初中数学知识点详解教学教材
初中数学知识点全总结课件
初中数学知识点全总结课件一、数与代数1. 有理数- 整数与分数- 正数、负数、零- 有理数的加法、减法、乘法、除法- 绝对值与有理数的大小比较2. 整数的性质- 素数与合数- 奇数与偶数- 整数的因数与倍数- 质因数分解3. 代数表达式- 单项式与多项式- 同类项与合并同类项- 代数式的加减运算4. 一元一次方程- 方程的建立与解法- 方程的解的检验- 含字母系数的方程5. 二元一次方程组- 代入法与消元法- 方程组的解的讨论- 三元一次方程组的解法6. 不等式与不等式组- 不等式的性质- 解一元一次不等式- 解一元一次不等式组7. 函数- 函数的概念与表示方法- 正比例函数与反比例函数- 一次函数与二次函数的图像与性质二、几何1. 平面图形- 点、线、面的基本性质- 角的概念与分类- 三角形的分类与性质- 四边形的分类与性质- 圆的性质与圆周角2. 几何图形的计算- 面积与周长的计算- 相似三角形的性质与应用- 勾股定理及其应用- 三角形的面积公式3. 立体图形- 立体图形的基本概念- 棱柱、棱锥、圆柱、圆锥的体积与表面积 - 长方体与正方体的性质4. 变换与坐标- 平面直角坐标系- 点的坐标与距离公式- 图形的平移、旋转与对称三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读- 平均数、中位数与众数2. 概率- 随机事件的概率- 概率的计算- 用树状图解决简单概率问题四、综合应用题1. 数列- 等差数列与等比数列的概念 - 数列的通项公式与求和公式2. 实际问题解决- 利用数学知识解决实际问题 - 列方程解应用题- 利用函数知识解决实际问题3. 数学思想方法- 归纳法与演绎法- 分类讨论法- 转化与化归思想本课件旨在帮助学生全面复习初中数学的知识点,为进一步的数学学习打下坚实的基础。
通过对各个知识点的系统总结和梳理,学生可以更好地掌握数学概念、性质和计算方法,提高解题能力和数学思维。
l初中数学全册教材知识梳理(详细版)
初中数学全册教材知识梳理(详细版)第一单元数与式第1讲实数知识点一:实数的概念及分类关键点拨及对应举例1.实数(1)按定义分(2)按正、负性分正有理数有理数 0 有限小数或正实数负有理数无限循环小数实数 0实数正无理数负实数无理数无限不循环小数负无理数(1)0既不属于正数,也不属于负数.(2)无理数的几种常见形式判断:①含π的式子;②构造型:如3.010010001…(每两个1之间多个0)就是一个无限不循环小数;③开方开不尽的数:如,;④三角函数型:如sin60°,tan25°.(3)失分点警示:开得尽方的含根号的数属于有理数,如=2,=-3,它们都属于有理数.知识点二:实数的相关概念2.数轴(1)三要素:原点、正方向、单位长度(2)特征:实数与数轴上的点一一对应;数轴右边的点表示的数总比左边的点表示的数大例:数轴上-2.5表示的点到原点的距离是2.5.3.相反数(1)概念:只有符号不同的两个数(2)代数意义:a、b互为相反数 a+b=0(3)几何意义:数轴上表示互为相反数的两个点到原点的距离相等a的相反数为-a,特别的0的绝对值是0.例:3的相反数是-3,-1的相反数是1.4.绝对值(1)几何意义:数轴上表示的点到原点的距离(2)运算性质:|a|= a (a≥0); |a-b|= a-b(a≥b)-a(a<0). b-a(a<b)(3)非负性:|a|≥0,若|a|+b2=0,则a=b=0.(1)若|x|=a(a≥0),则x=±a.(2)对绝对值等于它本身的数是非负数.例:5的绝对值是5;|-2|=2;绝对值等于3的是±3;|1-|=-1.5.倒数(1)概念:乘积为1的两个数互为倒数.a的倒数为1/a(a≠0)(2)代数意义:ab=1a,b互为倒数例:-2的倒数是-1/2;倒数等于它本身的数有±1.知识点三:科学记数法、近似数6.科学记数法(1)形式:a×10n,其中1≤|a|<10,n为整数(2)确定n的方法:对于数位较多的大数,n等于原数的整数为减去1;对于小数,写成a×10-n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)例:21000用科学记数法表示为2.1×104;19万用科学记数法表示为1.9×105;0.0007用科学记数法表示为知识点一:代数式及相关概念关键点拨及对应举例1.代数式(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,单独的一个数或一个字母也是代数式.(2)求代数式的值:用具体数值代替代数式中的字母,计算得出的结果,叫做求代数式的值.求代数式的值常运用整体代入法计算.例:a-b=3,则3b-3a=-9.7×10-4.7.近似数(1)定义:一个与实际数值很接近的数.(2)精确度:由四舍五入到哪一位,就说这个近似数精确到哪一位.例:3.14159精确到百分位是3.14;精确到0.001是3.142.知识点四:实数的大小比较8.实数的大小比较(1)数轴比较法:数轴上的两个数,右边的数总比左边的数大.(2)性质比较法:正数>0>负数;两个负数比较大小,绝对值大的反而小.(3)作差比较法:a-b>0a>b;a-b=0a=b;a-b<0a<b.(4)平方法:a>b≥0a2>b2.例:把1,-2,0,-2.3按从大到小的顺序排列结果为___1>0>-2>-2.3_.知识点五:实数的运算9. 常见运算乘方几个相同因数的积; 负数的偶(奇)次方为正(负)例:(1)计算:1-2-6=_-7__;(-2)2=___4__;3-1=_1/3_;π0=__1__;(2)64的平方根是_±8__,算术平方根是__8_,立方根是__4__.失分点警示:类似“的算术平方根”计算错误. 例:相互对比填一填:16的算术平方根是4___,的算术平方根是___2__.零次幂a0=_1_(a≠0)负指数幂a-p=1/a p(a≠0,p为整数)平方根、算术平方根若x2=a(a≥0),则x=a.