反比例函数讲义
反比例函数讲义
第三节 家庭作业
【作1】 与 成反比,且当 =6时, ,这个函数解析式为.
【作2】函数 和函数 的图象有个交点.
【作3】反比例函数 的图象经过(- ,5)点、( ,-3)及(10, )点,
则 =, =, =.
【作4】已知正比例函数 与反比例函数 的图象都过A( ,1),则 =,正比例函数与反比例函数的解析式分别是、.
(2)根据图象写出使一次函数的值大于反比例函数的值的 的取值范围.
Welcome To
Download !!!
欢迎您的下载,资料仅供参考!
y的取值范围y≠0
x的取值范围x≠0
y的取值范围y≠0
位置
第一、三象限内
第二、四象限内
增减性
每一象限内,y随x的增大而减小
每一象限内,y随x的增大而增大
渐近性
反比例函数的图象无限接近于x,y轴,但永远达不到x,y轴,
画图象时,要体现出这个特点.
对称性
反比例函数的图象是关于原点成中心对称的图形.反比例函数的图象也是轴对称图形.
【例7】已知反比例函数 的图象经过点P(一l,2),则这个函数的图象位于
A.第二、三象限 B.第一、三象限 C.第三、四象限 D.第二、四象限
知识点:k的几何意义
【例8】A、B是函数 的图象上关于原点对称的任意两点,BC∥ 轴,AC∥ 轴,△ABC的面积记为 ,则( )
A. B. C. D.
【例9】如图 在反比例函数 的图象上, 轴于点 , 的面积为3,则 _______.
A. B. C. 2 D. —2
【例4】已知 = , 与 成正比例, 与 成反比例,并且当 =2时, =—4;当 =—1时, =5,求 与 的函数关系式.
反比例函数讲义
反比例函数一、反比例函数的概念1、概念:反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成k y x =(k为常数,k ≠0)的形式,那么称y 是x 的反比例函数.2、注意:(1)k 为常数,k ≠0;(2)kx中分母x 的指数为1; (3)自变量x 的取值范围是x ≠0的一切实数; (4)因变量y 的取值范围是y ≠0的一切实数.3、xk y =(k ≠0)还可以写成1-=kx y (k ≠0)或xy =k (k ≠0)的形式 4、有表格数据判断是否为反比例函数关系时主要判断x 与y 的乘积是否相等。
例题:例1.下列等式中,哪些是反比例函数 (1)3x y =(2)x y 2-= (3)xy =21 (4)25+=x y(5)x y 23-=(6)31+=xy (7)y =x -4 例2、若函数y =(m 2-1)x235m m +-为反比例函数,则m =________.课上练习:1.下列函数中哪些是y 是x 的正比例函数?哪些是y 是x 的反比例函数?①1-x 3=y ②22x y = ③xy 1= ④32x y =⑤x y 3= ⑥x y 1-= ⑦xy 31= ⑧x y 23=2.弹簧挂上物体后会伸长,测得一弹簧的长度(cm )与所挂物体的质量(kg )有下面的关系:那么弹簧总长(cm )与所挂物体质量(kg )之间的函数关系式为_____________.3.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系式为 4.若函数28)3(m xm y -+=是反比例函数,则m 的取值是5.矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为 6.已知y 与x 成反比例,且当x =-2时,y =3,则y 与x 之间的函数关系式是 , 当x =-3时,y =7.函数21+-=x y 中自变量x 的取值范围是二、反比例函数解析式的确定1、在反比例函数关系式 y= kx 中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数.因此,只需给出一组x 、y 的对应值或图象上点的坐标,代入y= kx 中即可求出k 的值,从而确定反比例函数的关系式.2、定系数法求反比例函数关系式的一般步骤是: ①设所求的反比例函数为:y= kx (k ≠0);②根据已知条件(自变量与函数的对应值)列出含k 的方程; ③由代入解待定系数k 的值; ④把k 值代人函数关系式y= kx 中.例题:例1.已知:y 与 x 2成反比例,并且当x =3时,y =4, 求: 当x =1.5时,y 的值。
《反比例函数》 讲义
《反比例函数》讲义一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。
例如,在路程 s 一定的情况下,速度 v 和时间 t 之间的关系就是反比例关系,即 v = s/t。
需要注意的是,反比例函数中 x 作为分母,不能等于 0,所以函数的定义域为x ≠ 0。
二、反比例函数的表达式反比例函数常见的表达式有以下三种:1、 y = k/x (k 为常数,k ≠ 0)2、 xy = k (k 为常数,k ≠ 0)3、 y = kx^(-1) (k 为常数,k ≠ 0)三、反比例函数的图像反比例函数的图像是双曲线。
当 k > 0 时,双曲线的两支分别位于第一、第三象限,在每一象限内 y 随 x 的增大而减小;当 k < 0 时,双曲线的两支分别位于第二、第四象限,在每一象限内 y 随 x 的增大而增大。
以函数 y = 2/x 为例,我们可以通过列表、描点、连线的方法来画出它的图像。
先选取一些 x 的值,计算出对应的 y 值:当 x = 1 时,y = 2;当 x = 2 时,y = 1;当 x =-1 时,y =-2;当 x =-2 时,y =-1 等等。
然后在平面直角坐标系中描出这些点,并用平滑的曲线连接起来,就得到了反比例函数 y = 2/x 的图像。
四、反比例函数的性质1、对称性反比例函数的图像既是轴对称图形,又是中心对称图形。
对称轴有两条,分别是直线 y = x 和直线 y = x;对称中心是坐标原点。
2、渐近线当 x 趋近于正无穷或负无穷时,曲线无限接近 x 轴和 y 轴,但永远不会与坐标轴相交,这两条直线称为渐近线。
3、增减性如前所述,当 k > 0 时,在每个象限内,y 随 x 的增大而减小;当k < 0 时,在每个象限内,y 随 x 的增大而增大。
但要注意,这里强调的是在每个象限内,而不是在整个定义域内。
反比例函数讲义
反比例函数一、反比例函数的概念1、如果两个变量的每一组对应值的乘积是一个不等于零的常数,你们就说这两个变量成反比例.用数学式子表示两个变量x 、y 成反比例,就是xy k =,或表示为ky x=,其中k 是不等于0的常数. 2、解析式形如ky x=(k 是常数,0k ≠)的函数叫做反比例函数,其中k 称也叫做比例系数.3、反比例函数ky x=的定义域是不等于零的一切实数.例1、下列变化过程中的两个变量是否成反比例?为什么? (1)被除数为100,变量分别是除数r 和商q ;(2)三角形面积S 一定时,三角形一边上的长a 和这条边上的高h ;(3)一位男同学练习1000米长跑,变量分别是男生跑步的平均速度v (米/秒)和跑完全程所用时间t (秒);(4)完成工作量Q 一定时,完成工作量所需的时间t 与工人人数n (假设每个工人的 工作效率相同)例2、一个长方体的体积是20cm 3,它的长是ycm ,宽是5cm ,高是xcm .写出长y 与高x 之间的函数关系式.例3、下列函数(其中x 是自变量)中,哪些是反比例函数?哪些不是,为什么?(1)23y x = (2)1y x -= (3)3xy =(4)3y x=(5)27y x =+(6)y =8x+7例4、已知y 是x 的反比例函数,且3x =-时,2y =,那么y 关于x 的函数解析式是________.例5、已知y 4x =时,2y =-,求y 与x 的函数解析式.例6、若函数231(2)m m y m x -+=-是反比例函数,则m 的值为________.例7、如果2212n n n n y x+++=是反比例函数,那么n 的值是________.例8、已知y 是x 的反比例函数,且当2x =时,2y ,那么当1y =时,x 的值是________.例9、如果变量1x 和变量y 成正比例,变量1y 和变量z 成反比例,那么变量x 和z 成________比例关系.例10、已知反比例函数22++=k xk y ,求k 的值,并求当x =2时的函数值例11、已知12y y y =+,若1y 与x 正比例,2y 与x 成反比例函数,且当2x =时,14y =,当3x =时,1293y =,求y 与x 间的函数关系式.例12、已知12y y y =+,若1y 与1x -正比例,2y 与1x +成反比例,且当0x =时5y =-,当2x =时1y =;(1)求y 与x 间的函数关系式; (2)求当3y =-时,x 的值.例13、已知:正比例函数与反比例函数的比例系数互为相反数,且正比例函数的图像过点-,求反比例函数的解析式.一、 反比例函数的图像1、反比例函数ky x=(k 是常数,0k ≠)的图像叫做双曲线,它有两支. 二、 反比例函数的性质 1、当0k >时,函数图像的两支分别在第一、三象限;在每个象限内,当自变量x 的值逐渐增大时,y 的值随着逐渐减小.2、当0k <时,函数图像的两支分别在第二、四象限;在每个象限内,当自变量x 的值逐渐增大时,y 的值随着逐渐增大.3、图像的两支都无限接近于x 轴和y 轴,但不会与x 轴和y 轴相交.