右的拉力F (未知),使物块A 做初速度为零的匀加速直线运动,加速度为a ,重力加速度为,g A B 、均可视为质点.(1)当物块B 刚好要离开地面时,拉力F 的大小及物块A 的速度大小分别为多少; (2)若将物块A 换成物块C ,拉力F 的方向与水平方向成037θ=角,如图乙所示,开始时轻绳也刚好要绷紧,要使物块B 离开地面前,物块C 一直以大小为a 的加速度做匀加速度运动,则物块C 的质量应满足什么条件?(0sin 370.6,cos370.8==)【答案】(1)2;amg F ma mg v k=+=(2)343C mg m g a ≥- 【解析】 【分析】 【详解】(1)当物块B 刚好要离开地面时,设弹簧的伸长量为x ,物块A 的速度大小为v ,对物块B 受力分析有mg kx = ,得:mgx k =. 根据22v ax =解得:22amgv ax k==对物体A:F T ma -=; 对物体B:T=mg , 解得F=ma+mg ;(2)设某时刻弹簧的伸长量为x .对物体C ,水平方向:1cos C F T m a θ-=,其中1T kx mg =≤;竖直方向:sin C F m g θ≤; 联立解得 343C mgm g a≥-3.近年来,随着AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动分拣传送装置的简化示意图,水平传送带右端与水平面相切,以v 0=2m/s 的恒定速率顺时针运行,传送带的长度为L =7.6m.机械手将质量为1kg 的包裹A 轻放在传送带的左端,经过4s 包裹A 离开传送带,与意外落在传送带右端质量为3kg 的包裹B 发生正碰,碰后包裹B 在水平面上滑行0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹A 、B 与水平面间的动摩擦因数均为0.1,取g =10m/s 2.求:(1)包裹A 与传送带间的动摩擦因数; (2)两包裹碰撞过程中损失的机械能; (3)包裹A 是否会到达分拣通道口.【答案】(1)μ1=0.5(2)△E =0.96J (3)包裹A 不会到达分拣通道口 【解析】 【详解】(1)假设包裹A 经过t 1时间速度达到v 0,由运动学知识有01012v t v t t L +-=() 包裹A 在传送带上加速度的大小为a 1,v 0=a 1t 1包裹A 的质量为m A ,与传输带间的动摩檫因数为μ1,由牛顿运动定律有:μ1m A g =m A a 1 解得:μ1=0.5(2)包裹A 离开传送带时速度为v 0,设第一次碰后包裹A 与包裹B 速度分别为v A 和v B , 由动量守恒定律有:m A v 0=m A v A +m B v B包裹B 在水平面上滑行过程,由动能定理有:-μ2m B gx =0-12m B v B 2 解得v A =-0.4m/s ,负号表示方向向左,大小为0.4m/s 两包裹碰撞时损失的机械能:△E =12m A v 02 -12m A v A 2-12m B v B 2 解得:△E =0.96J(3)第一次碰后包裹A 返回传送带,在传送带作用下向左运动x A 后速度减为零, 由动能定理可知-μ1m A gx A =0-12m A v A 2 解得x A =0.016m<L ,包裹A 在传送带上会再次向右运动. 设包裹A 再次离开传送带的速度为v A ′μ1m A gx A =12m A v A ′2 解得:v A ′ =0.4m/s设包裹A 再次离开传送带后在水平面上滑行的距离为x A-μ2m A gx A ′=0-12m A v A 2 解得 x A ′=0.08m x A ′=<0.32m包裹A 静止时与分拣通道口的距离为0.24m ,不会到达分拣通道口.4.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m 【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgsinθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.5.质量9kg M =、长1m L =的木板在动摩擦因数10.1μ=的水平地面上向右滑行,当速度02m/s v =时,在木板的右端轻放一质量1kg m =的小物块如图所示.当小物块刚好滑到木板左端时,物块和木板达到共同速度.取210m/s g =,求:(1)从木块放到木板上到它们达到相同速度所用的时间t ; (2)小物块与木板间的动摩擦因数2μ. 【答案】(1)1s (2)0.08 【解析】 【分析】 【详解】(1)设木板在时间t 内的位移为x 1;铁块的加速度大小为a 2,时间t 内的位移为x 2 则有210112x v t a t =-22212x a t =12x L x =+又012v a t a t -=代入数据得t =1s(2)根据牛顿第二定律,有121()M m g mg Ma μμ++=22mg ma μ=解得20.08μ=6.一长木板静止在水平地面上,木板长5l m =,小茗同学站在木板的左端,也处于静止状态,现小茗开始向右做匀加速运动,经过2s 小茗从木板上离开,离开木板时小茗的速度为v=4m/s ,已知木板质量M =20kg ,小茗质量m =50kg ,g 取10m/s 2,求木板与地面之间的动摩擦因数μ(结果保留两位有效数字).【答案】0.13【解析】 【分析】对人分析,由速度公式求得加速度,由牛顿第二定律求人受到木板的摩擦力大小;由运动学的公式求出长木板的加速度,由牛顿第二定律求木板与地面之间的摩擦力大小和木板与地面之间的动摩擦因数. 【详解】对人进行分析,由速度时间公式:v=a 1t 代入数据解得:a 1=2m/s 2 在2s 内人的位移为:x 1=2112a t 代入数据解得:x 1=4m由于x 1=4m <5m ,可知该过程中木板的位移:x 2=l-x 1=5-4=1m 对木板:x 2=2212a t可得:a 2=0.5m/s 2对木板进行分析,根据牛顿第二定律:f-μ(M+m )g=Ma 2 根据牛顿第二定律,板对人的摩擦力f=ma 1 代入数据解得:f=100N 代入数据解得:μ=90.1370. 【点睛】本题主要考查了相对运动问题,应用牛顿第二定律和运动学公式,再结合位移间的关系即可解题.本题也可以根据动量定理解答.7.“复兴号”动车组共有8节车厢,每节车厢质量m=18t ,第2、4、5、7节车厢为动力车厢,第1、3、6、8节车厢没有动力。

