问题解决和创造性
创造性思维与问题解决
创造性思维与问题解决创造性思维是指人们在面对问题时能够提出新颖、独特、富有创意的解决方案的思维方式。
而问题解决则是指通过思考、分析和判断等过程,找到解决问题的方法和途径。
在现代社会中,创造性思维和问题解决能力成为了一项重要的能力,对个人和团队的发展都有着重要的影响。
一、创造性思维的重要性创造性思维不仅可以帮助我们解决问题,还能够激发我们的创新能力,推动社会的进步与发展。
在现实生活中,我们时常会遇到各种各样的问题,有些问题可能是以前从未遇到过的,需要我们主动思考,提出新颖的解决方案。
而这就需要我们具备创造性思维的能力。
创造性思维能够帮助我们从不同的角度和思维方式来看待问题,帮助我们发现问题的本质和根源,从而找到更有效的解决方法。
它可以激发我们的创新意识和创业精神,培养我们的创造力和创造力,进而推动社会进步。
创造性思维也有助于培养我们的独立思考能力和批判性思维,使我们能够思考问题的逻辑和合理性,对各种观点进行评估和辨析。
这对于我们的终身学习和终身成长都有着重要的促进作用。
二、问题解决的关键步骤在实践中,我们可以通过以下关键步骤来解决问题:1.明确问题:首先需要明确问题的定义和范围,弄清楚问题的核心和关键点。
2.调研分析:对问题进行调研和分析,了解问题的原因和背景,收集相关信息和数据。
3.创造性思考:运用创造性思维的方法和技巧,提出多种可能的解决方案,尽可能地开拓思路,避免陷入固定的思维模式。
4.评估选择:对提出的各种解决方案进行评估和比较,选择最适合解决问题的方案。
5.实施行动:将选择的解决方案付诸实施,制定详细的计划和时间表,并积极行动。
6.监控和调整:在解决问题的过程中,及时进行监控和评估,根据实际情况进行调整和改进。
通过以上步骤,我们可以更加有针对性地解决问题,提高解决问题的效率和准确性。
三、培养创造性思维和问题解决能力的方法1. 多角度思考:培养从不同角度思考问题的能力,可以通过观察周围环境和事物,启发自己的联想和想象力。
科学发现的问题解决与创造性思维
科学发现的问题解决与创造性思维科学发现是人类认知世界、探索未知的过程中不可或缺的一环。
在科学研究中,问题解决是个重要的部分,而创造性思维则是推动问题解决的关键要素。
本文将探讨科学发现中的问题解决与创造性思维的关系,并提供一些实践建议来培养和发展创造性思维。
问题解决是科学发现过程中的核心环节。
科学家们通过观察和实验,发现了各种现象、现象背后的规律以及未解决的问题。
问题的出现为科学家们提供了研究的方向,通过解决问题,他们推动了科学的发展。
然而,问题解决并非一帆风顺,常常伴随着各种困难和挑战。
在问题解决过程中,创造性思维发挥着重要的作用。
创造性思维是指独立和非常规的思维方式,能够产生新颖的、有用的解决方案。
科学家们需要超越传统的思维框架,以不同的角度来审视问题,找到非常规的思路。
他们需要拥有开放的心态,接受不同的观点和想法,并能够将这些观点和想法结合起来,形成新的思考方式和解决方案。
创造性思维从某种程度上是一种天赋,但也可以通过培养和锻炼来发展。
以下是一些实践建议,帮助人们培养创造性思维能力:1. 培养好奇心:拥有好奇心是培养创造性思维的重要条件。
保持对世界的好奇,探索未知领域,主动提出问题,发现问题。
2. 多元化的思考:学会看待问题的多个角度,尝试从不同的角度来思考问题,增加思维的灵活性。
3. 勇于冒险:不怕失败,勇于尝试新的方法和思考方式。
创造性思维需要展现在具体实践中,勇于冒险是成为创新者的必备品质。
4. 基于观察和实践:观察是培养创造性思维的重要方法之一,通过观察周围的事物,捕捉到不同的细节和现象,可以培养敏锐的观察力。
5. 多源启发:通过阅读与学习,了解相关领域的前沿动态,与其他领域的知识相结合,融会贯通,从而产生新的思维方式和解决方案。
创造性思维是科学发现中至关重要的一环。
它推动了问题解决过程,促进了科学的进步。
通过培养和发展创造性思维能力,人们可以在科学研究中更好地面对问题,发现新的解决方案,并取得突破性的成果。
思维训练之——问题解决与创造性
2.问题表征的方式
问题表征(Problem representation)是在头脑中对问题
信息进行记载、理解和表达的方式。
特点:
(1)一般分为语言表征和表象(视觉)表征。
(2)根据所要解决的问题不同,两种表征形式各有优劣。 (3)如果说问题呈现的方式强调刺激本身的特征;那么, 问题表征就强调你在头脑里面是如何思考这个问题的。
二、问题解决的策略
思考:原来你们解决问题的时都用的哪些 方法?