例1、已知反比例函数3y x=-,那么当x <0时,y 的值随着x 的增大而________. 例2、反比例函数25(2)my m x -=+在它的图像所在的每个象限内,y 随x 的增大而________.例3、若反比例函数的图像经过点(25)-,,那么函数图像在________象限. 例4、已知反比例函数2k y x-=,其图象在第一、第三象限内,则k 的取值范围是________. 例5、函数135k y x --=的图像在一、三象限,那么k 的取值范围是________ 例6、已知函数ky x=的图象不经过第一、三象限,则y kx =-的图象经过第________象限.例7、如果反比例函数ky x=(k 是常数,0k ≠)的图像在第二、四象限,那么正比例函数y kx =(k 是常数,0k ≠)的图像经过哪几个象限?例8、若正比例函数(0)y kx k =≠,与反比例函数(0)my m x=≠的图像没有交点,那么k 与m 满足关系式可以是________.例9、已知反比例函数1y x=-的图像上有两点11()A x y ,、22()B x y ,,且12x x <,那么下列结论正确的是( )A .12y y <B .12y y >C .12y y =D .1y 与2y 的大小关系无法确定例10、反比例函数4y x=-的图像上一点的横坐标是3,那么这点到x 轴的距离是________. 例11、已知反比例函数21k y x+=(1)若该函数图像经过点(21)-,,求k 的值;(2)若该函数图像在每一象限内y 随x 的增大而减小,求k 的取值范围.例12、直线y kx =(k >0)与双曲线xy 4=交于11()A x y ,、22()B x y ,两点,求122127x y x y -的值.例13、反比例函数2y x=的图像上一点A ,过A 点分别作x 轴、y 轴垂线,垂足为B 、C ; (1) 求矩形ABOC 的面积;(2) 当点A 沿双曲线移动时(1)中矩形面积有变化吗?为什么?例14、若P (a ,b )是反比例函数图像上的一点,且a 是b 是的小数部分,求反比例函数的解析式.例15、已知:点A 、B 是函数3y x=-图像上关于原点对称的任意两点,AC ∥y 轴,BC ∥x 轴,求△ABC 的面积.例16、反比例函数xky =(0)k <的图像经过点()A m ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为3,求k 和m 的值.例17、已知:反比例函数的图像与正比例函数的图像相交于A ,B 两点,若点A 在第二象限,且点A 的横坐标为-3,且AD ⊥x 轴,垂足为D ,△AOD 的面积是4. (1)写出反比例函数的解析式; (2)求出点B 的坐标;(3)若点C 的坐标为(6,0),求△ABC 的面积. 练习11、下列问题中的两个变量是否成反比例?如果是,可以用怎样的数学式来表示? (1)平行四边形的面积为20平方厘米,变量分别是平行四边形的一条边长a (厘米)和这条边上的高h (厘米);(2)一位男同学练习一千米长跑,变量分别是男生跑步的的平均速度v (米)和跑完全程所用时间t (秒).2、下列函数是不是反比例函数?为什么? (1)13y x =-; (2)4xy =;(3)15y x =-; (4)2(0)ay a a x =≠为常数,; (5)1y x π= ; (6)21y x= .3、若函数223()kk y k k x --=+是反比例函数,则k 的值是________.4、在同一平面直角坐标系内,分别画出下列函数的图像.(1)4y x=; (2)4y x=-. 求:(1)这两个函数的图像分别位于哪几个象限内?(2)在每一象限内,随着图像上的点的横坐标x 逐渐增大,纵坐标y 是怎样变化的? (3)图像的每支都向两方无限延伸,它们可能与x 轴、y 轴相交吗?为什么?5、已知正比例函数y kx =与反比例函数xky -=6图像的一个交点坐标是(1,3),则反比例函数的解析式是________.6、已知反比例函数xk y 1+=,11()x y ,、22()x y ,为其图像上的两点,若当120x x <<时,12y y >,则k 的取值范围是________.7、若点(34),是反比例函数221m m y x ++=图像上一点,则此函数图像必经过点 ( )A.(34)-,B.(26)-,C.(43)-,D. (26),8、已知M 是反比例函数ky x=(0)k ≠ (k ≠0)图像上一点,MA x ⊥轴于点A ,若4AOMS =,则这个反比例函数的解析式是( ) A .8y x =; B .8y x =-; C .8y x =或8y x =-; D .4y x =或4y x=-. 9、已知122y y y =+,若1y 与(1)x +正比例,2y 与x 成反比例函数,且当1x =时,1y =-;当3x =-时,3y =,求y 与x 间的函数关系式.10、已知第三象限内的点B (3m ,m )在反比例函数的图像上,且10OB =A (1,y )也在双曲线上,求反比例函数的解析式,并求出△AOB 的面积.11、11POA ∆、212P A A ∆都是等腰直角三角形,点P 1、P 2在4y x=(x >0)的图像上,斜边OA 1、A 1A 2都在x 轴上,求点A 2的坐标.12、两个反比例函数k y x =和1y x =在第一象限内的图像如图所示,点P 在ky x =的图像上,PC ⊥x 轴于点C ,交1y x =的图像于点A ,PD ⊥y 轴于点D ,交1y x=的图像于点B ,当点P 在ky x=的图像上运动时,以下结论:①△ODB 与△OCA 的面积相等; ②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分).练习21、反比例函数ay x=的图像在第二、四象限,则a ________. 2、当n =________时,函数224(3)n n y n x --=-是反比例函数.3、函数21(1)my m x -=-是反比例函数,且图像经过第二、四象限,则m =________.4、已知反比例函数13ky x-=,当k ________时,它的图像在第二、四象限,此时,在每个象限内,y 随x 的增大而________.5、已知长方形的面积为20平方厘米,它的一边长为x 厘米,求这个边的邻边长y (厘米)关于x (厘米)的函数解析式,并写出这个函数的定义域.6、反比例函数ky x=的图像上有两点111()p x y ,,222(,)p x y ,若120x x <<,12y y >,则k ________0,图像经过第________象限.7、在平面直角坐标系内,从反比例函数ky x=(0)k ≠上一点作x 轴、y 轴的垂线段,与x 轴、y 轴围成面积为3的矩形,求函数解析式.8、(1)已知y 与2x -成反比例,当4x =时,3y =,求5x =时,y 的值; (2)已知y 与2x 成反比例,并当3x =时,2y =,求 1.5x =时,y 的值.9、已知12y y y =+,1y 与x 成正比例,2y 与2x 成反比例,当2x =与3x =时,19y =,求y 关于x 的函数解析式.10、点A 是反比例函数6y x=的图像上的一点,AB ⊥y 轴于点B ,求△AOB 的面积.11、已知n 是正整数,111()P x y ,,222()P x y ,,…()n n n P x y ,,…是反比例函数图像上的一列点,其中11x =, 22x =,…,n x n =,….记112A x y =,223A x y =,…,1n n n A x y +=,…,若1A a =(a 是非零常数),求12n A A A ⋅⋅⋅的值(用含a 和n 的代数式表示).。
反比例函数与几何综合讲义及答案
反比例函数与几何综合讲义及答案一、反比例函数的定义及性质1.反比例函数的定义:如果两个变量的乘积为常数,那么它们之间存在反比例关系,可以表示为y=k/x。
2.反比例函数的性质:函数图像关于坐标轴对称;随着x的增大,y 的值逐渐减小;随着x的减小,y的值逐渐增大。
二、反比例函数的图像与性质1.绘制反比例函数y=k/x的图像。
2.如果k为正数,当x趋近于无穷大时,y趋近于0;当x趋近于0时,y趋近于正无穷大。
3.如果k为负数,当x趋近于无穷大时,y趋近于负无穷大;当x趋近于0时,y趋近于0。
三、反比例函数的解析表达式和图像的关系1.根据解析表达式y=k/x,结合k的正负性质,分析函数图像的大致形状。
2.当k为正数时,函数图像在第一象限逐渐接近于x轴,且没有定义域为x=0的点。
3.当k为负数时,函数图像在第三象限逐渐接近于x轴,且没有定义域为x=0的点。
四、反比例函数的应用1. 反比例函数的例题:如果旅行的时间与旅行的速度成反比例关系,当速度增大时,时间会减少。
求出速度为60 km/h时需要的时间。
答案:假设旅行的时间为t小时,则速度为60 km/h,根据反比例函数的定义可得60 = k/t,解得k = 60t。
根据题意可得t = k/60 = 1小时。
2.反比例函数出题:已知两个变量x和y成反比例关系,在一组数据中,当x=2时,y=5;当x=4时,y=10。
求出该反比例函数的解析表达式。
答案:根据反比例函数的定义可得k = xy,由已知数据可得2k = 5;4k = 10。
解方程可得k = 5/2、将k带入反比例函数中得到y = (5/2)x。
请注意,以上是一些常见的反比例函数综合讲义及试题及答案,实际上反比例函数的应用非常广泛,可以结合实际问题进行更多的应用练习。