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求:(1)小环的质量m ; (2)细杆与地面间的倾角a . 【答案】(1)m =1kg ,(2)a =30°. 【解析】 【详解】由图得:0-2s 内环的加速度a=vt=0.5m/s 2 前2s ,环受到重力、支持力和拉力,根据牛顿第二定律,有:1sin F mg ma α-= 2s 后物体做匀速运动,根据共点力平衡条件,有:2sin F mg α= 由图读出F 1=5.5N ,F 2=5N联立两式,代入数据可解得:m =1kg ,sinα=0.5,即α=30°2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2;由运动规律:x=12a1t12解得A在2s内的位移为x=2m;(2)设绳断瞬间,AB的速度大小为v1,t2=6s时刻,B的速度大小为v2,则v1=a1t1=2m/s;绳断后,对B由牛顿第二定律:F-μm B g=m B a2解得a2=2m/s2;由运动规律可知:v2=v1+a2(t2-t1)解得v2=10m/s电场力的功率P=Fv,解得P=60W3.某研究性学习小组利用图a所示的实验装置探究物块在恒力F作用下加速度与斜面倾角的关系。

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.某物理兴趣小组设计了一个货物传送装置模型,如图所示。

水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。

传送带BC 间距0.8L m =,以01/v m s =顺时针运转。

两个转动轮O 1、O 2的半径均为0.08r m =,半径O 1B 、O 2C 均与传送带上表面垂直。

用力将一个质量为1m kg =的小滑块(可视为质点)向左压弹簧至位置K ,撤去外力由静止释放滑块,最终使滑块恰好能从C 点抛出(即滑块在C 点所受弹力恰为零)。

已知传送带与滑块间动摩擦因数0.75μ=,释放滑块时弹簧的弹性势能为1J ,重力加速度g 取210/m s ,cos370.8=o ,sin 370.6=o ,不考虑滑块在水平面和传送带衔接处的能量损失。

求:(1)滑块到达B 时的速度大小及滑块在传送带上的运动时间 (2)滑块在水平面上克服摩擦所做的功 【答案】(1)1s (2)0.68J 【解析】 【详解】解:(1)滑块恰能从C 点抛出,在C 点处所受弹力为零,可得:2v mgcos θm r=解得: v 0.8m /s =对滑块在传送带上的分析可知:mgsin θμmgcos θ=故滑块在传送带上做匀速直线运动,故滑块到达B 时的速度为:v 0.8m /s = 滑块在传送带上运动时间:L t v= 解得:t 1s =(2)滑块从K 至B 的过程,由动能定理可知:2f 1W W mv 2-=弹 根据功能关系有: p W E =弹 解得:f W 0.68J =2.如图所示,足够长的木板与水平地面间的夹角θ可以调节,当木板与水平地面间的夹角为37°时,一小物块(可视为质点)恰好能沿着木板匀速下滑.若让该物块以大小v 0=10m/s 的初速度从木板的底端沿木板上滑,随着θ的改变,物块沿木板滑行的距离x 将发生变化.取g =10m/s 2,sin37°=0.6,cos37°=0.8.(1)求物块与木板间的动摩擦因数μ;(2)当θ满足什么条件时,物块沿木板向上滑行的距离最小,并求出该最小距离. 【答案】(1) 0.75(2) 4m 【解析】 【详解】(1)当θ=37°时,设物块的质量为m ,物块所受木板的支持力大小为F N ,对物块受力分析,有:mg sin37°=μF N F N -mg cos37°=0 解得:μ=0.75(2)设物块的加速度大小为a ,则有:mg sin θ+μmg cos θ=ma 设物块的位移为x ,则有:v 02=2ax解得:()202sin cos v x g θμθ=+令tan α=μ,可知当α+θ=90°,即θ=53°时x 最小 最小距离为:x min =4m3.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N4.如图,光滑固定斜面上有一楔形物体A 。

牛顿运动定律习题集(含答案)

牛顿运动定律习题集(含答案)

物理训练题 之 牛顿运动定律一、选择题1. 关于惯性,以下说法正确的是: ( )A 、在宇宙飞船内,由于物体失重,所以物体的惯性消失B 、在月球上物体的惯性只是它在地球上的1/6C 、质量相同的物体,速度较大的惯性一定大D 、质量是物体惯性的量度,惯性与速度及物体的受力情况无关2. 理想实验是科学研究中的一种重要方法,它把可靠事实和理论思维结合起来,可以深刻地揭示自然规律。

以下实验中属于理想实验的是: ( ) A 、验证平行四边形定则 B 、伽利略的斜面实验C 、用打点计时器测物体的加速度D 、利用自由落体运动测定反应时间3. 关于作用力和反作用力,以下说法正确的是: ( ) A 、作用力与它的反作用力总是一对平衡力 B 、地球对物体的作用力比物体对地球的作用力大 C 、作用力与反作用力一定是性质相同的力D 、凡是大小相等,方向相反,作用在同一条直线上的,并且分别作用在不同物体上的两个力一定是一对作用力和反作用力4. 在光滑水平面上,一个质量为m 的物体,受到的水平拉力为F 。