二、问题解决的策略
1. 试误法
对如何从初始状 态到达目标状态,没 有任何线索、也没有 理论指导。只能盲目 尝试。
1. 试误法
鸡兔同笼,一共5个头,16条腿,请问在笼 子里有几只鸡,几只兔?
5鸡0兔 4鸡1兔 3鸡2兔 2鸡3兔 1鸡4兔 5×2+0×4=10>16 4×2+1×4=12>16 3×2+2×4=14<16 2×2+3×4=16=16 1×2+4×4=18>16
• 左边的图形展示了四个部分A,B,C,D. •A、B、C的 ¼的部分被涂成阴影
1. 将‘A’中未被阴影覆盖的部分平分 成相同且面积相等的两部分. 2.将‘B’中未被阴影覆盖的部分平分 成相同且面积相等的三部分. 3.将‘C’中未被阴影覆盖的部分平分 成相同且面积相等的四部分. 4.将‘D’中未被阴影覆盖的部分平分成相同且面积相等的七部 分.
主要内容
1 2 2
问题解决 创造性 创造性思维的培养
3
一、问题解决内涵
(一)问题
怎么把它们 连起来呢?
——个体面临一个不易达到的目标时的情境,即通往 目标的途径中存在障碍,我们称之为遇到了问题。
问题解决与创造性 (最全版)PTT文档
启发式:是凭借经验解决问题的策略或方法。通过 问题解决中的两种搜索策略:算法式、启发式
想象:是一种对记忆中的表象进行加工改造形成新形象的思维方式。 专家或者立即推理,或者搜集信息,从头到尾地解决,即是一种再认的过程。
2.爬山法:指每走一步就要估计一下是否离目标
更近了,如果更近就继续下去,这样离目标越来 越近,最终使问题得以解决。
3.手段-目的分析法:是人认识到解决问题的目
标与自己当前的状态之间存在差距,于是进行分 析,想出运用某种手段来缩小这样的差距,从而 达到目标的方法。
4.逆推法:是从目标出发反方向推导。
LOGO
2.设计方案 专家或者立即推理,或者搜集信息,从头到尾地解决,即是一种再认的过程。
爬山法:指每走一步就要估计一下是否离目标更近了,如果更近就继续下去,这样离目标越来越近,最终使问题得以解决。
3.执行方案
4.评价结果
LOGO
二、问题解决的方法
1.尝试错误法:是逐个尝试每一种可能性,如发
现某一尝试是错误的就改为另一种尝试,知道问 题解决为止。
爬山法:指每走一步就要估计一下是否离目标更近了,如果更近就继续下去,这样离目标越来越近,最终使问题得以解决。 算法式:是把解决问题的所有方法都列出来,逐一加以尝试,以求最后找到答案。
1.联想:是克服两个概念在意义上的差距,把它 功能固着:是一种从物体的正常功能的角度来思考物体的定势。
四、如何提高学生解决问题的能力 尝试错误法:是逐个尝试每一种可能性,如发现某一尝试是错误的就改为另一种尝试,知道问题解决为止。
问题解决与创造性
36
轮船上有26只 轮船上有 只 绵羊和10只山羊, 绵羊和 只山羊, 只山羊 问船长多大年纪了? 问船长多大年纪了?
75%的小学 75%的小学 二年级学 生的答案
除了能识别问题的相关信息外, 除了能识别问题的相关信息外,你还必须 准确地表征问题。 准确地表征问题。要成功地表征习题就要 完成两个任务。第一个是语言理解 语言理解, 完成两个任务。第一个是语言理解,理解 问题中每一个句子的含义 。
香蕉挂在高处, 香蕉挂在高处,大猩猩 必须爬上叠起的三只木箱的 上面才能够到香蕉。 上面才能够到香蕉。 大猩猩解决这个问题表 现出一定的困难。 现出一定的困难。起初站在 一只木箱上够,却够不到。 一只木箱上够,却够不到。 大猩猩跳下木箱, 大猩猩跳下木箱,对周围的 木箱和高处的香蕉进行了 良久”的观察,突然, “良久”的观察,突然,大 猩猩终于表现出一种突然的 理解, 理解,迅速地将三只木箱叠 在一起,爬到箱顶, 在一起,爬到箱顶,取下香 蕉。
第四章 问题解决与创造性
一、问题解决 二、创造性及其培养
一、问题解决
日常生活中的问题: 日常生活中的问题:学生家与学校距离很
远,而又没有直达的公共汽车;家里要铺地 而又没有直达的公共汽车; 需要预算买多少地板以及花多少钱; 板,需要预算买多少地板以及花多少钱;到 外地出差想顺路拜访老同学, 外地出差想顺路拜访老同学,又不知他家的 电话和地址;学生不愿意自己思考, 电话和地址;学生不愿意自己思考,总想在 课本中找到所有问题的答案,教师该怎么办? 课本中找到所有问题的答案,教师该怎么办? 考试中出了一道从未见过的题型, 考试中出了一道从未见过的题型,该怎么去 解决它? 解决它?