反比例函数复习讲义
反比例函数复习讲义知识点一:反比例函数的概念ﻫ 一般地,如果两个变量x 、y 之间的关系可以表示成k y x=(k为常数,)的形式,那么称y 是x 的反比例函数.注:(1)反比例函数k y x =中的k x 是一个分式,自变量x ≠0, k y x=也可写成1y kx -=或xy k =,其中k≠0;ﻫ (2)在反比例函数1y kx -=(k≠0)中,x 的指数是-1。
如,5y x=也写成:15y x -=;ﻫ (3)在反比例函数k y x=(k ≠0)中要注意分母x的指数为1,如21y x=就不是反比例函数。
ﻫ知识点二:反比例函数的图象反比例函数(0)ky k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.ﻫ 注: (1)观察反比例函数(0)ky k x=≠的图象可得:x和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点. (2)用描点法画反比例函数y=kx的图象时,应注意自变量x 的取值不能为0,一般应从1或-1开始对称取点.ﻫ (3)在一个反比例函数图象上任取两点P ,Q ,过点P ,Q分别作x 轴,y 轴的平行线,与两坐标轴分别围成的矩形面积为S 1,S2 则S 1=S 2. 知识点三:反比例函数的性质 1.图象位置与函数性质当k>0时,x 、y 同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当k<0时,x 、y 异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.2.若点(a ,b)在反比例函数(0)ky k x=≠的图象上,则点(-a,-b )也在此图象上,故反比例函数的图象关于原点对称;正比例函数反比例函数解析式图 像直线 有两个分支组成的曲线(双曲线)位 置k>0,一、三象限; k<0,二、四象限 k >0,一、三象限 k <0,二、四象限增减性k>0,y 随x 的增大而增大 k<0,y 随x 的增大而减小k>0,在每个象限,y 随x的增大而减小ﻫk<0,在每个象限,y随x的增大而增大4.反比例函数y =kx 中k 的意义 反比例函数y = k x (k ≠0)中比例系数k 的几何意义,即过双曲线y = kx(k≠0)上任意一点引x轴、y 轴垂线,所得矩形面积为│k│.ﻫ知识点四:反比例函数解析式的确定ﻫ 反比例函数解析式的确定方法是待定系数法.由于在反比例函数关系式(0)ky k x=≠中,只有一个待定系数k,确定了k的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入(0)ky k x =≠中即可求出k 的值,从而确定反比例函数的解析式.ﻫ知识点五:应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题。
反比例函数经典讲义绝对经典--
PART 01
反比例函数基本概念与性 质
定义及表达式
反比例函数定义
形如 $y = frac{k}{x}$($k$ 为常数,$k neq 0$)的函数称为反比例函数。
表达式解析
在反比例函数中,$x$ 是自变量,$y$ 是因变量,$k$ 是比例系数。当 $k > 0$ 时,函数图像位于第一、三象限;当 $k < 0$ 时,函数图像位于第二、四象 限。
在经济学中,价格和数量之间的关系往往呈现反比例关系。当价格上涨时,需求 量减少;反之,当价格下跌时,需求量增加。通过对这种数据的分析,可以揭示 市场供需平衡的规律。
社会学中的人口分布
在社会学中,人口分布与资源分配之间也存在反比例关系。当某个地区资源匮乏 时,人口会向其他地区迁移;反之,当某个地区资源丰富时,会吸引更多人口聚 集。通过对人口分布数据的解读,可以了解资源分配对社会结构的影响。
跨学科应用举例
环境科学中的污染物扩散
在环境科学中,污染物扩散与距离之间呈现反比例关系。随着距离的增加,污染物的浓度逐渐降低。 这种关系可以用反比例函数来描述,并为环境治理提供科学依据。
工程学中的结构设计
在工程学中,结构设计与材料强度之间也存在反比例关系。为了确保结构的安全性,需要在保证材料 强度的前提下进行结构设计。通过运用反比例函数,可以实现结构设计的优化和安全性评估。
在电路中,电阻、电流和电压之间满足反比例关系。当电阻 增大时,电流减小,电压保持不变。这种关系可以用反比例 函数来描述。
速度、时间和距离之间的关系
在物理学中,速度、时间和距离之间也有反比例关系。当速 度增大时,所需时间减少,而距离保持不变。这种关系同样 可以用反比例函数来表示。
数据分析与解读
反比例函数知识点及经典例题讲义
⑷反比例函数 ( )中比例系数 的几何意义是:过双曲线 ( )上任意引 轴 轴的垂线,所得矩形面积为 。
4.反比例函数性质如下表:
的取值
图像所在象限
函数的增减性
一、三象限
在每个象限内, 值随 的增大而减小
二、四象限
在每个象限内, 值随 的增大而增大
5.反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出 )
6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数 中的两个变量必成反比例关系。
7.反比例函数的应用
二、例题
【例1】如果函数 的图像是双曲线,且在第二,四象限内,那么的值是多少?
4.反比例函数y= 的图象过点P(-1.5,2),则k=________.
5.点P(2m-3,1)在反比例函数y= 的图象上,则m=__________.
6.已知反比例函数的图象经过点(m,2)和(-2,3)则m的值为__________.
7.已知反比例函数 的图象上两点 ,当 时,有 ,则 的取值范围是?
8.已知y与x-1成反比例,并且x=-2时y=7,求:
(1)求y和x之间的函数关系式;(2)当x=8时,求y的值;
(3)y=-2时,x的值。
9.已知 ,且反比例函数 的图象在每个象限内, 随 的增大而增大,如果点 在双曲线上 ,求a是多少?
的反比例函数,其图象如图所示.当气球内气压大于120 kPa时,气球将爆炸.为了安全起见,气球的体积应()
A、不小于 m3B、小于 m3C、不小于 m3D、小于 m3
5.如图,A、C是函数 的图象上的任意两点,过A作 轴的垂线,垂足为B,过C作y轴的垂线,垂足为D,记RtΔAOB的面积为S1,RtΔCOD的面积为S2则()
26.1.1 反比例函数课件(共22张PPT)
例如:
①y-1与x+1成反比例,则y-1= k ; x和y不是反比例函数
②若y与x2成反比例,则y=
k x2
x1
成反比例关系,x和y不是反比例函数
③反比例函数y= k (k≠0) 必成反比例关系
x
26.1.1 反比例函数
(5) y k (k为常数) 6 xy 123 x 解:(5)k可能为0,不是反比例函数
x1
26.1.1 反比例函数
课堂小结
形如y k (k为常数,k ≠ 0) x ,y均不等于0.
概念
x
其他形式:1. xy = k ; 2. y = kx-1;3. y k
反 比
( k 为常数,k ≠ 0)
x
例
x, y可以表示单独字母,
函
x与y成反比例 多项式或单项式
数 成反比例与反
比例函数的区别
7 y - 2 8 y 6
3x
x1
解:(6)是反比例函数,可化为 y
123 x
,自变量x≠0,因变量y≠0
2
解:(7)是反比例函数,可化为 y 3 ,自变量x≠0,因变量y≠0
x
解:(8)不是反比例函数
26.1.1 反比例函数
试一试
根据上面的练习,你能帮小唯唯总结一下反比例函数有哪些形式吗?
一般形式
(
k2
≠
0
),
则
y
k1
x
1
k2 x
1
.
∵ x = 0 时,y = -3;x = 1 时,y = -1,
∴ -3= -k1+k2
1
1 2
k2
∴k1 = 1,k2 = -2.
反比例函数ppt课件
x
y
.
∴y=
∴当菱形的面积一定时,它的一条对角线长y是另一条对角线长x的反比
例函数.
典例精析
例3 已知y 是关于 x 的反比例函数,当 x =0.3时,y = -6. 求 y 关于
x 的函数表达式和自变量 x 的取值范围.
解:∵ y 是关于 x 的反比例函数,
∴可设
y=
( k 为常数, k ≠0).
x和y不为反比例关系
是.
k= ,x≠0
不是
⑤y=3x-1 x和y的积为3,为反比例关系 是. k=, x≠0
知识要点
1.判断一个函数为反比例函数的条件:
①函数表达式形如y=
(一般式)或y=kx-1 (乘积式)
或xy=k(判别式)的等式.
②比例系数k是常数,且k≠0.
2.反比例函数y= 的取值范围:
第一章 反比例函数
1.1 反比例函数
复习导入
1.什么是函数?
如果变量y随着变量x而变化,并且对于x所取的每一个值,y
都有 唯一 的一个值和它对应,那么称y是x的函数.其中
x 叫
做自变量, y 叫做因变量.
2.什么是一次函数?
一般形式: y=kx+b
(k、b为常数,k ≠0),y称作x的
一次函数.
特别地,当b=0时,称y是x的 正比例 函数,即y= kx (k为常数,
求解析式方法:待定系数法
设、列、解、代
k≠0).
复习导入
3.反比例关系:
如果两个量x和y的积k是一个常数,即满足
xy=k
为常数,k≠0),那么x、y就成反比例关系.