其中a是算术平方根.立方根若x3=a,则x=3a.10.混合运算先乘方、开方,再乘除,最后加减;同级运算,从左向右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号一次进行.计算时,可以结合运算律,使问题简单化2.整式(单项式、多项式)(1)单项式:表示数字与字母积的代数式,单独的一个数或一个字母也叫单项式.其中的数字因数叫做单项式的系数,所有字母的指数和叫做单项式的次数.(2)多项式:几个单项式的和.多项式中的每一项叫做多项式的项,次数最高的项的次数叫做多项式的次数.(3)整式:单项式和多项式统称为整式.(4)同类项:所含字母相同并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.例:(1)下列式子:①-2a2;②3a-5b;③x/2;④2/x;⑤7a2;⑥7x2+8x3y;⑦2017.其中属于单项式的是①③⑤⑦;多项式是②⑥;同类项是①和⑤.(2)多项式7m5n-11mn2+1是六次三项式,常数项是__1 .知识点二:整式的运算3.整式的加减运算(1)合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.(2)去括号法则: 若括号外是“+”,则括号里的各项都不变号;若括号外是“-”,则括号里的各项都变号.(3)整式的加减运算法则:先去括号,再合并同类项.失分警示:去括号时,如果括号外面是符号,一定要变号,且与括号内每一项相乘,不要有漏项.例:-2(3a-2b-1)=-6a+4b+2.4.幂运算法则(1)同底数幂的乘法:a m·a n=a m+n;(2)幂的乘方:(a m)n=a mn;(3)积的乘方:(ab)n=a n·b n;(4)同底数幂的除法:a m÷a n=a m-n(a≠0).其中m,n都在整数(1)计算时,注意观察,善于运用它们的逆运算解决问题.例:已知2m+n=2,则3×2m×2n=6.(2)在解决幂的运算时,有时需要先化成同底数.例:2m·4m=23m.5.整式的乘除运算(1)单项式×单项式:①系数和同底数幂分别相乘;②只有一个字母的照抄.(2)单项式×多项式: m(a+b)=ma+mb.(3)多项式×多项式: (m+n)(a+b)=ma+mb+na+nb.(4)单项式÷单项式:将系数、同底数幂分别相除.(5)多项式÷单项式:①多项式的每一项除以单项式;②商相加.失分警示:计算多项式乘以多项式时,注意不能漏乘,不能丢项,不能出现变号错.例:(2a-1)(b+2)=2ab+4a-b-2.(6)乘法公式平方差公式:(a+b)(a-b)=a2-b2. 注意乘法公式的逆向运用及其变形公式的运用完全平方公式:(a±b)2=a2±2ab+b2. 变形公式:a2+b2=(a±b)2∓2ab,ab=【(a+b)2-(a2+b2)】 /26.混合运算注意计算顺序,应先算乘除,后算加减;若为化简求值,一般步骤为:化简、代入替换、计算.例:(a-1)2-(a+3)(a-3)-10=_-2a__.知识点五:因式分解7.因式分解(1)定义:把一个多项式化成几个整式的积的形式.(2)常用方法:①提公因式法:ma+mb+mc=m(a+b+c).②公式法:a2-b2=(a+b)(a-b);a2±2ab+b2=(a±b)2.(3)一般步骤:①若有公因式,必先提公因式;②提公因式后,看是否能用公式法分解;③检查各因式能否继续分解.(1) 因式分解要分解到最后结果不能再分解为止,相同因式写成幂的形式;(2) 因式分解与整式的乘法互为逆运算.知识点一:分式的相关概念关键点拨及对应举例1.分式的概念(1)分式:形如BA(A,B是整式,且B中含有字母,B≠0)的式子.(2)最简分式:分子和分母没有公因式的分式.在判断某个式子是否为分式时,应注意:(1)判断化简之间的式子;(2)π是常数,不是字母. 例:下列分式:①;②; ③;④2221xx+-,其中是分式是②③④;最简分式③.2.分式的意义(1)无意义的条件:当B=0时,分式BA无意义;(2)有意义的条件:当B≠0时,分式BA有意义;(3)值为零的条件:当A=0,B≠0时,分式BA=0.失分点警示:在解决分式的值为0,求值的问题时,一定要注意所求得的值满足分母不为0.例:当211xx--的值为0时,则x=-1.3.基本性质( 1 ) 基本性质:A A CB B C⋅=⋅A CB C÷=÷(C≠0).(2)由基本性质可推理出变号法则为:()AA AB B B---==-;A A AB B B--==-.由分式的基本性质可将分式进行化简:例:化简:22121xx x-++=11xx-+.知识点三:分式的运算4.分式的约分和通分(1)约分(可化简分式):把分式的分子和分母中的公因式约去,即babmam=;(2)通分(可化为同分母):根据分式的基本性质,把异分母的分式化为同分母的分式,即bcbdbcacdcba,,⇒分式通分的关键步骤是找出分式的最简公分母,然后根据分式的性质通分.例:分式21x x+和()11x x-的最简公分母为()21x x-.5.分式的加减法(1)同分母:分母不变,分子相加减.即ac±bc=a±bc;(2)异分母:先通分,变为同分母的分式,再加减.即ab±cd=ad±bcbd.例:111xx x+--=-1.2112.111aa a a+=+--6.分式的乘除法(1)乘法:ab·cd=acbd; (2)除法:a cb d÷=adbc;例:2a bb a⋅=12;21x xy÷=2y;(3)乘方:na b ⎛⎫ ⎪⎝⎭=nn ab(n 为正整数). 332x ⎛⎫- ⎪⎝⎭=3278x-.7.分式的混合运算 (1)仅含有乘除运算:首先观察分子、分母能否分解因式,若能,就要先分解后约分. (2)含有括号的运算:注意运算顺序和运算律的合理应用.一般先算乘方,再算乘除,最后算加减,若有括号,先算括号里面的.