物体由静止开始做匀加速直线运动,经过时间t ,物体的位移为s ,速度为v ,则: ( ) A 、由公式α=可知,加速度a 由速度的变化量和时间决定B 、由公式a 由物体受到的合力和物体的质量决定C 、由公式αa 由物体的速度和位移s 决定D 、由公式αa 由物体的位移s 和时间决定5.力F 1a 1=3m/s 2,力F 2作用在该物体上产生的加速度a 2=4m/s 2,则F 1和F 2( ) A 、 7m/s 2B 、 5m/s 2C 、 1m/s 2D 、 8m/s26.电梯的顶部挂有一个弹簧秤,秤下端挂了一个重物,电梯匀速直线运动时,弹簧秤的示数为10N ,在某时刻电梯中的人观察到弹簧秤的示数变为8N ,关于电梯的运动,以下说法正确的是: ( ) A 、电梯可能向上加速运动,加速度大小为2m/s 2B 、电梯可能向下加速运动,加速度大小为2m/s 2C 、电梯可能向上减速运动,加速度大小为2m/s 2D 、电梯可能向下减速运动,加速度大小为2m/s 2 7.下国际单位制中的单位,属于基本单位的是:( ) A 、力的单位:N B 、 质量的单位:kg C 、 长度的单位:m D 、时间的单位:s8. 关于物体的运动状态和所受合力的关系,以下说法正确的是: ( ) A 、物体所受外力为零,物体一定处于静止状态 B 、只有合力发生变化时,物体的运动状态才会发生变化 aD、物体所受的合力不变且不为零,物体的运动状态一定变化9.以下说法中正确的是: ( )A、牛顿第一定律反映了物体不受外力作用时的运动规律B、静止的物体一定不受外力的作用C、在水平地面上滑动的木块最终要停下来,是由于没有外力维持木块的运动D、物体运动状态发生变化时,物体必须受到外力作用10.做自由落体运动的物体,如果下落过程中某时刻重力突然消失,物体的运动情况将是:A、悬浮在空中不动B、速度逐渐减小C、保持一定速度向下匀速直线运动D、无法判断11.人从行驶的汽车上跳下来容易: ( )A 、向汽车行驶的方向跌倒 B、向汽车行驶的反方向跌倒C、从向车右侧方向跌倒D、向车左侧方向跌倒12.下面说法中正确的是: ( )A、只有运动的物体才能表现出它的惯性;B、只有静止的物体才能表现出它的惯性C、物体的运动状态发生变化时,它不具有惯性D、不论物体处于什么状态,它都具有惯性13.下列事例中,利用了物体的惯性的是:( )A、跳远运动员在起跳前的助跑运动B、跳伞运动员在落地前打开降落伞C、自行车轮胎有凹凸不平的花纹D、铁饼运动员在掷出铁饼前快速旋转14.火车在长直水平轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回车上原处,这是因为: ( )A、人跳起后,厢内空气给他以向前的力,带着他随同火车一起向前运动;B、人跳起的瞬间,车厢的地板给他一个向前的力,推动他随同火车一起向前运动;C、人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后距离很小,不明显而已;D、人跳起后直到落地,在水平方向上人和车始终具有相同的速度。

高中物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)

高中物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)

高中物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律的应用1.一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m 的小物块a相连,如图所示.质量为35m 的小物块b 紧靠a 静止在斜面上,此时弹簧的压缩量为x 0,从t=0时开始,对b 施加沿斜面向上的外力,使b 始终做匀加速直线运动.经过一段时间后,物块a 、b 分离;再经过同样长的时间,b 距其出发点的距离恰好也为x 0.弹簧的形变始终在弹性限度内,重力加速度大小为g .求:(1)弹簧的劲度系数; (2)物块b 加速度的大小;(3)在物块a 、b 分离前,外力大小随时间变化的关系式.【答案】(1)08sin 5mg x θ (2)sin 5g θ(3)22084sin sin 2525mg F mg x θθ=+【解析】 【详解】(1)对整体分析,根据平衡条件可知,沿斜面方向上重力的分力与弹簧弹力平衡,则有:kx 0=(m+35m )gsinθ 解得:k=8 5mgsin x θ(2)由题意可知,b 经两段相等的时间位移为x 0;由匀变速直线运动相邻相等时间内位移关系的规律可知:1014x x = 说明当形变量为0010344x x x x =-=时二者分离; 对m 分析,因分离时ab 间没有弹力,则根据牛顿第二定律可知:kx 1-mgsinθ=ma 联立解得:a=15gsin θ(3)设时间为t ,则经时间t 时,ab 前进的位移x=12at 2=210gsin t θ则形变量变为:△x=x 0-x对整体分析可知,由牛顿第二定律有:F+k △x-(m+35m )gsinθ=(m+35m )a解得:F=825mgsinθ+22425mg sinxθt2因分离时位移x=04x由x=04x=12at2解得:052xtgsinθ=故应保证0≤t<052xgsinθ,F表达式才能成立.点睛:本题考查牛顿第二定律的基本应用,解题时一定要注意明确整体法与隔离法的正确应用,同时注意分析运动过程,明确运动学公式的选择和应用是解题的关键.2.如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m=1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求:(1)物体与传送带间的动摩擦因数;(2) 0~8 s内物体机械能的增加量;(3)物体与传送带摩擦产生的热量Q。