《反比例函数讲义》word版
反比例函数1、反比例函数的概念及三种表达形式.一般地如果两个变量x ,y 之间的关系可以表示为xky =(k 是常数,k ≠0)的形式,那么称y 是x 的反比例函数。
(反比例函数的解析式也可以写成1-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。
) 2、反比例函数的图象反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
4、反比例函数解析式的确定确定反比例函数解析式的方法仍是待定系数法。
由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
5、反比例函数中反比例系数的几何意义过反比例函数)0(≠=k xky 图像上任一点P (x,y )作x 轴、y 轴的垂线PM ,PN ,垂足分别是M 、N ,则所得的矩形PMON 的面积S=PM•PN=xy x y =•。
6、反比例函数中常用考点(1)反比例函数与一次函数的交点坐标是两个函数解析式联立组成方程组的解. (2) 反比例函数与正比例函数的交点坐标关于坐标原点对称. (3) 反比例函数与一次函数的交点所组成三角形面积的求法. 7. 经典题解【例1】如图所示,一次函数y=kx+b 的图象与反比例函数y= kx (k ≠0)的图象交于M 、N两点.⑴求反比例函数和一次函数的解析式;⑵根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【例2】(2011山东聊城,24,10分)如图,已知一次函数y =kx +b 的图象交反比例函数42my x-=(x>0)图象于点A 、B ,交x 轴于点C . (1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且13BC AB =,求m 的值和一次函数的解析式;【答案】(1)因反比例函数的图象在第四象限,所以4-2m <0,解得m >2;(2)因点A (2,-4)在反比例函数图象上,所以-4=224m-,解得m =6,过点A 、B 分别作A M ⊥OC 于点M ,B N ⊥OC 于点N ,所以∠B N C =∠A M C =90°,又因为∠BC N =∠A M C ,所以△BC N ∽△AC M ,所以AC BC AM BN =,因为31=AB BC ,所以41=AC BC ,即41=AM BN ,因为A M =4,所以B N =1,所以点B 的纵坐标为-1,因为点B 在反比例函数的图象上,所以当y =-1时,x =8,所以点B 的坐标为(8,-1),因为一次函数y =kx +b 的图象过点A (2,-4),B (8,-1),所以⎩⎨⎧-=+-=+1842b k b k ,解得⎪⎩⎪⎨⎧-==521b k ,所以一次函数的解析式为y =21x -5【例3】. (2011四川成都,19,10分) 如图,已知反比例函数)0(≠=k xky 的图象经过点(21,8),直线b x y +-=经过该反比例函数图象上的点Q(4,m ). (1)求上述反比例函数和直线的函数表达式;(2)设该直线与x 轴、y 轴分别相交于A 、B 两点,与反比例函数图象的另一个交点为P ,连结0P 、OQ ,求△OPQ 的面积.【例4】. (2011四川广安,24,8分)如图6所示,直线l 1的方程为y =-x +l ,直线l 2的方程为y =x +5,且两直线相交于点P ,过点P 的双曲线ky x=与直线l 1的另一交点为Q (3.M ).(1)求双曲线的解析式. (2)根据图象直接写出不等式kx>-x +l 的解集.【例5】. (2011四川内江,21,10分)如图,正比例函数11y k x =与反比例函数22k y x=相交于A 、B 点,已知点A 的坐标为(4,n ),BD ⊥x 轴于点D ,且S △BDO =4。
反比例函数经典讲义-绝对经典!!
反比例函数经典讲义-绝对经典!!初三反比例函数讲义第1节 反比例函数本节内容: 反比例函数定义 反比例函数定义的应用(重点)1、 反比例函数的定义 电流I 、电阻R 、电压U 之间满足关系式:U=IR 当U=220V 时,可以用含有R 的代数式表示I :__________________舞台灯光的亮暗就是通过改变电阻来控制电流的变化实现的。
当电流I 较小时,灯光较暗;当电流I 较大时,灯光较亮。
一般地,如果两个变量x 、y 之间的关系可以表示成xk y =k (为常数,)0≠k 的形式,那么称y 是x 的反比例函数。
反比例函数的自变量x 不能为零。
小注:(1)x k y =也可以写成1-=kx y 或k xy =的形式;■例1■例2由欧姆定律可知,电压不变时,电流强度I与电阻R成反比例,已知电压不变,电阻R=12.5欧姆,电流强度I=0.2安培。
(1)求I与R的函数关系式;(2)当R=5欧姆时,求电流强度。
1xy2、某工人打算利用一块不锈钢条加工一个面积为0.82m的矩形模具,假设模具的长与宽分别为y与x。
(1)你能写出y与x之间的函数表达式吗?变量y 与x之间是什么函数?(2)若想使模具的长比宽多1.6m,已知每米这34、已知y =21y y +,1y 与x 成正比例,2y 与x 成反比例,并且当x =2时,y = —4;当x = —1时,y =5,求出y 与x 的函数关系式。
6、(2008·安徽)函数xk y =的图象经过点A (1,—2),则k 的值为( )。
A .21 B. 21- C. 2 D. —27、若函数132)1(+++=m m xm y 是反比例函数,则m 的值为( )。
A .m = —2 B. m = 1C. m = 2或m = 1D. m = —2,或m = —18、若甲、乙两城市间的路程为1000千米,车速为每小时x 千米,从甲市到乙市所需的时间为y 小时,那么y 与x 的函数表达式是_______________________(不必写出x 的取值范围),y 是x 的__________函数。
人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)
第二十六章 反比例函数本章知识结构图:中考说明中对本章知识的要求:考试内容A 层次B 层次C 层次反比例函数能结合具体情境了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题主要内容:1.定义:一般地,形如)0(≠=k k x ky 是常数,且的函数,叫反比例函数. 反比例函数的解析式有三种形式:(1)xky =(k ≠0的常数);(2)k xy =(k ≠0的常数);(3)1-=kx y (k ≠0的常数).2. 反比例函数的图象及性质:(1)反比例函数的图象是双曲线;(2)当k >0时,两支曲线分别位于第一、三象限,在每一象限内,y 的值随x 值的增大而减小;当k <0时,两支曲线分别位于第二、四象限,在每一象限内,y 的值随x 值的增大而增大;(3)反比例函数图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交;(4)反比例函数的图象是对称图形,反比例函数的图象既是轴对称图形又是中心对称图形:①)0(≠=k x ky 是轴对称图形,其对称轴为x y x y -==和两条直线;②)0(≠=k x ky 是中心对称图形,对称中心为原点(0,0)。
③xky x k y -==和在同一坐标系中的图像关于x 轴、y 轴成轴对称。
(5)反比例函数的几何意义:在反比例函数)0(≠=k xky 的图象上任取一点M ,从几何意义上看,从点M 向两轴作垂线,两垂线段与坐标轴所围成的矩形的面积为定值k ;(6)k 越大,双曲线越远离原点。
3.反比例函数在代数、几何及实际问题中的应用。
四、例题与习题:1.下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+= C . 2xy =D .xy 2=2.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是()A .为定值,与成反比例B .为定值,与成反比例C .为定值,与成正比例D .为定值,与成正比例3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 34. 已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是( )B .C .D .5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = .6.点在反比例函数的图象上,则 .7.点(3,-4)在反比例函数ky x=的图象上,则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)P I R 2P I R =P I R P 2I R P I R P 2I R a h a (231)P m -,1y x=m =8.已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,9.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .10.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________.11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.12.对于反比例函数(),下列说法不正确的是( )A. 它的图象分布在第一、三象限B. 点(,)在它的图象上C. 它的图象是中心对称图形D. 每个象限内,随的增大而增大13. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2(C )k ≤2(D ) k <215.若反比例函数的图象经过点,其中,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限16.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-317.若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )18.设反比例函数中,在每一象限内,随的增大而增大,则一次函数的图象不经过()xk y 2=0≠k k k y x ky x=(3)m m ,0m ≠)0(≠-=k xky y x k kx y -=A .B .C .D .(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( )A .b c>B .b c<C .b c=D .无法判断21.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接).22.在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A 、B 、C 、D 、23.若A (,)、B (,)在函数的图象上,则当、满足______________________________________时,>.24. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.25.