失分点警示:分式化简求值问题,要先将分式化简到最简分式或整式的形式,再代入求值.代入数值时注意要使原分式有意义.有时也需运用到整体代入.知识点一:二次根式关键点拨及对应举例1.有关概念(1)二次根式的概念:形如a (a ≥0)的式子.(2)二次根式有意义的条件:被开方数大于或等于0. (3)最简二次根式:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中不含能开得尽方的因数或因式失分点警示:当判断分式、二次根式组成的复合代数式有意义的条件时,注意确保各部分都有意义,即分母不为0,被开方数大于等于0等.例:若代数式11x -有意义,则x 的取值范围是x >1.2.二次根式的性质(1)双重非负性:①被开方数是非负数,即a ≥0; ②二次根式的值是非负数,即a ≥0.注意:初中阶段学过的非负数有:绝对值、偶幂、算式平方根、二次根式.利用二次根式的双重非负性解题: (1)值非负:当多个非负数的和为0时,可得各个非负数均为0.如1a ++1b -=0,则a=-1,b=1.(2)被开方数非负:当互为相反数的两个数同时出现在二次根式的被开方数下时,可得这一对相反数的数均为0.如已知b=1a -+1a -,则a=1,b=0.(2)两个重要性质:①(a )2=a (a ≥0);②a 2=|a |=()()00a a a a ⎧≥⎪⎨-<⎪⎩; (3)积的算术平方根:ab =a ·b (a ≥0,b ≥0); (4)商的算术平方根:ab=ab(a ≥0,b >0). 例:计算:23.14=3.14;()22-=2;24=;=2 ;442939== 知识点二 :二次根式的运算3.二次根式的加减法 先将各根式化为最简二次根式,再合并被开方数相同的二次根式. 例:计算:2832-+=32.4.二次根式的乘除法 (1)乘法:a ·b =ab (a ≥0,b ≥0);注意:将运算结果化为最简二次根式.(2)除法:ab =ab(a≥0,b>0).例:计算:3223⋅=1;323222==4.5.二次根式的混合运算运算顺序与实数的运算顺序相同,先算乘方,再算乘除,最后算加减,有括号的先算括号里面的(或先去括号).运算时,注意观察,有时运用乘法公式会使运算简便.例:计算:(2+1)(2 -1)= 1 .知识点一:方程及其相关概念关键点拨及对应举例1.等式的基本性质(1)性质1:等式两边加或减同一个数或同一个整式,所得结果仍是等式.即若a=b,则a±c=b±c .(2)性质2:等式两边同乘(或除)同一个数(除数不能为0),所得结果仍是等式.即若a=b,则ac=bc,a bc c=(c≠0).(3)性质3:(对称性)若a=b,则b=a.(4)性质4:(传递性)若a=b,b=c,则a=c.失分点警示:在等式的两边同除以一个数时,这个数必须不为0.例:判断正误.(1)若a=b,则a/c=b/c.(×)(2)若a/c=b/c,则a=b.(√)2.关于方程的基本概念(1)一元一次方程:只含有一个未知数,并且未知数的次数是1,且等式两边都是整式的方程.(2)二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程.(3)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程.(4)二元一次方程组的解:二元一次方程组的两个方程的公共解.在运用一元一次方程的定义解题时,注意一次项系数不等于0.例:若(a-2)|a1|0x a-+=是关于x的一元一次方程,则a的值为0.知识点二:解一元一次方程和二元一次方程组3.解一元一次方程的步骤(1)去分母:方程两边同乘分母的最小公倍数,不要漏乘常数项;(2)去括号:括号外若为负号,去括号后括号内各项均要变号;(3)移项:移项要变号;(4)合并同类项:把方程化成ax=-b(a≠0);(5)系数化为1:方程两边同除以系数a,得到方程的解x=-b/a.失分点警示:方程去分母时,应该将分子用括号括起来,然后再去括号,防止出现变号错误.4.二元一次方程组的解法思路:消元,将二元一次方程转化为一元一次方程. 已知方程组,求相关代数式的值时,需注意观察,有时不需解出方程组,利用整体思想解决解方程组. 例:已知2923x yx y-=⎧⎨-=⎩则x-y的值为x-y=4. 方法:(1)代入消元法:从一个方程中求出某一个未知数的表达式,再把“它”代入另一个方程,进行求解;(2) 加减消元法:把两个方程的两边分别相加或相减消去一个未知数的方法.知识点三:一次方程(组)的实际应用5.列方程(组) 解应用题的一般步骤(1)审题:审清题意,分清题中的已知量、未知量;(2)设未知数;(3)列方程(组):找出等量关系,列方程(组);(4)解方程(组);(5)检验:检验所解答案是否正确或是否满足符合题意;(6)作答:规范作答,注意单位名称.(1)设未知数时,一般求什么设什么,但有时为了方便,也可间接设未知数.如题目中涉及到比值,可以设每一份为x.(2)列方程(组)时,注意抓住题目中的关键词语,如共是、等于、大(多)多少、小(少)多少、几倍、几分之几等.6.常见题型及关系式(1)利润问题:售价=标价×折扣,销售额=售价×销量,利润=售价-进价,利润率=利润/进价×100%.(2)利息问题:利息=本金×利率×期数,本息和=本金+利息.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间. ①相遇问题:全路程=甲走的路程+乙走的路程;②追及问题:a.同地不同时出发:前者走的路程=追者走的路程;b.同时不同地出发:前者走的路程+两地间距离=追者走的路程.知识点一:一元二次方程及其解法关键点拨及对应举例1.一元二次方程的相关概念(1)定义:只含有一个未知数,且未知数的最高次数是2 的整式方程.(2)一般形式:ax2+bx+c=0(a≠0),其中ax2、bx、c分别叫做二次项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常数项.