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)含解析

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)含解析

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律1.滑雪者为什么能在软绵绵的雪地中高速奔驰呢?其原因是白雪内有很多小孔,小孔内充满空气.当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板与雪地间形成一个暂时的“气垫”,从而大大减小雪地对滑雪板的摩擦.然而当滑雪板对雪地速度较小时,与雪地接触时间超过某一值就会陷下去,使得它们间的摩擦力增大.假设滑雪者的速度超过4 m/s 时,滑雪板与雪地间的动摩擦因数就会由μ1=0.25变为μ2=0.125.一滑雪者从倾角为θ=37°的坡顶A由静止开始自由下滑,滑至坡底B(B处为一光滑小圆弧)后又滑上一段水平雪地,最后停在C处,如图所示.不计空气阻力,坡长为l=26 m,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)滑雪者从静止开始到动摩擦因数发生变化经历的时间;(2)滑雪者到达B处的速度;(3)滑雪者在水平雪地上运动的最大距离.【答案】1s99.2m【解析】【分析】由牛顿第二定律分别求出动摩擦因数恒变化前后的加速度,再由运动学知识可求解速度、位移和时间.【详解】(1)由牛顿第二定律得滑雪者在斜坡的加速度:a1==4m/s2解得滑雪者从静止开始到动摩擦因数发生变化所经历的时间:t==1s(2)由静止到动摩擦因素发生变化的位移:x1=a1t2=2m动摩擦因数变化后,由牛顿第二定律得加速度:a2==5m/s2由v B2-v2=2a2(L-x1)解得滑雪者到达B处时的速度:v B=16m/s(3)设滑雪者速度由v B=16m/s减速到v1=4m/s期间运动的位移为x3,则由动能定理有:;解得x3=96m速度由v1=4m/s减速到零期间运动的位移为x4,则由动能定理有:;解得 x4=3.2m所以滑雪者在水平雪地上运动的最大距离为x=x3+x4=96+ 3.2=99.2m2.5s 后系统动量守恒,最终达到相同速度v′,则()12mv Mv m M v +='+ 解得v′=0.6m/s ,即物块和木板最终以0.6m/s 的速度匀速运动.(3)物块先相对木板向右运动,此过程中物块的加速度为a 1,木板的加速度为a 2,经t 1时间物块和木板具有相同的速度v′′, 对物块受力分析:1mg ma μ= 对木板:2F mg Ma μ+= 由运动公式:021v v a t =-''11v a t ''=解得:113t s =2/3v m s '=' 此过程中物块相对木板前进的距离:01122v v v s t t '-'''+= 解得s=0.5m ;t 1后物块相对木板向左运动,这再经t 2时间滑落,此过程中板的加速度a 3,物块的加速度仍为a 1,对木板:3-F mg Ma μ= 由运动公式:222122321122v t a t v t a t s ''⎛⎫---= ⎪⎝⎭'' 解得23t s =故经过时间12310.913t t t s +=+=≈ 物块滑落.3.如图甲所示,在平台上推动物体压缩轻质弹簧至P 点并锁定.解除锁定,物体释放,物体离开平台后水平抛出,落在水平地面上.以P 点为位移起点,向右为正方向,物体在平台上运动的加速度a 与位移x 的关系如图乙所示.已知物体质量为2kg ,物体离开平台后下落0.8m 的过程中,水平方向也运动了0.8m ,g 取10m/s 2,空气阻力不计.求:(1)物体与平台间的动摩擦因数及弹簧的劲度系数; (2)物体离开平台时的速度大小及弹簧的最大弹性势能. 【答案】(1)0.2μ=,400/k N m =(2)2/v m s =, 6.48p E J = 【解析】 【详解】(1)由图象知,弹簧最大压缩量为0.18x m ∆=,物体开始运动时加速度2134/a m s =,离开弹簧后加速度大小为222/a m s =.由牛顿第二定律1k x mg ma μ⋅∆-=①,2mg ma μ=②联立①②式,代入数据解得0.2μ=③400/k N m =④(2)物体离开平台后,由平抛运动规律得:212h gt =⑤ d vt =⑥物体沿平台运动过程由能量守恒定律得:212p E mgx mv μ-=⑦ 联立①②⑤⑥⑦式,代入数据得2/v m s =⑧6.48p E J =⑨4.在水平力F 作用下,质量为0.4kg 的小物块从静止开始沿水平地面做匀加速直线运动,经2s 运动的距离为6m ,随即撤掉F ,小物块运动一段距离后停止.已知物块与地面之间的动摩擦因数μ=0.5,g=10m/s 2.求: (1)物块运动的最大速度; (2)F 的大小;(3)撤去F 后,物块克服摩擦力做的功 【答案】(1)6m/s (2)3.2N (3)7.2J 【解析】 【分析】(1)物块做匀加速直线运动,运动2s 时速度最大.已知时间、位移和初速度,根据位移等于平均速度乘以时间,求物块的最大速度.(2)由公式v=at 求出物块匀加速直线运动的加速度,由牛顿第二定律求F 的大小. (3)撤去F 后,根据动能定理求物块克服摩擦力做的功. 【详解】(1)物块运动2s 时速度最大.由运动学公式有:x= 2v t 可得物块运动的最大速度为:2266/2x v m s t ⨯=== (2)物块匀加速直线运动的加速度为:a=62vt==3m/s 2. 设物块所受的支持力为N ,摩擦力为f ,根据牛顿第二定律得:F-f=ma N-mg=0,又 f=μN 联立解得:F=3.2N(3)撤去F 后,根据动能定理得:-W f =0-12mv 2 可得物块克服摩擦力做的功为:W f =7.2J 【点睛】本题考查了牛顿第二定律和运动学公式的综合运用,知道加速度是联系力学和运动学的桥梁,要注意撤去F 前后摩擦力的大小是变化的,但动摩擦因数不变.5.我国科技已经开启“人工智能”时代,“人工智能”己经走进千家万户.某天,小陈叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,小陈操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53s ,最后再匀减速1s 恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在上升过程的最大速度为1m/s ,高度为56m .货物质量为2kg ,受到的阻力恒为其重力的0.02倍,重力加速度大小g=10m/s 2.求 (1)无人机匀加速上升的高度;(2)上升过程中,无人机对货物的最大作用力. 【答案】(1)2.5m ;(2)20.8N 【解析】 【详解】(1)无人机匀速上升的高度:h 2=vt 2 无人机匀减速上升的高度:h 3=2v t 3 无人机匀加速上升的高度:h 1=h -h 2-h 3 联立解得:h 1=2.5 m(2)货物匀加速上升过程:v 2=2ah 1货物匀加速上升的过程中,无人机对货物的作用力最大,由牛顿运动定律得: F -mg -0.02mg =ma 联立解得:F =20.8 N6.“复兴号”动车组共有8节车厢,每节车厢质量m=18t ,第2、4、5、7节车厢为动力车厢,第1、3、6、8节车厢没有动力。

高一物理牛顿运动定律练习及答案.

高一物理牛顿运动定律练习及答案.