在平面直角坐标系xoy 中,直线yx =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 .26.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0<x 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限27.在同一平面直角坐标系中,函数xy 1=与函数x y =的图象交点个数是( )A 、0个B 、1个C 、2个D 、3个28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-12my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m >1x 1y 2x 2y 12y x=1x 2x 1y 2y mx y =xky =m k xxxx.D .29.在同一坐标系中,一次函数(1)21y k x k =-++与反比例函数ky x=的图象没有交点,则常数k 的取值范围是.30.如图,直线)0(>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别为A ()11,y x ,B ()22,y x ,则1221y x y x +的值为()A . -8B .4C . -4D . 031.已知反比例函数2y x=,下列结论中,不正确的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <32.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( )A .2B .-2C .4D .-435.过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______.36.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =.37.在反比例函数4y x=的图象中,_4-1-1yx第32题图第34题图第33题图第36题图阴影部分的面积不等于4的是( )A .B .C .D .38.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上,少填或错填不给分).39.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的图象交于点A ,已知OA=23,则该函数的解析式为( )A .xy 3=B .xy 3-= C .xy 9=D .xy 9-=40.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为______________.ky x =1y x=(第38题图)第39题图41.当m 取什么数时,函数2)1(--=m xm y 为反比例函数式?42.已知反比例函数102)2(--=m x m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.43.平行于直线y x =的直线l 不经过第四象限,且与函数3(0)y x x=>和图象交于点A ,过点A 作AB y ⊥轴于点B ,AC x ⊥轴于点C四边形ABOC 的周长为8.求直线l 的解析式.44.已知正比例函数的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点,是反比例函数图象上的两点,且,试比较的大小.45.已知一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (-6,-2)、B (4,3)两点.(1)求出两函数解析式;(2)画出这两个函数的图象;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y =x +1与双曲线x2y =交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与y kx =5ky x-=k 0k ≠11()A x y ,22()B x y ,5ky x-=12x x <12y y ,3(0)x x>(第47题)t 的函数关系式为tay =(a 为常数),如图所示.据图中提供的信息,解答下列问题: (1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?48.我们学习了利用函数图象求方程的近似解,例如:把方程的解看成函数的图象与函数的图象交点的横坐标.如图,已画出反比例函数在第一象限内的图象,请你按照上述方法,利用此图象求方程的正数解.(要求画出相应函数的图象;求出的解精确到0.1)49.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O点.训练时要求A 、B 两船始终关于O 点对称.以O 为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A 、B 两船恰好在直线上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置213x x -=-21y x =-3y x =-1y x=210x x --=x 4y x=y x=不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为 A( , )、B( ,)和C(,);(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船 的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
反比例函数经典讲义,绝对经典
文案初三反比例函数讲义第1节 反比例函数本节容:反比例函数定义 反比例函数定义的应用(重点)1、 反比例函数的定义电流I 、电阻R 、电压U 之间满足关系式:U=IR当U=220V 时,可以用含有R 的代数式表示I :__________________舞台灯光的亮暗就是通过改变电阻来控制电流的变化实现的。
当电流I 较小时,灯光较暗;当电流I 较大时,灯光较亮。
一般地,如果两个变量x 、y 之间的关系可以表示成xky =k (为常数,)0≠k 的形式,那么称y 是x 的反比例函数。
反比例函数的自变量x 不能为零。
小注:(1)x k y =也可以写成1-=kx y 或k xy =的形式; (2)xky =若是反比例函数,则x 、y 、k 均不为零;(3)k xy =)0(>k 通常表示以原点及点()y x ,为对角线顶点的矩形的面积。
■例1下列函数中是反比例关系的有___________________(填序号)。
①3x y -= ②131+=x y ③x y 2-= ④2211x y -= ⑤x y 23-=⑥21=xy ⑦28xy = ⑧1-=x y ⑨2=x y ⑩x ky =k (为常数,)0k≠2、反比例函数定义的应用(重点)2文案2、某工人打算利用一块不锈钢条加工一个面积为0.82m 的矩形模具,假设模具的长与宽分别为y 与x 。
(1)你能写出y 与x 之间的函数表达式吗?变量y 与x 之间是什么函数?(2)若想使模具的长比宽多1.6m ,已知每米这种不锈钢条6元钱,求加工这个模具共花多少钱?3、若函数满足023=+xy,则y 与x 的函数关系式为______________,你认为y 是x 的______________函数。
4、已知y =21y y +,1y 与x 成正比例,2y 与x 成反比例,并且当x =2时,y = —4;当x= —1时,y=5,求出y与x的函数关系式。
反比例函数讲义经典推荐(一)
第六章 反比例函数讲义6.1反比例函数教材精华知识点1 反比例函数的概念定义:一般地,如果两个变量x ,y 之间的关系可以表示成y =xk(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.拓展 (1)等号左边是函数y ,等号右边是一个分式,分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且x 的指数是1,若写成y =kx -1.则x 的指数是-1. (2)比例系数k ≠0是反比例函数定义的一个重要组成部分. (3)自变量x 的取值范围是x ≠0的一切实数. (4)函数y 的取值范围也是一切非零实数.知识点2 用待定系数法求反比例函数的表达式 由于在反比例函数y =xk中,只有一个待定系数.因此只需要一组对应值,即可求出k 的值,从而确定其表达式.知识点3 反比例关系与反比例函数的区别和联系我们学过反比例关系.如果xy =k (k 是常数,k ≠0).那么x 与y 这两个量成反比例关系,这里x ,y 既可以代表单独的一个字母,也可以代表多项式或单项式,例如若y +3与x -1成反比例,则y +3=1x k,若y 与x 2成反比例,则y =2x k .成反比例关系不一定是反比例函数,但反比例函数y =xk 中的两个变量必成反比例关系. 拓展 反比例关系不一定是反比例函数,但反比例函数一定是反比例关系.规律方法小结 类比思想:在学习反比例函数的概念时,注意与成反比例的量进行类比,与正比例函数的概念对比,这样便于我们对反比例函数的概念的理解与掌握. 课堂检测基本概念题1、下列各式中,y 是x 的反比例函数吗?为什么? (1)xy =2; (2)y =10-x ; (3)y =x 31; (4)y =xb 3 (b 为常数,b ≠0).基础知识应用题2、判断下列各题中的两个变量是否成比例关系,若成比例关系,指出是正比例关系,还是反比例关系. (1)三角形底边长为定值,它的面积S 与这条边上的高h ; (2)三角形面积为定值,它的底边长a 与这条边上的高h ; (3)正方形的面积S 与它的一边长a ; (4)周长为定值的长方形的长和宽; (5)面积为定值的长方形的长和宽; (6)儿童的身高与年龄;(7)圆的周长与它的半径.3、若函数y =(m +1)132++m m x 是反比例函数,求m 的值.综合应用题4、一定质量的二氧化碳,它的体积V 与它的密度ρ成反比例,当V =5m 3时,ρ=1.98kg /m 3,求ρ与V 的函数关系式.5、一水池内蓄水40 m 3.设放完满池水的时间为T 小时,每小时的放水量为W m 3,规定放水时间不得超过20小时,求T 与W 之间的函数关系式,指出函数T 和自变量W 的取值范围.探索创新题6、某工人计划利用一块不锈钢钢锭加工成一个面积为0.8m 2的矩形框工件,设工件的长与宽分别为y m 与x m .(不计厚度)(1)请写出y 与x 之间的函数表达式;(2)如果想使工件的长比宽多1.6 m ,已知加工费为每米6元,求加工这个工件所需的费用. 体验中考若梯形的下底长为x ,上底长为下底长的31,高为y ,面积为60,则y 与x 的函数关系式是 .(不考虑x 的取值范围)6.2反比例 函数的图像与性质新课导引【生活链接】爱思考的小明想在坐标系中描出横、纵坐标的积等于6的点,并列表如下:然后他将x ,y 的对应值分别作为点的横、纵坐标在直角坐标系中描了出来(如下图所示).【问题探究】如果用光滑曲线顺次连接图中各点,能得到怎样的图象?