例:方程20aax+=是关于x的一元二次方程,则方程的根为-1.2.一元二次方程的解法(1)直接开平方法:形如(x+m)2=n(n≥0)的方程,可直接开平方求解.( 2 )因式分解法:可化为(ax+m)(bx+n)=0的方程,用因式分解法求解.( 3 )公式法:一元二次方程ax2+bx+c=0的求根公式为x=242b b aca-±-(b2-4ac≥0).(4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶数时,也可以考虑用配方法.解一元二次方程时,注意观察,先特殊后一般,即先考虑能否用直接开平方法和因式分解法,不能用这两种方法解时,再用公式法.例:把方程x2+6x+3=0变形为(x+h)2=k的形式后,h=-3,k=6.知识点二:一元二次方程根的判别式及根与系数的关系3.根的判别式(1)当Δ=24b ac->0时,原方程有两个不相等的实数根.(2)当Δ=24b ac-=0时,原方程有两个相等的实数根.(3)当Δ=24b ac-<0时,原方程没有实数根.例:方程2210x x+-=的判别式等于8,故该方程有两个不相等的实数根;方程2230x x++=的判别式等于-8,故该方程没有实数根.*4.根与系数的关系(1)基本关系:若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个根分别为x1、x2,则x1+x2=-b/a,x1x2=c/a.注意运用根与系数关系的前提条件是△≥0.(2)解题策略:已知一元二次方程,求关于方程两根的代数式的值时,先把所求代数式变形为含有x1+x2、x1x2的式子,再运用根与系数的关系求解.与一元二次方程两根相关代数式的常见变形:(x1+1)(x2+1)=x1x2+(x1+x2)+1,x12+x22=(x1+x2)2-2x1x2,12121211x xx x x x++=等.失分点警示在运用根与系数关系解题时,注意前提条件时△=b2-4ac≥0.知识点三:一元二次方程的应用4.列一元二次方程解应用题(1)解题步骤:①审题;②设未知数;③列一元二次方程;④解一元二次方程;⑤检验根是否有意义;⑥作答.运用一元二次方程解决实际问题时,方程一般有两个实数根,则必须要根据题意检验根是否有意义. (2)应用模型:一元二次方程经常在增长率问题、面积问题等方面应用.①平均增长率(降低率)问题:公式:b=a(1±x)n,a表示基数,x表示平均增长率(降低率),n表示变化的次数,b表示变化n次后的量;②利润问题:利润=售价-成本;利润率=利润/成本×100%;③传播、比赛问题:④面积问题:a.直接利用相应图形的面积公式列方程;b.将不规则图形通过割补或平移形成规则图形,运用面积之间的关系列方程.知识点一:分式方程及其解法关键点拨及对应举例1.定义分母中含有未知数的方程叫做分式方程.例:在下列方程中,①210x+=;②4x y+=-;③11xx=-,其中是分式方程的是③.2.解分式方程基本思路:分式方程整式方程例:将方程12211x x+=--转化为整式方程可得:1-2=2(x-1).解法步骤:(1)去分母,将分式方程化为整式方程;(2)解所得的整式方程;(3) 检验:把所求得的x的值代入最简公分母中,若最简公分母为0,则应舍去.3.增根使分式方程中的分母为0的根即为增根. 例:若分式方程11x=-有增根,则增根方程两边同乘以最简公分母约去分母为1.知识点二:分式方程的应用4.列分式方程解应用题的一般步骤(1)审题;(2)设未知数;(3) 列分式方程;(4)解分式方程;(5)检验: (6)作答.在检验这一步中,既要检验所求未知数的值是不是所列分式方程的解,又要检验所求未知数的值是不是符合题目的实际意义.知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则 a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式.例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b 解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了1-a的解集是x>-1,则a的取值范围是a<1.知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系.(2)几何意义:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应.点的坐标先读横坐标(x轴),再读纵坐标(y轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示):点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上点的坐标特征:①在横轴上⇔y=0;②在纵轴上⇔x=0;③原点⇔x=0,y=0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P(a,b)的对称点的坐标特征:①关于x轴对称的点P1的坐标为(a,-b);②关于y轴对称的点P2的坐标为(-a,b);③关于原点对称的点P3的坐标为(-a,-b).(5)点M(x,y)平移的坐标特征:M(x,y) M1(x+a,y)M2(x+a,y+b)(1)坐标轴上的点不属于任何象限.(2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同.(3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x轴、y轴作垂线,从而将其割补成可以直接计算面积的图形来解决.xy第四象限(+,-)第三象限(-,-)第二象限(-,+)第一象限(+,+)–1–2–3123–1–2–3123O3.