相关习题:(牛顿运动定律)一、牛顿第一定律练习题一、选择题1.下面几个说法中正确的是[ ]A.静止或作匀速直线运动的物体,一定不受外力的作用B.当物体的速度等于零时,物体一定处于平衡状态C.当物体的运动状态发生变化时,物体一定受到外力作用D.物体的运动方向一定是物体所受合外力的方向2.关于惯性的下列说法中正确的是[ ]A.物体能够保持原有运动状态的性质叫惯性B.物体不受外力作用时才有惯性C.物体静止时有惯性,一开始运动,不再保持原有的运动状态,也就失去了惯性D.物体静止时没有惯性,只有始终保持运动状态才有惯性3.关于惯性的大小,下列说法中哪个是正确的?[ ]A.高速运动的物体不容易让它停下来,所以物体运动速度越大,惯性越大B.用相同的水平力分别推放在地面上的两个材料不同的物体,则难以推动的物体惯性大C.两个物体只要质量相同,那么惯性就一定相同D.在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小4.火车在长直的轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到原处,这是因为[ ]A.人跳起后,车厢内空气给他以向前的力,带着他随火车一起向前运动B.人跳起的瞬间,车厢的地板给人一个向前的力,推动他随火车一起运动C.人跳起后,车继续前进,所以人落下必然偏后一些,只是由于时间很短,偏后的距离不易观察出来D.人跳起后直到落地,在水平方向上人和车具有相同的速度5.下面的实例属于惯性表现的是[ ]A.滑冰运动员停止用力后,仍能在冰上滑行一段距离B.人在水平路面上骑自行车,为维持匀速直线运动,必须用力蹬自行车的脚踏板C.奔跑的人脚被障碍物绊住就会摔倒D.从枪口射出的子弹在空中运动6.关于物体的惯性定律的关系,下列说法中正确的是[ ]A.惯性就是惯性定律B.惯性和惯性定律不同,惯性是物体本身的固有属性,是无条件的,而惯性定律是在一定条件下物体运动所遵循的规律C.物体运动遵循牛顿第一定律,是因为物体有惯性D.惯性定律不但指明了物体有惯性,还指明了力是改变物体运动状态的原因,而不是维持物体运动状态的原因7.如图所示,劈形物体M的各表面光滑,上表面水平,放在固定的斜面上.在M的水平上表面放一光滑小球m,后释放M,则小球在碰到斜面前的运动轨迹是[ ] A.沿斜面向下的直线B.竖直向下的直线C.无规则的曲线D.抛物线二、填空题8.行驶中的汽车关闭发动机后不会立即停止运动,是因为____,汽车的速度越来越小,最后会停下来是因为____。

牛顿运动定律的10种典型例题(收藏)

牛顿运动定律的10种典型例题(收藏)