你能描述它的形状和性质吗? 【点拨】由xy =6可得xy 6=,是反比例函数.反比例函数的图象叫做双曲线. 教材精华知识点1 反比例函数的图象反比例函数的图象是双曲线,也称双曲线xky =(k ≠0),其图象如图5-1所示.拓展 反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限,它们关于原点对称,由于反比例函数中自变量x ≠0,函数y ≠0,所以它们的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不能到达坐标轴.知识点2 反比例函数图象的画法(1)列表:自变量的取值应以0为中心,在0的两边取三对(或三对以上)相反数,如1和-1,2和-2,3和-3等等,填y 值时,只需计算原点一侧的函数值,如分别计算出当x =1,2,3时的函数值,那么当x =-1,-2,-3时的函数值应是与之对应的相反数.(2)描点:先画出反比例函数的图象的一侧,另一侧可根据图象关于原点对称的性质来画.(3)连线:按照从左到右的顺序连接各点并延伸.拓展 画反比例函数的图象时,应注意以下几点:(1)两条曲线是平滑的,不要只画一个分支,而忘了画另一个分支. (2)两条曲线无限靠近坐标轴,但与坐标轴无交点. 探究交流 反比例函数xky = (k ≠0)的图象是轴对称图形吗? 点拨 反比例函数xky =(k ≠0)的图象是轴对称图形,它的对称轴有两条,分别是直线y =x 和直线y =-x . 知识点3 反比例函数的性质 反比例函数xky =(k ≠0)的性质如下: 当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是说,在每个象限内,y 随x 的增大而减小.当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是说,在每个象限内,y 随x 的增大而增大.拓展 (1)描述函数值的增减情况时,必须指出“在每个象限内”.若说成“当k >0(或k <0)时,y 随x 的增大而减小(或增大)”,就会出现与事实不符的矛盾.(2)反比例函数的图象的位置、函数的增减性都是由比例系数k 的符号决定的.反过来,由双曲线的位置、反比例函数的增减性也可以推断出k 的符号,即双曲线在第一、三象限时,k >0;双曲线在第二、四象限时,k <0. 探究交流 反比例函数的表达式中k 的几何意义. 点拨 反比例函数xky =的本质特征是两个变量y 与x 的乘积是一个常数k ,由此可以推得反比例函数的一个重要性质.若A 是反比例函数xky =图象上任意一点,且A B 垂直x 轴,垂足为B ,AC 垂直y 轴,垂足为C ,则S 矩形ABOC =k ,如图5-2所示.由反比例函数图象与矩形面积的关系可以得出反比例函数图象与三角形面积的关系:S △AOB=S △AOC =S 矩形ABOC =k 21. 规律方法小结 数形结合思想:学习反比例函数与学习其他函数一样,要善于数形结合,由表达式联想图象的位置及性质,由图象和性质联想比例系数k 的符号. 课堂检测基础知识应用题1、在同一直角坐标系内画出反比例函数x y 4=与xy 4-=的图象.2、已知反比例函数的表达式为xky -=4,分别根据下列条件求出字母k 的取值范围.(1)函数图象位于第一、三象限;(2)在每一个象限内,y 随x 的增大而增大.综合应用题3、如图5-5所示,A ,B 是函数xy 1=的图象上关于原点O 的对称点,AD 平行于y 轴,BC 平行于x 轴,△ABC 的面积为S ,则下列各式正确的是 ( )A .S =1B .S =2C .S >2D .1<S <24、已知反比例函数x k y =的图象经过点(4,21),若一次函数y =x +1的图象平移后经过该反比例函数图象上的点B (2,m ),求平移后的一次函数图象与x 轴的交点坐标.探索创新题5、如图5-7所示,已知双曲线xky = (k >0)与直线y =k ′x 交于A ,B 两点,点A 在第一象限,试解答下列问题.(1)若点A 的坐标为(4,2),则点B 的坐标为 ,若点A 的横坐标为m ,则点B 的坐标可表示为 .(2)如图5-8所示,过原点O 作另一条直线l ,交双曲线xky = (k >0)于P ,Q 两点,点P 在第一象限. ①试说明四边形APBQ 一定是平行四边形;②设点A ,P 的横坐标分别为m ,n ,四边形APBQ 可能是矩形吗?可能是正方形吗?若可能,直接写出m ,n 应满足的条件;若不可能,请说明理由. 体验中考1、已知图5-10(1)中的曲线是反比例函数xm y 5-=(m 为常数)图象的一支. (1)这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么?(2)若该函数的图象与正比例函数y =2x 的图象在第一象限内的交点为A ,过A 点作x 轴的垂线,垂足为B ,当△OAB 的面积为4时,求点A 的坐标及反比例函数的解析式.2、如图5-11所示,已知A(-4,n ),B (2,-4)是一次函数y =kx +b 的图象和反比例函数xmy =的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求方程0=-+x mb kx 的解(请直接写出答案); (4)求不等式xmb kx -+<0的解集(请直接写出答案).6.3反比例函数的应用【生活链接】一段时期市场上使用杆称,一些不法商贩在卖货时将秤砣挖空,或更换较小的秤砣,使砣较轻,从而欺骗客户.【问题探究】(1)如右图所示,对于同一物体,哪个图用的是标准秤砣,哪个图用的是较轻的秤砣?(2)在称同一物体时,所称得的物体质量y (千克)与所用秤砣质量x (千克)之间满足什么关系?(3)当砣较轻时,称得的物体变重,这正好符合哪个函数的哪些性质?【点拨】(1)设物体重为W ,阻力臂为L 1,秤砣重F ,动力臂为L 2,则由于W ·L 1=F ·L 2,且W ·L 1一定,∴F 越小,L 2越大,显示物体质量越多,故(2)用的是标准秤砣,(1)用的是较轻的秤砣. (2)由(1)的分析可知,y 与x 之间满足反比例关系. (3)设这个反比例函数为xky =(k >0),则当x 变小时,y 增大,所以当砣较轻时,称得的物体变重,这正好符合反比例函数xky =中,当k >0,x >0时,函数的图象在第一象限内,y 随x 的减小而增大的性质(即y 随x 的增大而减小). 教材精华知识点 利用反比例函数解决实际问题反比例函数是反映现实世界中两个变量之间关系的一种重要的数学模型.它在现实生活中有着广泛的应用.利用反比例函数的图象与性质,能比较清晰、直观、简捷地解决一些实际问题.在生活中有许许多多成反比例关系的实例.如:当路程s 一定时,时间t 与速度v 成反比例关系,写成vs t =(s 是常数);当矩形面积S 一定时,长a 与宽b 成反比例关系,写成bSa = (S 是常数);当面积是常数S 时,三角形的底边长y 与高x 成反比例关系,写成xSy 2=(S 是常数);当功是常数W 时,力F 与物体在力的方向上通过的位移s 成反比例关系,写成s WF = (W 是常数);当压力F 一定时,压强p 与受力面积S 之间成反比例关系,写成SF p =(F 是常数);在某一电路中,保持电压U 不变,电流I 与电阻R 成反比例关系,写成RUI = (U 是常数)等等.在利用反比例函数解决实际问题时,一定要注意xky = (k 为常数,k ≠0)这一条件.结合图象说出性质,根据性质大致画出图象,求函数的表达式是必须掌握的.拓展 实际问题中的数量关系一般都具有实际意义,所以在建立数学模型解答问题时,需注意实际问题对数学答案的要求与限制.如一些数量非负(时间、速度、长度一定是正数,人数是正整数等),在解答过程中要时刻注意问题中的要求.规律方法小结 数学建模思想是解决实际问题的基本思想方法.在许多实际问题中,需抽象出数学模型(如建立坐标系,设出函数关系式,列出方程等),即用数学关系式或图形来表示实际问题中数量之间的关系,从而运用数学方法求出问题的答案,使问题得以解决.课堂检测基础知识应用题1、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa)是气体体积V (m 3)的反比例函数,其图象如图5-19所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应 ( )A .不小于45m 3 B .小于45m 3 C .不小于54 m 3 D .小于54m 32、一辆汽车往返于甲、乙两地之间,如果汽车以50千米/时的平均速度从甲地出发,则经过6小时可到达乙地. (1)甲、乙两地相距多少千米?(2)如果汽车把速度提高到v 千米/时,那么从甲地到乙地所用时间t 小时将怎样变化? (3)写出t 与v 之间的函数关系式;(4)因某种原因,这辆汽车需要在5小时内从甲地到达乙地,则此时汽车的平均速度至少应是多少?(5)已知汽车的平均速度最大可达80千米/时,那么它从甲地到乙地最快需要多长时问?综合应用题33(1)猜想p与V之间的关系,并求出函数关系式;(2)当气体的体积是12 cm3时,压强是多少?4、某地区去年电价为0.8元,年用电量为1亿度,今年计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则今年新增加用电量y亿度与(x-0.4)元成反比例,当x=0.65元时,y=0.8.(1)求y与x之间的函数表达式;(2)若每度电的成本价为0.3元,则电价调至多少元时,今年电力部门的收益将比去年的增加20%?(收益=用电量×实际电价-用电量×成本价)探索创新题5、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(千帕)(千帕是一种压强单位)是气体体积V(米3)的反比例函数,其图象如图5-20所示.(1)写出这个函数的表达式;(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?体验中考1、一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图5-23所示,如果以此蓄电池为电源的用电器限制电流不得超过10 A,那么此用电器的可变电阻应 ( )A .不小于4.8 ΩB .不大于4.8 ΩC .不小于14 ΩD .不大于14 Ω2、为了预防流感,某学校在休息日用药熏消毒对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比,药物释放完毕后,y 与t 的函数关系式为tay (a 为常数),如图5-24所示,根据图5-24中提供的信息,解答下列问题.(1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?。
反比例函数讲义(知识点+典型例题)
变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。
(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。
(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。
7-3-2反比例函数与几何综合讲义教师版