答案
起始状态:有十只箱子,每只里面有100小包商 起始状态:有十只箱子,每只里面有100小包商 100 品,其中一只箱子(X)里的每一小 其中一只箱子(X)里的每一小 (X) 包都少了10克 包都少了10克。 10 目标状态:找出这只X箱子. 目标状态:找出这只X箱子. 障碍:用一台磅秤,只能秤一次,读一次数。 障碍:用一台磅秤,只能秤一次,读一次数。
第十章 问题解决与创造性全
第二节 问题解决过程
(三)IDEAL模式
❖ 布兰斯福德和斯坦恩提出(1993年)
❖
发现问题与机会
❖
界定目标与表征问题
❖
探索可能的问题解决策略
❖
预期结果并实施策略
❖
回顾与学习
第二节 问题解决过程
(四)格拉斯的解决问题信息加工模式
❖ 格拉斯认为,解决问题的过程可以分为互相 区别与联系的四个阶段
❖ 形成问题初始表征(问题的理解阶段) ❖ 制定计划 ❖ 重构问题表征 ❖ 执行计划和检验结果
英文释义: question :n.问题,疑问,询问v.询问,审问,怀疑。
中文释义: ①要求解答的题目:试卷上有六个问题/我提一个问 题,请大家思考; ②需要研究解决的疑难和矛盾:交通问题/不成问题/ 没问题/写什么是一个问题,怎么写又是一个问题
Educational Psychology
第一节 问题与问题解决
题解决过程,给人们提供了新的视角,具有一定指 导意义。
但人毕竟不是计算机,计算机加工信息的方式 是人类赋予的,缺乏对新情境的应变能力。因此, 用计算机模拟人类解决问题过程来探讨人类实际解 决问题的过程是存在问题的。
Educational Psychology
第二节 问题解决过程
一、理解和表征问题阶段
二、问题解决的界定
(二)问题解决(problem solving)的类型:
1、常规性问题解决 解决的是有固定答案的问题,只需使用现成的方法 来解决; 2、创造性问题解决 解决的是没有固定答案的问题,是通过发展原有方 法,形成新思路和步骤实现的。
常规性问题与创造性问题往往是相对的,有些问题,对新手来 说可能是创造性的,但对专家而言,可能只是常规性的。
创造性思维与问题解决如何培养和应用创造性思维来解决问题
创造性思维与问题解决如何培养和应用创造性思维来解决问题创造性思维与问题解决创造性思维是指对问题和挑战寻找新颖、独特和有创意的解决方案的能力。
它是在日常生活和职业领域中非常重要的一项能力。
本文将探讨如何培养和应用创造性思维来解决问题,从而提高个体和团队的创造力。
一、培养创造性思维的方法1. 培养好奇心:好奇心是培养创造力的关键,通过对事物的好奇和主动探索,可以激发创造性思维。
例如,可以提出一系列的“为什么”问题,并努力找到答案。
2. 鼓励多样化的思维:认识到每个人在思考和解决问题时都有不同的方式和观点,可以促进创造性思维的发展。
接触不同领域的知识和经验,能够为问题解决提供新的角度和思路。
3. 提供创造性的环境:创造性思维需要一个开放、鼓励创新的环境。
提供自由的空间和资源,让人们有机会尝试新的想法和方法,并鼓励他们分享和交流。
二、应用创造性思维解决问题的过程1. 确定问题:首先要准确地界定问题,并分析问题的原因和影响。
通过梳理问题,可以帮助思考问题的不同方面和可能的解决方案。
2. 收集信息:收集相关的信息和数据,了解问题的背景和现状。
通过广泛的信息获取,可以拓宽思维的范围,找到更多解决问题的可能性。
3. 创造性思考:运用创造性思维技巧,如思维导图、头脑风暴、侧面思考等,从不同的角度和思路考虑问题。
挑战传统思维模式,寻找新颖和独特的解决方案。
4. 评估和选择:评估各种解决方案的优劣,并选择最适合的解决方案。
考虑可行性、效果和成本等因素,并寻找平衡点。
5. 实施并评估:将解决方案付诸实施,并在实施过程中持续评估和调整。
及时反馈和适当的改进措施可以帮助提高解决问题的效果。
三、创造性思维在不同领域的应用1. 商业创新:创造性思维对于商业创新至关重要。