牛顿运动定律的10种典型 例题(精选)
9
3. 力的独立作用原理
当物体受到几个力的作用时,各力将独立地产生与其对应的加速度(力的独立作用原理), 而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果。那个方向的力就产 生那个方向的加速度。 例7、如图所示,一个劈形物体M放在固定的斜面上,上表面水平,在水平面上放有光滑 小球m,劈形物体从静止开始释放,则小球在碰到斜面前的运动轨迹是: A.沿斜面向下的直线 B.抛物线 C .竖直向下的直线 D.无规则的曲线。
关键是正确判断系统的超重与失重现象,清
楚系统的重心位置的变化情况。当系统的重
心加速上升时为超重,当系统的重心加速下
降时为失重。
牛顿运动定律的10种典型 例题(精选)
16
6. 超重和失重问题
(1)定量计算: 例13. 如图所示,一根弹簧上端固定,下端挂一质量为 m0的秤盘,盘中放有质量为m的物 体,当整个装置静止时,弹簧伸长了L,今向下拉盘使弹簧再伸长△L,然后松手放开,设 弹簧总是在弹性范围内,则刚松手时,物体m对盘压力等于多少?
图10
牛顿运动定律的10种典型 例题(精选)
20 N
mB
FA mA
FB mB
FB
16 4t 3
N
当t=4s时N=0,A、B两物体开始分离,此后B做匀加速直线运动,而A做加速度逐渐减 小的加速运动,当t=4.5s时A物体的加速度为零而速度不为零。t>4.5s后,A所受合外力反 向,即A、B的加速度方向相反。当t<4s时,A、B的加速度均为
牛顿运动定律的10种典型例题
1. 力和运动的关系
例1. 如图所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开 始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中, 下列说法中正确的是( ) A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求:(1)小环的质量m ; (2)细杆与地面间的倾角a . 【答案】(1)m =1kg ,(2)a =30°. 【解析】 【详解】由图得:0-2s 内环的加速度a=vt=0.5m/s 2 前2s ,环受到重力、支持力和拉力,根据牛顿第二定律,有:1sin F mg ma α-= 2s 后物体做匀速运动,根据共点力平衡条件,有:2sin F mg α= 由图读出F 1=5.5N ,F 2=5N联立两式,代入数据可解得:m =1kg ,sinα=0.5,即α=30°2.我国的动车技术已达世界先进水平,“高铁出海”将在我国“一带一路”战略构想中占据重要一席.所谓的动车组,就是把带动力的动力车与非动力车按照预定的参数组合在一起.某中学兴趣小组在模拟实验中用4节小动车和4节小拖车组成动车组,总质量为m=2kg ,每节动车可以提供P 0=3W 的额定功率,开始时动车组先以恒定加速度21/a m s =启动做匀加速直线运动,达到额定功率后保持功率不变再做变加速直线运动,直至动车组达到最大速度v m =6m/s 并开始匀速行驶,行驶过程中所受阻力恒定,求: (1)动车组所受阻力大小和匀加速运动的时间;(2)动车组变加速运动过程中的时间为10s ,求变加速运动的位移. 【答案】(1)2N 3s (2)46.5m 【解析】(1)动车组先匀加速、再变加速、最后匀速;动车组匀速运动时,根据P=Fv 和平衡条件求解摩擦力,再利用P=Fv 求出动车组恰好达到额定功率的速度,即匀加速的末速度,再利用匀变速直线运动的规律即可求出求匀加速运动的时间;(2)对变加速过程运用动能定理,即可求出求变加速运动的位移.(1)设动车组在运动中所受阻力为f ,动车组的牵引力为F ,动车组以最大速度匀速运动时:F=动车组总功率:m P Fv =,因为有4节小动车,故04P P = 联立解得:f=2N设动车组在匀加速阶段所提供的牵引力为Fʹ,匀加速运动的末速度为v ' 由牛顿第二定律有:F f ma '-=动车组总功率:P F v ='',运动学公式:1v at '= 解得匀加速运动的时间:13t s =(2)设动车组变加速运动的位移为x ,根据动能定理:221122m Pt fx mv mv =-'- 解得:x=46.5m3.如图所示,在光滑水平面上有一段质量不计,长为6m 的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A 、B ,现同时对A 、B 两滑块施加方向相反,大小均为F=12N 的水平拉力,并开始计时.已知A 滑块的质量mA=2kg ,B 滑块的质量mB=4kg ,A 、B 滑块与绸带之间的动摩擦因素均为μ=0.5,A 、B 两滑块与绸带之间的最大静摩擦力等于滑动摩擦力,不计绸带的伸长,求:(1)t=0时刻,A 、B 两滑块加速度的大小; (2)0到3s 时间内,滑块与绸带摩擦产生的热量.【答案】(1)22121,0.5m ma a ss ==;(2)30J【解析】 【详解】(1)A 滑块在绸带上水平向右滑动,受到的滑动摩擦力为A f ,水平运动,则竖直方向平衡:A N mg =,A A f N =;解得:A f mg μ= ——① A 滑块在绸带上水平向右滑动,0时刻的加速度为1a , 由牛顿第二定律得:1A A F f m a -=——② B 滑块和绸带一起向左滑动,0时刻的加速度为2a 由牛顿第二定律得:2B B F f m a -=——③;联立①②③解得:211m /s a =,220.5m /s a =;(2)A 滑块经t 滑离绸带,此时A B 、滑块发生的位移分别为1x 和2x1221122221212L x x x a t x a t ⎧+=⎪⎪⎪=⎨⎪⎪=⎪⎩代入数据解得:12m x =,21m x =,2s t =2秒时A 滑块离开绸带,离开绸带后A 在光滑水平面上运动,B 和绸带也在光滑水平面上运动,不产生热量,3秒时间内因摩擦产生的热量为:()12A Q f x x =+ 代入数据解得:30J Q =.4.5s 后系统动量守恒,最终达到相同速度vʹ,则()12mv Mv m M v +='+ 解得vʹ=0.6m/s ,即物块和木板最终以0.6m/s 的速度匀速运动.(3)物块先相对木板向右运动,此过程中物块的加速度为a 1,木板的加速度为a 2,经t 1时间物块和木板具有相同的速度vʹʹ, 对物块受力分析:1mg ma μ= 对木板:2F mg Ma μ+= 由运动公式:021v v a t =-''11v a t ''=解得:113t s =2/3v m s '=' 此过程中物块相对木板前进的距离:01122v v v s t t '-'''+= 解得s=0.5m ;t 1后物块相对木板向左运动,这再经t 2时间滑落,此过程中板的加速度a 3,物块的加速度仍为a 1,对木板:3-F mg Ma μ=由运动公式:222122321122v t a t v t a t s ''⎛⎫---= ⎪⎝⎭''解得23t s =故经过时间120.91t t t s =+=≈ 物块滑落.5.某课外活动小组为了研究遥控玩具小车的启动性能,进行了如图所示的实验。

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25sA 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.3.如图所示,长木板质量M=3 kg ,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg 的物块A ,右端放着一个质量也为m=1 kg 的物块B ,两物块与木板间的动摩擦因数均为μ=0.4,AB 之间的距离L=6 m ,开始时物块与木板都处于静止状态,现对物块A 施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s4.如图甲所示,质量为1kg m =的物体置于倾角为37θ︒=的固定且足够长的斜面上,对物体施以平行于斜面向上的拉力F ,10.5s t = 时撤去拉力,物体速度与时间v-t 的部分图象如图乙所示。

2024高考物理牛顿运动定理综合练习题及答案

2024高考物理牛顿运动定理综合练习题及答案

2024高考物理牛顿运动定理综合练习题及答案一、选择题1. 牛顿第一定律适用的是()A. 运动状态改变B. 速度改变C. 方向改变D. 惯性运动2. 牛顿第二定律的数学表达式是()A. F = maB. W = mgC. P = mvD. F = mv3. 牛顿第二定律表明,物体的加速度与()成正比,与质量成反比。

A. 力B. 速度C. 位移D. 能量4. 一个质量为2 kg的物体受到的力是10 N,则它的加速度为()A. 2 m/s^2B. 5 m/s^2C. 10 m/s^2D. 20 m/s^25. 一个质量为5 kg的物体受到的力是20 N,则它的加速度为()A. 2 m/s^2B. 4 m/s^2C. 5 m/s^2D. 10 m/s^2二、填空题1. 牛顿第三定律指出,任何两个相互作用的物体之间都有相等大小、方向相反的()。