7-3-2反比例函数与几何综合讲义教师版反比例函数是数学中的一种函数关系,表示为y=k/x,其中k是常数。
在反比例函数中,当x逐渐增大时,y则逐渐减小,反之亦然。
本讲义将详细介绍反比例函数的性质以及一些几何应用。
一、反比例函数的性质1.定义域和值域:反比例函数的定义域为除了x=0之外的所有实数,值域也为除了y=0之外的所有实数。
2.图像特点:反比例函数的图像是一个双曲线,即两个分支相对称。
曲线与x轴、y轴分别相交于原点和无穷远处。
3.对称性:反比例函数具有原点对称性,即f(x)=f(-x),这是因为k/x=k/(-x)。
4.渐近线:反比例函数的图像有两条渐近线,即y=k/x的两条分支在x轴和y轴上的延长线。
5. 与直线的关系:反比例函数的图像与直线y=kx的图像相切于原点。
二、反比例函数的几何应用1.弧长比例问题:假设一条直线上有三个点A、B、C,分别对应的x值和y值为(x1,y1),(x2,y2),(x3,y3),如果这三个点满足y=k/x的关系,那么直线上任意两个点之间的弧长比等于它们对应的x值的比。
2.顶点和焦点:对于反比例函数,每个分支都有一个顶点和一个焦点。
顶点位于x轴上,坐标为(k,0),而焦点位于y轴上,坐标为(0,k)。
3.曲线方程的推导:已知反比例函数的图像经过点P(x1,y1),确定该反比例函数的方程。
根据反比例函数的定义得到y=k/x,代入点P的坐标,消去k可以得到具体的反比例函数方程。
4. 反比例函数的图形变换:对于y=k/x,如果将x和y分别乘以常数a,那么得到的新函数为y=ka/x,这是一个图像在x轴和y轴上进行伸缩的变换。
5.面积比例问题:对于一组满足反比例函数关系的点A、B、C和D,以原点O为起点连接线段AB和CD,那么四边形OACD和OBCD的面积之比等于AB和CD的长度之比的平方。
三、教学活动建议1.梳理知识脉络:通过讲解反比例函数的定义、性质和几何应用,帮助学生理解反比例函数的本质和特点。
反比例函数讲义
例 2m 2m 3y x++反比例函数=在第几象限?4反比例函数解析式的确定。
重点:掌握反比例函数解析式的确定 难点:由条件来确定反比例函数解析式(1)反比例函数关系式的确定方法:待定系数法,由于在反比例函数关系式xky =中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入xky =中即可求出k 的值,从而确定反比例函数的关系式。
(2)用待定系数法求反比例函数关系式的一般步骤是: ①设所求的反比例函数为:xky =(0k ≠); ②根据已知条件,列出含k 的方程; ③解出待定系数k 的值; ④把k 值代入函数关系式xky =中。
反比例与一次函数的结合如果比较两者大小问x 的取值范围,比如使反比例函数值小于一次函数的值x 的取值范围,应该用数形结合的思想,画出两个函数的图像。
反比例函数知识点训练一.反比例函数的定义:.1.下列函数中,y 是x 的反比例函数的是 ( ) A.()12x y -= B.12y x =- C.21y x = D.17y x=- 2.若函数()221n y n x -=-是反比例函数,则n 的值是 ( ) A. ±1 B. -1 C. 1 D. 24.若双曲线6y x=-经过点(),2A m m -,则m 的值是 . 5.点(),A a b 、()1,B a c -均在函数1y x=的图象上,若0a <,则b c .二.待定系数法求解析式:1.一个反比例函数的图象经过点()3,4-,则其函数关系式是 .2.已知:y 与2x 成反比例,且当2x =-时,2y =,那么当4x =时,y 等于 ( ). A. 0.5 B.2 C. -2 D.-13.已知:12y y y =-,1y 与2x 成反比例,2y 与1x -成正比例,且当1x =时1y =;当2x =时54y =,求1x =-时y 的值.4.已知反比例函数的图象经过点()3,5A -.(1)这个函数的图象分布在哪几个象限内? y 随x 的增大如何变化?yA BCD O xyA BCDx(2)请判断()5,3B -、130,2C ⎛⎫--⎪⎝⎭、()5,35D -是否在这个函数的图象上. 三.反比例函数的图象性质:(1)反比例函数图象的对称性: 1.已知反比例函数ky x=-的图象在第二、四象限,那么一次函数y kx k =-的图象经过( )象限. A.一、二、三 B.一、二、四 C.一、三、四 D.二、三、四2.反比例函数2y x =-的图象关于x 轴对称的反比例函数为 3.对于反比例函数12y x=,下列说法不正确的是 ( )A.在每个象限内y 值随x 值的增大而减小;B.当x 小于零时,图象分布在第三象限;C.图象一定经过点(-2,-6);D.其图象依次经过第二、第四象限 (2)反比例系数的几何意义: 1.如图,点A 、B 是函数ky x=(0k <)图象上的两点,分别过点A 、B 作x 轴的垂线,垂足分别是C 、D ,已知点O 是坐标原点,则△AOC 、 △BOD 的面积S 1、S 2的大小关系是( )A.S 1>S 2B.S 1=S 2C.S 1<S 2D.S 1≠S 2 2.A 、C 是函数1y x=的图象上任意两点,过A 作x 轴的垂线交x 轴于B ,过C 作 y 轴的垂线交y 轴于D ,记Rt △AOB 的面积为S 1,Rt △COD 的面积为S 2,则( ) A.S 1<S 2 B.S 1>S 2C.S 1=S 2D.S 1和S 2的大小关系不能确定3.A 、B 是函数1y x=的图象上关于原点对称的任意两点,AC ∥y 轴,交x 轴于点C , BD ∥y 轴,交x 轴于点D ,设四边形ADBC 的面积为S ,则( ) A.S =1 B.S =2 C.1<S <2 D.S >24.两个反比例函数3y x =,6y x =在第一象限内的图象如图所示,点P 1,P 2,P 3,…,P 2005在反比例函数6y x=图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2005,纵坐标分别是1,3,5,…,共2005个连续奇数,过点P 1,P 2,P 3,…,P 2005分别作y 轴的平行线,与3y x=的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2005(x 2005,y 2005),则y 2005等于( )A.2004.5B.2003.5C.2004D.2005(3)反比例函数的增减性: 1.已知反比例函数k y x=(0k ≠),当0x <时,y 值随x 值的增大而减小,则一次函数2(1)y kx k =--+的图象一定不经过第______象限. 2.已知反比例函数1y x=-的图象上有两点A (x 1,y 1)和B (x 2,y 2),且x 1<x 2,则下列结论正确的是( ) A.y 1>y 2 B.y 1=y 2 C.y 1<y 2 D.不能确定y 1与y 2的大小关系3.若点(x 1,y 1)、(x 2,y 2)、(x 3,y 3)都是反比例函数1y x=-的图象上的点,并且x 1<0<x 2<x 3,则下列各式中正确的是( )A.y 1<y 2<y 3 B.y 2<y 3 <y 1 C.y 1>y 2>y 3 D.y 1<y 3<y 2 4.若点()12,y -、()21,y -、()31,y 都是反比例函数1y x=的图象上的点,则下列各式中正确的是( ) A.y 1>y 2>y 3 B.y 2>y 1>y 3 C.y 3>y 1>y 2 D.y 3>y 2>y 1 5.在函数3k y x--=(k 为常数,且0k ≠)的图象的一支在第四象限. (1)图象的另一支在第几象限? 你能求出符合题意的k 的取值范围吗? (2)图象上有三点(-1,y 1)、21,4y ⎛⎫- ⎪⎝⎭、31,2y ⎛⎫⎪⎝⎭,你会比较y 1、y 2、y 3的大小吗?6点P,Q 在1y x=-的图像上,若11221212x ,),x ,),x x P y Q y y y ((<,你能比较与的大小吗?(4)双曲线与直线的研究: 1.函数y kx k =-与ky x=在同一坐标系中的大致图象可能是图中的( )2.在同一直角坐标系中,正比例函数()1y m x =-与反比例函数4my x=的图象大体位置不可能是( )A B C D 3.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于()2,1A -、()1,B n 两点.(1)求两个函数的解析式;(2)根据图象写出使一次函数值大于反比例函数值的自变量的取值范围.4.已知反比例函数3my x=-和一次函数1y kx =-的图象都经过点(),3P m m -. (1)求点P 的坐标和两个函数的解析式; (2)若点()211,A a y --、()223,B a y --是反比例函数图象上的点,请比较y 1与y 2.5.已知反比例函数k y x =的图象经过点14,2⎛⎫⎪⎝⎭,若一次函数1y x =+的图象平移后,经过该反比例函数图象的点()2,B m ,求平移后的一次函数图象与x 轴的交点坐标.6.已知一次函数25y x =-的图象与反比例函数ky x=(0k ≠)的图象交于第四象限的一点(),3P a a -.(1)求这个反比例函数的解析式.(2)当-6<x <-2时,求y 的取值范围是多少?7.如图,已知反比例函数ky x=的图象经过点()3,A b -,过点A 作x 轴的垂线,垂足为B ,△AOB 的面积是3.(1)求k 和b 的值;(2)若一次函数1y ax =+的图象经过点A ,且与x 轴交于点C ,求△AOC 的面积.注意:解一次函数与反比例函数综合性试题时,要注意运用把问题的数量关系转化为图形的性质,或者把图形的性质转化为数量关系的策略,这样可以使复杂的问题简单化,抽象的问题具体化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数■例1下列函数中是反比例关系的有___________________(填序号)。
①3x y -= ②131+=x y ③x y 2-= ④2211x y -= ⑤x y 23-= ⑥21=xy ⑦28xy = ⑧1-=x y ⑨2=x y ⑩x ky =k (为常数,)0≠k■ 例2由欧姆定律可知,电压不变时,电流强度I 与电阻R 成反比例,已知电压不变,电阻R=12.5欧姆,电流强度I=0.2安培。
(1) 求I 与R 的函数关系式;(2) 当R=5欧姆时,求电流强度。
本节作业:1、小明家离学校1.5km ,小明步行上学需x min ,那么小明的步行速度min)/(m y 可以表示为xy 1500=;水名地面上重1500N 的物体,与地面的接触面积为x 2m ,那么该物体对地面的压强)/(2m N y 可以表示为xy 1500=。
函数表达式xy 1500=还可以表示许多不同情境中变量之间的函数关系,请你再列举一例。
2、某工人打算利用一块不锈钢条加工一个面积为0.82m 的矩形模具,假设模具的长与宽分别为y 与x 。
(1)你能写出y 与x 之间的函数表达式吗?变量y 与x 之间是什么函数?(2)若想使模具的长比宽多1.6m ,已知每米这种不锈钢条6元钱,求加工这个模具共花多少钱?3、若函数满足023=+xy,则y 与x 的函数关系式为______________,你认为y 是x 的______________函数。