通过寻找新的市场机会,改进产品和服务,可以为企业带来竞争优势。
2. 教育领域:培养学生的创造性思维能力是教育的重要目标之一。
创造性思维可以帮助学生独立思考、解决问题,并在学习中获得更多的乐趣和成就感。
问题解决与创造性
招聘广告:应聘者必须能熟练地打字,善于解决办公室里的问题。
一 什么是问题与问题解决
主试问:“你说的打字的问题是什么意思? 应聘者:“我常常发生很大的困难,不知道应该打哪一个键,可是在周围找一阵后,我总能找到那个键解决问题”
一个应聘者打电话来说:“我特别善于解决打字的问题”。
1、什么是问题
1、什么是问题 问题的心理学描述 所谓问题,就是疑难或“难题”,是个人不能用已有知识经验直接加以处理并因而感到疑难的情境。 问题的三个基本成分 给定—一组已知的关于问题条件的描述,即问题的起始状态; 目标—关于构成问题结论的描述,即问题要求的答案或目标状态; 障碍—正确的解决办法不是显而易见的,必须间接通过一定思维活动才能找到答案,达到目标状态。
分析问题。(主要是分析问题的要求与条件,找出它们的联系和关系,明确问题的关键所在)
提出假设。(问题解决的关键是找出解决问题的方案,即解决问题的原则、途径和方法)
检验假设。(直接检验 、间接检验)
02
03
01
影响问题解决的因素 问题构成 问题呈现方式 问题:求内切圆半径为10厘米的正方形的 面积。 问题呈现方式一 问题呈现方式二
在头绪不是太多的情况更管用。
启发式策略是人们根据一定的经验,在问题空间内进行较少的搜索,达到问题解决的一种方法。
2.启发式策略
将需要达到的问题的目标状态或总目标分成若干子目标,通过实现一系列的子目标最终达到总目标,即解决问题。 手段-目的分析有两种分析方式:一种是把当前状态转化为目标状态;另一种方式是寻找消除差别的算子。 该策略的核心是要发现问题的当前状态与目标状态的差别,并应用算子来缩小这种差别。
2
1
解题情境
软性情境:问题解决者不能明确感知,但对其解决问题产生影响的因素,主要包括期望、暗示、政治、文化、领导和管理水平、科学技术等方面
第二章 问题解决与创造性
一、问题解决概述
• 3.提供多种练习的机会。 • 根据教学目的、教学内容、教学时段来精 选、设计例题与练习。既要训练学生解决 有结构的问题,也要训练学生解决无结构 的问题,给学生提供多种练习的机会。 • 4.培养思考问题的习惯。 • ①鼓励学生主动发现问题;②鼓励学生多 角度提出假设;③鼓励自我评价与反思。
一、问题解决概述
• 4.情绪与动机 • 积极的情绪和较强的动机有助于问题的解 决。 • 5.原型启发 • 对问题解决起启发作用的事物叫原型。 • 原型启发是指从其他事物上发现解决问题 的途径和方法。 • 如鲁班被茅草划破手指,用茅草的锯齿想 到发明锯子,这种现象就属于原型启发。
一、问题解决概述
• (四)提高问题解决能力的教学 (这属于 软知识,主要考简答题或论述题) • 1.提高学生知识储备的数量与质量。 • ①帮助学生牢固地记忆知识②提供多种变 式,促进的知识的概括③重视知识间的联 系,建立网络化结构 • 2.教授与训练解决问题的方法与策略。 • ①结合具体学科,教授思维方法②外化思 路,进行显性教学
第二章 问题解决与创造性
1.本章是重点考察的章节,今年尤其要注 意创造性及其培养。 2.2010年考简答题,5分。(思维过程中影 响问题解决的因素)
问题解决 与创造性
问题解决的 影响因素、 过程、特点
创造性特点、 影响因素、培养
本章需要注意简答题和材料分析题
一、问题解决概述
(一)问题解决的含义 • 1.问题的概念:给定信息和要达到的目标之间有某些 障碍需要被克服的刺激情境。任何问题都含有三个基 本的成分:一是给定的条件,二是要达到的目标,三 是存在的限制或障碍。 • 问题分有结构的问题(界定清晰的问题)和无结构的 问题(界定含糊的问题)。有结构的问题是指已知条 件和要达到的目标都非常明确,个体按一定的思维即 可获得答案的问题。无结构问题是指已知条件与要达 到的目标都比较含糊,问题情境不明确,不易找出解 答线索的问题。(理解有结构的问题和无结构的问题, 可能考选择题)