2. 抛体运动是一种()的运动。

3. 一个物体沿着直线运动,它的速度大小不变,但方向改变,这是一种()运动。

4. 力是引起物体发生()运动或改变运动状态的原因。

5. 物体的质量是物体所具有的性质,不随()而改变。

三、计算题1. 一个质量为3 kg的物体受到的力是12 N,求它的加速度。

答: 加速度 a = F / m = 12 N / 3 kg = 4 m/s^22. 一个质量为5 kg的物体受到的力是20 N,求它的加速度。

答: 加速度 a = F / m = 20 N / 5 kg = 4 m/s^23. 一个物体质量为10 kg,在受到100 N的力作用下,求它的加速度。

答: 加速度 a = F / m = 100 N / 10 kg = 10 m/s^24. 一个物体在10 N的力下产生2 m/s^2的加速度,求物体的质量。

答: 质量 m = F / a = 10 N / 2 m/s^2 = 5 kg5. 一个物体在15 N的力下产生3 m/s^2的加速度,求物体的质量。

高中物理牛顿运动定律练习题(含解析)

高中物理牛顿运动定律练习题(含解析)

高中物理牛顿运动定律练习题学校:___________姓名:___________班级:___________一、单选题1.关于电流,下列说法中正确的是( )A .电流跟通过截面的电荷量成正比,跟所用时间成反比B .单位时间内通过导体截面的电量越多,导体中的电流越大C .电流是一个矢量,其方向就是正电荷定向移动的方向D .国际单位制中,其单位“安培”是导出单位2.2000年国际乒联将兵乓球由小球改为大球,改变前直径是0.038m ,质量是2.50g ;改变后直径是0.040m ,质量是2.70g 。

对此,下列说法正确的是( )A .球的直径大了,所以惯性大了,球的运动状态更难改变B .球的质量大了,所以惯性大了,球的运动状态更难改变C .球的直径大了,所以惯性大了,球的运动状态更容易改变D .球的质量大了,所以惯性大了,球的运动状态更容易改变3.在物理学的探索和发现过程中常用一些方法来研究物理问题和物理过程,下列说法错误的是( )A .在伽利略研究运动和力的关系时,采用了实验和逻辑推理相结合的研究方法B .在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,再把各小段位移相加,这里运用了理想化模型法C .在不需要考虑物体本身的大小和形状时用质点来代替物体,运用了理想化模型法D .比值定义包含“比较”的思想,例如,在电场强度的概念建立过程中,比较的是相同的电荷量的试探电荷受静电力的大小4.下列说法中正确的是( )A .物体做自由落体运动时没有惯性B .物体速度小时惯性小,速度大时惯性大C .汽车匀速行驶时没有惯性,刹车或启动时才有惯性D .惯性是物体本身的属性,无论物体处于何种运动状态,都具有惯性5.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为6N 时,物体处于静止状态。

若小车以20.8m /s 的加速度向右加速运动(取210m /s g ),则( )A .物体A 受到的弹簧拉力不变B .物体相对小车向左运动C .物体A 相对小车向右运动D .物体A 受到的摩擦力增大6.下列说法中错误的是( ) A .沿着一条直线且加速度存在且不变的运动,叫做匀变速直线运动B .为了探究弹簧弹性势能的表达式,把拉伸弹簧的过程分为很多小段,拉力在每一小段可以认为是恒力,用各小段做功的代数和代表弹力在整个过程所做的功,物理学中把这种研究方法叫做微元法C .从牛顿第一定律我们得知,物体都要保持它们原来的匀速直线运动或静止的状态,或者说,它们都具有抵抗运动状态变化的“本领”D .比值定义法是一种定义物理量的方法,即用两个已知物理量的比值表示一个新的物理量,如电容的定义式Q C U=,表示C 与Q 成正比,与U 成反比,这就是比值定义的特点7.一辆货车运载着圆柱形光滑的空油桶。

【物理】物理牛顿运动定律的应用练习题20篇含解析

【物理】物理牛顿运动定律的应用练习题20篇含解析

(1)求经过多长时间煤块与小车保持相对静止 (2) 求 3s 内煤块前进的位移 (3)煤块最终在小车上留下的痕迹长度 【答案】(1) 2s (2) 8.4m (3) 2.8m 【解析】
【分析】
分别对滑块和平板车进行受力分析,根据牛顿第二定律求出各自加速度,物块在小车上停
止相对滑动时,速度相同,根据运动学基本公式即可以求出时间.通过运动学公式求出位
k(X x) mg ma Fmax Mg Ma
以上各式代如数据联立解得
Fmax 168N
该开始向上拉时有最小拉力则
Fmin kX (M m)g (M m)a
解得
Fmin 72N
考点:牛顿第二定律的应用 点评:难题.本题难点在于确定最大拉力和最小拉力的位置以及在最大拉力位置时如何列 出牛顿第二定律的方程,此时的弹簧的压缩量也是一个难点.
(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小;
(2)计算说明滑块能否从平板车的右端滑出.
【答案】(1)

(2)恰好不会从平板车的右端滑出.
【解析】
根据牛顿第二定律得
对滑块,有

解得
对平板车,有

解得

设经过 t 时间滑块从平板车上滑出 滑块的位移为:

平板车的位移为:

而且有 解得: 此时, 所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.
移.
【详解】
(1)根据牛顿第二定律,刚开始运动时对小黑煤块有:
代入数据解得:a1=2m/s2 刚开始运动时对小车有:
FN ma1
FN-mg=0
F FN Ma2
解得:a2=0.6m/s2 经过时间 t,小黑煤块和车的速度相等,小黑煤块的速度为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿运动定律常规题型训练
1.如图所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a 、b 、c 、d
位于同一圆周上,a 点为圆周的最高点,d 点为最低点.每根杆上都套着一
个小滑环(图中未画出),三个滑环分别从a 、b 、c 处释放(初速为0),
用t 1、t 2、t 3依次表示滑环到达d 所用的时间,则
A .t 1 < t 2 < t 3
B .t 1 > t 2 > t 3
C .t 3 > t 1 > t 2
D .t 1 =t 2 =t 3 2.如图所示,一根轻弹簧竖直立在水平地面上,下端固定,在弹簧的正上方有一个物块,物
块从高处自由下落到弹簧上端O ,并将弹簧压缩,弹簧被压缩了0x 时,物块的速度变为零。