4、已知y =21y y +,1y 与x 成正比例,2y 与x 成反比例,并且当x =2时,y = —4;当x = —1时,y =5,求出y 与x 的函数关系式。
5、已知y 是x 的函数,且其对应数据如下表所示,你认为y 是x 的正比例函数还是反比例函数?你6、(2008·安徽)函数xky =的图象经过点A (1,—2),则k 的值为( )。
A .21 B. 21- C. 2 D. —27、若函数132)1(+++=m mx m y 是反比例函数,则m 的值为( )。
A .m = —2 B. m = 1C. m = 2或m = 1D. m = —2,或m = —18、若甲、乙两城市间的路程为1000千米,车速为每小时x 千米,从甲市到乙市所需的时间为y 小时,那么y 与x 的函数表达式是_______________________(不必写出x 的取值范围),y 是x 的__________函数。
9、已知y 是x 的反比例函数,当x =5时,y = —1,那么,当y =3时,x =_________;当x =3时,y =________。
第2节 反比例函数的图象与性质(3)反比例函数的图象与x 轴、y 轴没有公共点。
例1:画出反比例函数xy =与x y -=的图象。
解:(1)列表:(2)描点:(3) 连线。
反比例函数 xky =)0(≠k k 的符号k >0k<0图象 (双曲线)x 、y 取值范围 x 的取值范围x ≠0 y 的取值范围y ≠0 x 的取值范围x ≠0 y 的取值范围y ≠0 位置第一,三象限内第二,四象限内增减性 每一象限内,y 随x 的增大而减小 每一象限内,y 随x 的增大而增大渐近性 反比例函数的图象无限接近于x,y 轴,但永远达不到x,y 轴,画图象时,要体现出这个特点.对称性 反比例函数的图象是关于原点成中心对称的图形.反比例函数的图象也是轴对称图形.例2 已知 2(1)m y m x-=+是反比例函数,则函数的图象在 ( )A 、一、三象限B 、二、四象限C 、一、四象限D 、三、四象限 例3 函数2y kx =-与ky x=(k ≠0)在同一坐标系内的图象可能是( )例4 已知反比例函数xky =的图象经过点P(一l ,2),则这个函数的图象位于 A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限3、反比例函数x ky =)0(≠k 中的比例系数k 的几何意义(难点)k 的几何含义:反比例函数y =k x (k ≠0)中比例系数k 的几何意义,即过双曲线y =kx(k ≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 .例5:A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( )A . 2S =B . 4S =C .24S <<D .4S >例6:如图A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =4、反比例函数与正比例函数图象的交点凡是交点问题就联立方程例7:如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点. (1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积.本节练习一、选择题(每小题6分,共36分) 1. 已知 2(1)m y m x-=+是反比例函数,则函数的图象在 ( )A 、一、三象限B 、二、四象限C 、一、四象限D 、三、四象限 2.若反比例函数ky x=的图象经过点(12)-,,则这个函数的图象一定经过点( ) A、(21)--, B、122⎛⎫- ⎪⎝⎭, C、(21)-, D、122⎛⎫ ⎪⎝⎭, 3.反比例函数5n y x+=的图象经过点(2,3),则n 的值是( )O BxyC A 图1OyxBAo yxo x y x yo yo xA 、-2B 、-1C 、0D 、14.反比例函数1k y x-=的图象在每个象限内,y 随x 的增大而减小,则k 的值可为( )A 、1-B 、0C 、1D 、25.如果两点1P (1,1y )和2P (2,2y )都在反比例函数1y x=的图象上,那么( ) A .2y <1y <0 B .1y <2y <0 C .2y >1y >0 D .1y >2y >06.函数(0)ky k x=≠的图象如图所示,那么函数y kx k =-的图象大致是( )A B C D二、填空题(每小题6分,共24分) 7.如果反比例函数ky x=(0k ≠)的图象经过点(1,-2),则这个函数的表达式是_________.当0x <时,y 随x 的增大而 ______ (填“增大”或“减小)8.如图7,双曲线xky =与直线mx y =相交于A 、B 两点,B 点坐标为(-2,-3),则A 点坐标为_________. 9. 如图8,点A 在反比例函数xky =的图象上,AB 垂直于x 轴,若4=∆AOB S ,那么这个反比例函数的解析式为__________.图810.老师给出一个函数,甲、乙各指出了这个函数的一个性质:甲:第一、三象限有它的图象; 乙:在每个象限内,y 随x 的增大而减小. 请你写一个满足上述性质的函数______________________ 三、解答题每小题,共40分11. (20分)如图,一次函数b kx y +=的图象与反比例函数xmy =图象交于A (-2,1)、B (1,n )两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.O xy12. (20分)如图,已知反比例函数1(0)my m x=≠的图象经过点(21)A -,,一次函数2(0)y kx b k =+≠的图象经过点(03)C ,与点A ,且与反比例函数的图象相交于另一点B .(1)分别求出反比例函数与一次函数的解析式;(2)求点B 的坐标.第三节 反比例函数的应用例题1 .面积一定的梯形,其上底长是下底长的21,设下底长x =10 cm 时,高y =6 cm(1)求y 与x 的函数关系式;(2)求当y =5 cm 时,下底长多少?16.一定质量的二氧化碳,当它的体积V=6 m 3时,它的密度ρ=1.65 kg/m 3. (1)求ρ与V 的函数关系式.(2)当气体体积是1 m 3时,密度是多少?(3)当密度为1.98 kg/m 3时,气体的体积是多少?例题2:如图,Rt △AOB 的顶点A 是一次函数y =-x +m +3的图象与反比例函数y =xm的图象在第二象限的交点,且S △AOB =1,求点A 的坐标.例题3:某厂要制造能装250mL(1mL=1 cm 3)饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部厚度都是0.02 cm ,顶部厚度是底部厚度的3倍,这是为了防止“砰”的一声打开易拉罐时把整个顶盖撕下来,设一个底面半径是x cm 的易拉罐用铝量是y cm 3.用铝量=底面积×底部厚度+顶部面积×顶部厚度+侧面积×侧壁厚度,求y 与x 间的函数关系式.综合检测题 一、填空题:1、u 与t 成反比,且当u =6时,81=t ,这个函数解析式为 ; 2、函数2x y -=和函数xy 2=的图像有 个交点; 3、反比例函数xk y =的图像经过(-23,5)点、(a ,-3)及(10,b )点,则k = ,a = ,b = ;4、若函数()()414-+-=m x m y 是正比例函数,那么=m ,图象经过 象限;5、若反比列函数1232)12(---=k kx k y 的图像经过二、四象限,则k = _______6、已知y -2与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ;7、已知正比例函数kx y =与反比例函数3y x=的图象都过A (m ,1),则m = ,正比例函数与反比例函数的解析式分别是 、 ; 8、 设有反比例函数y k x=+1,(,)x y 11、(,)x y 22为其图象上的两点,若x x 120<<时,y y 12>,则k 的取值范围是___________9、右图3是反比例函数xk y =的图象,则k 与0的大小关系是k 0.10、函数xy 2-=的图像,在每一个象限内,y 随x 的增大而 ; 11、反比例函数()0>=k xky 在第一象限内的图象如图,点M 是图像上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是 ; 12、()7225---=m mx m y 是y 关于x 的反比例函数,且图象在第二、四象限,则m 的值为 ;二、选择题: (分数3分×14=42分,并把答案填在第12题后的方框内) 1、下列函数中,反比例函数是( ) A 、 1)1(=-y x B 、 11+=x y C 、 21xy = D 、 x y 31= 2、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( )A 、 (-a ,-b )B 、 (a ,-b )C 、 (-a ,b )D 、 (0,0) 3、如果反比例函数xky =的图像经过点(-3,-4),那么函数的图像应在( ) A 、 第一、三象限B 、 第一、二象限C 、 第二、四象限D 、 第三、四象限 4、若y 与-3x 成反比例,x 与z4成正比例,则y 是z 的( ) A 、 正比例函数B 、 反比例函数C 、 一次函数 D 、 不能确定 5、若反比例函数22)12(--=m x m y 的图像在第二、四象限,则m 的值是( )A 、 -1或1B 、小于21的任意实数 C 、 -1 D、 不能确定 6、函数x k y =的图象经过点(-4,6),则下列各点中不在xky =图象上的是( )A 、 (3,8)B 、 (3,-8)C 、 (-8,-3)D 、 (-4,-6) 7、正比例函数kx y =和反比例函数ky =在同一坐标系内的图象为( )8、如上右图,A 为反比例函数xky =图象上一点,AB 垂直x 轴于B 点,若S △AOB =3,则k 的值为( )A 、6B 、3C 、23 D 、不能确定9、如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致( )A BCD10、在同一直角坐标平面内,如果直线x k y 1=与双曲线xk y 2=没有交点,那么1k 和2k 的关系一定是( ) A 1k <0,2k >0B 1k >0,2k <0C 1k 、2k 同号D 1k 、2k 异号11、已知变量y 与x 成反比例,当x =3时,y =―6;那么当y =3时,x 的值是( ) A 6 B ―6 C 9 D ―9 12、当路程s 一定时,速度v 与时间t 之间的函数关系是( )A 正比例函数B 反比例函数C 一次函数D 二次函数 13、(2001北京西城)在同一坐标系中,函数x ky =和3+=kx y 的图像大致是 ( )14、已知反比例函数)0(<=k xky 的图像上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是( )A 、 正数B 、 负数C 、 非正数D 、 不能确定 三、解答题1、在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培。