坐标点的距离问题(1)点M(a,b)到x轴,y轴的距离:到x轴的距离为|b|;)到y轴的距离为|a|.(2)平行于x轴,y轴直线上的两点间的距离:点M1(x1,0),M2(x2,0)之间的距离为|x1-x2|,点M1(x1,y),M2(x2,y)间的距离为|x1-x2|;点M1(0,y1),M2(0,y2)间的距离为|y1-y2|,点M1(x,y1),M2(x,y2)间的距离为|y1-y2|.平行于x轴的直线上的点纵坐标相等;平行于y轴的直线上的点的横坐标相等.知识点二:函数4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35xx+-中自变量的取值范围是x≥-3且x≠5.5.函数的图象(1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法:①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示,再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y随x的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x轴的线段.知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0k<0,b>0k<0,b<0k<0,b=0(1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是⎝⎛⎭⎪⎫-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标. 例:(1)已知关于x的方程ax+b=0的解为x=1,则函数y=ax+b与x轴的交点坐标为(1,0).(2)一次函数y=-3x+12中,当x >4时,y的值为负数.7.一次函数与方程组二元一次方程组的解⇔两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用9.一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;一次函数本身并没有最值,但在实际问题中,自变量的取值往往y=k2x+b y=k1x+b。
七年级上下册数学书知识点
七年级上下册数学书知识点七年级上下册数学书是中学数学的入门课程,主要涵盖数的基本概念、分数、整数、代数式、方程等知识点。
下面为大家详细介绍七年级上下册数学书的知识点。
一、数的基本概念数的概念是中学数学的基础,包括自然数、零、整数、分数、小数等。
其中,自然数是最基本的数,零是数的起点,整数包括正整数和负整数。
分数是表示部分的数,小数是表示非整数的数。
学生需要掌握这些基本概念及它们之间的转化关系。
二、分数分数是中学数学中重要的知识点,学生需要掌握分数的基本概念、分数的加减乘除、分数的化简和通分等知识。
此外,学生还需要了解分数在生活中的应用,例如比较大小、拆分物品等。
三、整数整数是包括自然数、零和负整数的集合,学生需要掌握整数的加减乘除,还需要了解整数之间的大小比较、绝对值等概念。
此外,学生还需要掌握正负数的乘法规则,例如两个正数相乘结果为正数,一个正数和一个负数相乘结果为负数等。
四、代数式代数式是由若干个数的和或积构成的,其中包括变量和常量。
学生需要掌握代数式的定义、运算法则、展开和化简等知识,并应用到实际问题中去计算。
五、方程方程是求解未知数的等式,学生需要掌握基本的一元一次方程的解法,如加减消元法、配方法、公式法等。
并能够把实际问题转化为方程,进而求解。
六、图形图形是中学数学中重要的知识点,包括点、线、面几何等知识。
学生需要掌握直线、射线、线段等概念,以及平面图形的特征和性质。
此外,学生还需要学习三角形、四边形、圆的周长和面积的计算方法,以及空间几何中的体积和表面积。
初中数学(全六册)教材知识梳理
初中数学(全六册)教材知识梳理初中数学全套六册教材的知识梳理如下:七年级上册:1. 有理数:包括数轴、相反数、绝对值和倒数等概念,以及有理数的四则运算。
2. 整式的加减:包括整式的概念、同类项的合并、去括号和添括号等运算。
3. 一元一次方程:包括方程的解法、实际问题的应用以及一元一次方程的求解。
4. 图形的认识初步:包括几何图形的形状、大小和位置关系等基础知识。
七年级下册:1. 相交线与平行线:包括相交线和平行线的性质、判定以及平行线的几何证明。
2. 平面直角坐标系:包括坐标系的建立、点的坐标的确定以及坐标系的简单应用。
3. 三角形:包括三角形的性质、全等三角形和等腰三角形的判定和性质。
4. 二元一次方程组:包括二元一次方程组的解法、实际问题的应用以及消元法求解。
5. 不等式与不等式组:包括一元一次不等式的解法、实际问题的应用以及不等式的性质。
6. 数据的收集、整理与表述:包括数据的收集、整理和描述,以及统计图表的绘制。
八年级上册:1. 全等三角形:包括全等三角形的性质、判定和全等变换。
2. 轴对称:包括轴对称的性质、判定和对称点的求解。
3. 实数:包括实数的概念、性质和运算,以及无理数的近似表示。
4. 一次函数:包括一次函数的性质、图像和实际问题的应用。
5. 整式的乘除与分解因式:包括整式的乘除运算、多项式的因式分解和公因式的提取。
八年级下册:1. 分式:包括分式的概念、性质和运算,以及分式方程的解法。
2. 反比例函数:包括反比例函数的性质、图像和实际问题的应用。
3. 勾股定理:包括勾股定理的证明和应用,以及勾股定理的逆定理。
4. 四边形:包括四边形的性质、判定和面积的计算。
5. 数据的分析:包括数据的集中趋势、离散程度和数据的分布形态的描述和计算。
九年级上册:1. 二次根式:包括二次根式的概念、性质和运算,以及最简二次根式的化简。
2. 二元一次方程:包括二元一次方程的解法、实际问题的应用以及消元法求解。