从物块与弹簧接触开始,物块的加速度的大小随下降的位置x 变化的图象可能是: ( )
3.一个物体在斜面上以一定的速度沿斜面向上运动,斜面底边水平,斜面倾角θ可在0~
90°间变化,设物体达到的最大位移x 和倾角θ间关系如图所示,试计算θ为多少时x
有最小值,最小值为多少?
4.将金属块m 用压缩的轻弹簧卡在一个矩形的箱中,如图所示,在箱的上顶板和下底板装
有压力传感器,箱可以沿竖直轨道运动.当箱以a =2.0 m/s 2的加速度竖直向上做匀减速运动时,
上顶板的传感器显示的压力为6.0 N ,下底板的传感器显示的压力为10.0 N.(g 取10 m/s 2)
(1)若上顶板传感器的示数是下底板传感器的示数的一半,试判断箱的运动情况;
(2)使上顶板传感器的示数为零,箱沿竖直方向运动的情况可能是怎样的?
0x O 0x g O a A 0x g O a B x g O a C x g O a D
5.“神舟”五号飞船完成了预定的空间科学和技术实验任务后返回舱开始从太空向地球表面按预定轨道返回,返回舱开始时通过自身制动发动机进行调控减速下降,穿越大气层后,在一定的高度打开阻力降落伞进一步减速下落,这一过程中若返回舱所受空气摩擦阻力与速度的平方成正比,比例系数(空气阻力系数)为k,所受空气浮力恒定不变,且认为竖直降落.从某时刻开始计时,返回舱的运动v-t图象如图中的AD曲线所示,图中AB是曲线在A 点的切线,切线交于横轴一点B,其坐标为(8,0),CD是曲线AD的渐进线,假如返回舱总质量为M=400 kg,g取10 m/s2,求:
(1)返回舱在这一阶段是怎样运动的?
(2)在初始时刻v=160 m/s,此时它的加速度是多大?
(3)推证空气阻力系数k的表达式并计算其值.
6.一人在井下站在吊台上,用如图所示的定滑轮装置拉绳把吊台和自己提升上来。

图中跨过滑轮的两段绳都认为是竖直的且不计摩擦。

吊台的质量m=15kg,人的质量为M=55kg,起动时吊台向上的加速度是a=0.2m/s2,求这时人对吊台的压力。

7.用质量为m、长度为L的绳沿着光滑水平面拉动质量为M的物体,在绳的一端所施加的水平拉力为F,如图所示,求:(1)物体与绳的加速度;(2)绳拉物体的力的大小
M m F
8.某传动装置的水平传送带以恒定速度v0=5 m/s运行.将一块底面水平的粉笔轻轻地放到传送带上,发现粉笔块在传送带上留下一条长度l=5 m的白色划线.稍后,因传动装置受到阻碍,传送带做匀减速运动,其加速度a0=5 m/s2,问传动装置受阻后:
(1)粉笔块是否能在传送带上继续滑动?若能,它沿皮带继续滑动的距离l′为多少? (2)若要粉笔块不能继续在传送带上滑动,则皮带做减速运动时,其加速度a0应限制在什么范围内?
9.如图所示,传送带与水平面夹角为θ=37°,以速度v=10m/s匀速运行着.现在传送带的A端轻轻放上一个小物体(可视为质点),已知小物体与传送带之间的摩擦因数μ=0.5,A、B间距离s=16m,则当皮带轮处于下列两情况时,小物体从A端运动到B端的时间分别为多少?已知sin37°=0.6,cos37°=0.8,取g=10m/s2(1)轮子顺时针方向转动;(2)轮子逆时针方向转动.

10.质量为M 、长为3L的杆水平放置,杆两端A、B系着长为3L的不可伸长且光滑的柔软轻绳,绳上套着一质量为m的小铁环。

已知重力加速度为g,不计空气影响。

(1)现让杆和环均静止悬挂在空中,如图甲,求绳中拉力的大小:
(2)若杆与环保持相对静止,在空中沿AB方向水平向右做匀加速直线运动,
此时环恰好悬于A端的正下方,如图乙所示。

①求此状态下杆的加速度大小a;
②为保持这种状态需在杆上施加一个多大的外力,方向如何?
11.如图所示,平板A长L=5m,质量M=5kg,放在水平桌面上,板右端与桌边相齐。

在A 上距右端s=3m处放一物体B(大小可忽略,即可看成质点),其质量m=2kg.已知A、B间动摩擦因数μ1=0.1,A与桌面间和B与桌面间的动摩擦因数μ2=0.2,原来系统静止。

现在在板的右端施一大小一定的水平力F持续作用在物体A上直到将A从B下抽出才撤去,且使B
最后停于桌的右边缘,求:
(1)物体B运动的时间是多少?
(2)力F的大小为多少?
F B
A
12.如图所示,完全相同的长木板A 、B 是并排紧挨静止在水平地面上,板长L=2m ,木块C (可视为质点)C 与A 、B 的摩擦因数为4.01=μ,A 、B 与地面的摩擦因数为2.02=μ,且
A 、
B 与地面的最大静摩擦力与滑动摩擦力的大小形同。

开始时,
C 在A 的左端以初速度v 0向右运动。

已知A 、B 质量M=2.0㎏, C 的质量m=3㎏,s m v /0.50=,g=10m/s 2
,试求A 、B 、C 对地面的位移。

13.一长木板在水平地面上运动,在t=0时刻将一相对于地面静止的物
块轻放到木板上,以后木板运动的速度-时间图像如图所示。

己知物块
与木板的质量相等,物块与木板间及木板与地面间均有摩擦.物块与木板
间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。

取重力加速
度的大小g =10m/s2求:
(1) 物块与木板间;木板与地面间的动摩擦因数:
(2) 从t=0时刻到物块与木板均停止运动时,物块相对于木板的
位移的大小. B A V 0 C。

相关文档
最新文档