数学初中教材第一章教学解析
数学初中教材第一章教学解析本文将对初中数学教材第一章的内容进行解析和讲解,帮助学生更好地理解和掌握相关知识点。
第一章主要涉及数的概念、整数、有理数、实数等内容,是初中数学学习的基础。
一、数的概念数的概念是数学学习的起点,也是我们生活中经常接触到的概念。
数的概念包括自然数、整数、有理数和实数等。
自然数是我们最早学习的数,主要用来计数,表示物体的个数。
整数是自然数的拓展,包括正整数、零和负整数,用来表示正负关系。
有理数是整数的拓展,包括整数和分数,可以表示不同大小的数。
实数是有理数的拓展,包括有理数和无理数,能够表示所有的数。
二、整数整数是数的一种,包括正整数、零和负整数。
在初中数学中,我们主要学习整数的四则运算、整数的比较、整数的绝对值等内容。
整数的加减法运算规则和自然数的运算相同,正数加正数为正数,负数加负数为负数。
而整数的乘法运算需要考虑正负数之间的运算规则,正数乘以正数为正数,负数乘以负数为正数,正数乘以负数或负数乘以正数为负数。
三、有理数有理数是整数的拓展,包括整数和分数。
在初中数学中,我们学习有理数的加减乘除等运算规则,以及有理数的大小比较。
两个有理数进行加减运算时,可以先将它们的分母进行通分,然后按照整数的运算规则进行计算。
有理数的乘除运算也需要注意分子分母的运算规则,乘法是分子和分母分别相乘,除法是分子乘以倒数。
在比较有理数大小时,可以将它们的分母进行通分,然后比较分子的大小。
四、实数实数包括有理数和无理数,能够表示所有的数。
初中数学中,我们主要学习实数的开平方运算和实数的性质。
实数的开平方运算需要使用根号符号,将一个数的平方等于给定的实数,求出这个数。
实数的性质包括有理数的有序性和无理数的无限性。
有理数的有序性表示它们可以按照大小进行比较,而无理数则无法进行大小比较。
综上所述,初中数学教材第一章主要介绍了数的概念、整数、有理数和实数等内容。
通过对这些内容的理解和掌握,可以帮助学生打下数学学习的基础,为后续的学习打下坚实的基础。
初中教材全解析:8年级数学
初中教材全解析:8年级数学关于初中教材:8年级数学全解析,下面就分个几大部分来进行剖析:一、数学的基础知识1.百分数、比例和比率:百分数可以用来计算一部分和总数的比例,而比例和比率可以用来描述两个量之间的关系。
2.代数运算:8年级的学生应该掌握字母代表数值的性质,有效运用简单的代数表达式求解。
3.直角坐标系:学习直角坐标系能够帮助学生把数学比例和关系图画出来,加深记忆。
4.平行线与垂线:平行线、平行四边形、垂线都是8年级数学重要内容,学习者需要熟悉它们的定义、性质和构思步骤。
二、基础几何1.直线:初中生应该熟悉垂线的属性及直线的属性,比如它们的斜率、中点、垂线方程、中位线等。
2.圆:学习者需要熟悉关于圆的性质,比如圆的性质、半径、圆的方程、圆心的坐标及其圆的关系。
3.三角形:三角形的定义、关系和性质都需要掌握,包括根据两个外角或两个内角求解三角形、各边关系等。
三、数学概念与应用1.统计:应用统计概念,形成统计模型,可以支持分类、统计、分析业务数量,从而帮助解决问题。
2.概率:概率的定义是指一组发生的概率,而学生需要熟悉相关的解法,例如:概率计算、概率定义、概率公式与概率分布。
3.函数:初中学生学习函数时要掌握一个函数的定义、特征、它的完整性,以及函数操纵的具体步骤。
四、课外学习1.逻辑学:让学生了解思考方法,培养能力,掌握逻辑学的知识,例如:定义,逻辑式,主谓宾、推理根据等。
2.历史学:学习学习历史可以更好的学习数学的发展和应用,让学生更加清晰的重要认识。
3.计算机:让学生学习一些算法、程序设计、计算机图形学、数据处理相关的内容。
以上就是关于初中教材全解析:8年级数学内容的介绍。
8年级数学不仅仅是算法、表达式和解答问题,更重要的是正确理解各种概念和思想,并在实践中加以运用。
同时要尽可能多的让学生接触、学习数学相关的课外内容,培养思维,提高数学水平。
数学初中教材第一册第一章教学解析
数学初中教材第一册第一章教学解析数学是一门抽象而又实用的学科,对于初中生来说,数学的学习是一项重要而基础的任务。
初中数学教材第一册第一章主要介绍了数与代数,这是数学学习的基础知识,对学生的数学思维能力和逻辑思维能力的培养十分重要。
1. 数与计算
首先,在学习数与计算的过程中,学生需要掌握基本的数学符号和计算方法。
在这一部分的教学中,教师可以通过举例子,引导学生了解数与计算的基本概念。
例如,教师可以通过生活中的实例,让学生了解整数的概念,并学习整数的加减运算。
同时,教师还可以适当引入小数和分数的概念,引导学生进行相应的计算。
2. 代数表达式
其次,初中数学教材第一册第一章还介绍了代数表达式的概念及其应用。
在代数表达式的学习中,学生需要学会理解代数变量和代数常数的概念,并能够正确地运用求和、求差、求积和求商的代数方法。
教师可以通过具体的实例,让学生了解代数表达式的含义和作用,并引导他们进行相应的计算和推理。
3. 方程与不等式
最后,初中数学教材第一册第一章还介绍了方程与不等式的相关知识。
在这一部分的学习中,学生需要理解方程和不等式的概念,并能够正确地运用求解方程和不等式的方法。
教师可以通过实际问题,让
学生了解方程和不等式在生活中的应用,并引导他们灵活运用相应的解法。
综上所述,初中数学教材第一册第一章的教学内容主要包括数与计算、代数表达式、方程与不等式等。
在教学中,教师应注重培养学生的数学思维能力和逻辑思维能力,引导学生通过具体实例来理解和应用数学知识,在解题过程中培养学生的问题解决能力。
通过系统而全面的学习,学生将为进一步学习高级数学奠定坚实的基础。
初中数学(人教版)知识点全解(完整版)(PDF版)
0
(5)有理数的乘方
①乘方的定义:求相同因式积的运算,叫做乘方; an 表示 n 个 a 相乘。
乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 其中在初中范围内,一般地,n 为整数。 ②有理数乘方运算法则 正数的任何次幂都是正数; 负数的奇次幂是负数;负数的偶次幂是正数; 注意:当 n 为正奇数时: (-a)n=-an 或(a -b)n=-(b-a)n , 当 n 为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n 。
(4)直线、线段和射线的表示方法 ①直线:用一个小写字母或一条直线上的两点表示,前面必须加直线两字。如直线 m,直线 AB。 ②线段:用一个小写字母或端点的两个大写字母表示,前面必须加线段两字。如线段 a,线 段 AB。 ③射线:用一个小写字母或端点的大写字母和射线上的另一个大写字母表示(表示端点的大 写字母在前),前面必须加射线两字。如射线 a,射线 OA。
cc
【拓展:等式性质】
①ac bc a b ② a b ac bc ; ac bc(c 0) a b a b(c 0) a b ; a b a b
cc cc
第 5 页 共 66 页
初中数学(人教版)知识点全解
【探究】-----无限循环小数化分数的方法
【例】把无限循环小数 0.77777...化为分数
①字母 型,含有 的式子。
②根式型,根式中的被开方数开不尽,如 3 。
③构造型,如 0.1010010001....,数字中有变化规律,但不循环。 ④其他一般无限不循环小数。
(2)有理数的分类:
正有理数
九年级数学人教版上册教材解读
九年级数学人教版上册教材解读第一章锐角三角函数1.1 角度的概念本节主要介绍角度的定义及度、分、秒的换算。
通过本节的,学生应掌握角度的基本概念,以及度、分、秒的换算方法。
1.2 三角函数的概念本节主要讲解锐角三角函数的概念,包括正弦、余弦、正切函数的定义及它们的符号规定。
同时,学生应学会用直角三角形求解特殊角的三角函数值。
1.3 三角函数的图像与性质本节主要分析正弦、余弦、正切函数的图像与性质,包括它们的周期性、对称性、奇偶性等。
通过本节的,学生应能理解并熟练运用三角函数的图像与性质解决实际问题。
第二章解一元二次方程2.1 一元二次方程的定义本节主要介绍一元二次方程的定义及其一般形式。
学生应掌握一元二次方程的四个要素:未知数、系数、常数、等号。
2.2 解一元二次方程的方法本节主要讲解一元二次方程的解法,包括直接开平方法、因式分解法、公式法(求根公式)等。
学生应学会选择合适的解法求解一元二次方程。
2.3 一元二次方程的应用本节主要介绍一元二次方程在实际问题中的应用。
通过本节的,学生应能将一元二次方程应用于实际问题,提高解决问题的能力。
第三章旋转3.1 旋转的概念本节主要介绍旋转的定义、旋转中心、旋转方向和旋转角。
学生应掌握旋转的基本概念,并了解旋转的性质。
3.2 旋转的性质本节主要讲解旋转的性质,包括旋转对图形位置、大小、形状的影响。
通过本节的,学生应能理解并运用旋转的性质解决实际问题。
3.3 旋转变换的应用本节主要介绍旋转变换在实际问题中的应用。
学生应学会运用旋转变换解决实际问题,提高解决问题的能力。
第四章相似三角形4.1 相似三角形的定义本节主要介绍相似三角形的定义及其性质。
学生应掌握相似三角形的判定条件,并了解相似三角形的性质。
4.2 相似三角形的性质本节主要讲解相似三角形的性质,包括对应边成比例、对应角相等等。
通过本节的,学生应能理解并熟练运用相似三角形的性质解决实际问题。
4.3 相似三角形的应用本节主要介绍相似三角形在实际问题中的应用。
七年级上下册数学课本知识点归纳
七年级上下册数学课本知识点归纳数学作为一门基础学科,是学生必修的科目之一。
在初中阶段,七年级数学课本是数学学科的入门教材,是学生掌握基本知识的基石。
本文将对七年级上下册数学课本的知识点进行归纳,帮助初学者快速掌握数学基础知识。
一、整数与小数(上册)整数与小数是数学学科中最基本的概念,也是其他知识点的基础。
在七年级上册中,主要包括整数的基本概念、运算及应用;小数的基本概念、运算及比较大小等。
二、代数式(上册)代数式是数学中非常重要的概念,是我们后续学习的基础。
在七年级上册中,主要包括代数式的基本概念、加减乘除及应用等。
三、几何图形(上册)几何图形是数学学科中非常重要的知识点之一,涉及到平面和立体图形。
在七年级上册中,主要包括多边形的基本概念、分类及性质;圆的基本概念、周长与面积等。
四、分数(下册)分数是数学学科中较难的知识点之一,但是对于我们日常生活中相当常见。
在七年级下册中,主要包括分数的基本概念、运算、化简及应用等。
五、比例与相似(下册)比例是数学中重要的概念之一,涉及到相似、变化等。
在七年级下册中,主要包括比例的基本概念、比例的性质及应用;相似的基本概念、相似三角形的性质及应用等。
六、函数(下册)函数是数学中非常重要的概念,也是高中数学学科的重要基础。
在七年级下册中,主要包括函数的基本概念、函数的图像、定义域与值域、函数的四则运算及应用等。
总结:以上是七年级上下册数学课本的知识点归纳,内容包括整数与小数、代数式、几何图形、分数、比例与相似以及函数等。
初学者可以根据此归纳快速掌握七年级数学的基础知识,为后续学习打下坚实的基础。
数学九年级课本知识点
数学九年级课本知识点1. 整式与分式整式是只包括整数、自然数的有理数,分式是含有一个或多个变量的代数式。
- 同类项合并- 整式的加减乘除运算- 分式的加减乘除运算- 分式的化简与分解- 代数式的值2. 一元一次方程与一元二次方程一元一次方程是次数为1的代数方程,一元二次方程是次数为2的代数方程。
- 一元一次方程的解法- 解一元二次方程的方法(配方法、公式法)- 根与系数之间的关系- 一元一次方程与一元二次方程在生活中的应用3. 几何图形与几何运算几何图形是平面内有特定形状的集合体,几何运算是对几何图形进行的操作。
- 平面内点、线、面的关系- 角的概念及分类- 相交线与平行线- 三角形的性质与分类- 圆的性质与相关定理4. 存储与处理信息存储与处理信息是通过计算机对数据进行存储、处理和分析。
- 信息存储的基本单位(位、字节)- 二进制与十进制的转换- 十进制与十六进制的转换- 信息处理的基本方法- 信息的合理利用与保护5. 统计与概率统计是通过收集、整理和分析数据来描述和解释问题,概率是用来描述事物可能性的数学工具。
- 数据收集与整理- 统计指标(平均数、中位数、众数、极差等)- 概率的基本概念与性质- 事件的计算- 概率在日常生活中的应用6. 数字与运算数字与运算是数学的基础,涵盖了整数、小数、分数、比例等概念。
- 整数的加减乘除运算- 小数与分数的转换- 分数的加减乘除运算- 比例与比例运算- 数学问题的解决方法通过学习这些数学九年级课本知识点,你将对整式与分式、一元一次方程与一元二次方程、几何图形与几何运算、存储与处理信息、统计与概率以及数字与运算等方面有更深入的了解与掌握。
这些知识点在解决实际问题、培养逻辑思维和数学思维能力等方面都起着重要的作用。
不仅能提高你的数学水平,还能为你未来的学习和职业发展打下坚实的基础。
所以,希望你能够认真学习这些知识点,积极应用于实际生活和学习中,不仅取得好成绩,还能在数学领域展现出自己的才华与能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学知识点详解(七、八、九年级)初中数学知识点总结(1)一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
3、代数式代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母的分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。
那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。
也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。
在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a 3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c 4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。
利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)3、相交线与平行线角:①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。
②同角或等角的余角/补角相等。
③对顶角相等。
④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。
4、三角形三角形:①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
②三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
③三角形三个内角的和等于180度。
④三角形分锐角三角形/直角三角形/钝角三角形。
⑤直角三角形的两个锐角互余。
⑥三角形中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。
⑧三角形的三条角平分线交于一点,三条中线交于一点。
⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。
⑩三角形的三条高所在的直线交于一点。
图形的全等:全等图形的形状和大小都相同。
两个能够重合的图形叫全等图形。
全等三角形:①全等三角形的对应边/角相等。
②条件:SSS、AAS、ASA、SAS、HL。
勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。
5、四边形平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
平行四边形的判定条件:两条对角线互相平分的四边形、一组对边平行且相等的四边形、两组对边分别相等的四边形/定义。
菱形:①一组邻边相等的平行四边形是菱形。
②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
梯形:①一组对边平行而另一组对边不平行的四边形叫梯形。
②两条腰相等的梯形叫等腰梯形。
③一条腰和底垂直的梯形叫做直角梯形。
④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。
多边形:①N边形的内角和等于(N-2)180度。
②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平面图形的密铺:三角形,四边形和正六边形可以密铺。
中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。
②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
B、图形与变换:1、图形的轴对称轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
轴对称图形:①角的平分线上的点到这个角的两边的距离相等。
②线段垂直平分线上的点到这条线段两个端点的距离相等。
③等腰三角形的“三线合一”。
轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。
2、图形的平移和旋转平移:①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。