教育心理学-问题解决和创造性
1.结构良好的问题和结构不良的问题
学生在学校中遇到的许多问题都是结构 良好的问题(well-structured problem), 即那些有明确解决方法的问题。
可以选择一个定义良好的途径来达到解 决问题的目的。
与结构良好的问题相对的就是结构 不良问题(ill-structured problem), 即那些没有明确解决方法的问题。
一个更为完善的定义(Duncker,1945)
一个问题产生于一个活着的人,他有 一个目标,但又不知道怎样做才能达到这 个目标之时,每当他不能通过简单的行动 从一种情境达到另一个需要的情境时,就 要求助于思考……。这种思考的任务是设 计某种行动,这种行动能使其从当前的情 境达到需要的情境。
2.问题解决
结构不良是指,这类问题没有明确 的解决途径。
研究是一个什么样的问题?
研究是一个结构不良问题,而不是一 个结构良好的问题。
教师应当学会判断什么样的问题是结 构良好的,什么样的问题是结构不良的。
2.定义明确的问题 和定义不明确的问题
问题本身提供了解决问题所需要的 全部信息,这样的问题就是“定义明确” (well-defined problem)的问题。
目标中隐含着清楚的判断标准。
例如:象棋
目标状态或初始状态或两者有时只有 部分论述,这种缺乏某种成分的问题被认 为是定义不明确的问题(ill-defined problem )。
我们在世界上面对的大部分是定义不 明确的问题。
例如:什么是一个人的成功?
一般地讲,如果初始状态是模糊的或 不具体的,或目标状态不清楚,或要求从 初始状态到目标状态的操作是不清楚的, 这个问题就是定义不明确的问题。
人们在解决问题时,必须关注问题解 决的每一个步骤。
如何在工作中培养创造性思维和解决问题能力?
如何在工作中培养创造性思维和解决问题能力
摘要
在现代社会中,创造性思维和问题解决能力是非常重要的职业技能。
本文将分
享一些在工作中培养创造性思维和解决问题能力的方法和技巧。
1. 持续学习
不断学习新知识和技能是培养创造性思维和解决问题能力的关键。
保持好奇心,积极主动地学习,不断提升自己的专业水平和技能。
2. 多样化思维方式
拓宽思维的范围,多角度思考问题,可以帮助我们找到更多的解决方案。
尝试
从不同的角度看待问题,利用头脑风暴等方式激发创造性思维。
3. 团队合作
和团队共同合作解决问题,可以激发成员之间的创造性思维。
分享想法,交流
技能,共同协作解决问题,能够取得更好的成果。
4. 创造积极的工作环境
营造一个积极、开放的工作环境,可以激发员工的创造性思维。
给予员工适当
的自主权和创新空间,鼓励他们提出新的想法和解决方案。
5. 不断尝试和反思
在工作中,不要畏惧失败,要勇于尝试新的方法和思路。
同时,及时总结反思
失败的原因,并从中吸取经验教训,不断进步。
在工作中培养创造性思维和解决问题能力并不是一蹴而就的过程,需要持之以
恒地不断努力和实践。
相信通过多方面的努力,你一定能够培养和提高自己的创造性思维和问题解决能力,为职业发展打下坚实的基础。
以上就是如何在工作中培养创造性思维和解决问题能力的分享,希望对您有所
帮助。
欢迎分享给更多有需要的朋友,一起努力成长!。
创造性思维与问题解决的关系
创造性思维与问题解决的关系在日常生活中,我们经常遇到各种各样的问题,有些问题相对简单,可以通过常规的方式快速解决,而有些则需要我们运用创造性思维来找到独特的解决方案。
创造性思维是一种能力,它使我们能够超越传统思维模式,打破常规,发现新的解决方案,因此与问题解决密切相关。
首先,创造性思维对于问题解决的重要性不可忽视。
传统思维往往受到经验、常识和既定规则的限制,面对问题时,我们常常会陷入思维定势,难以看到问题的本质和潜在的解决方案。
而创造性思维则能够打破这些思维束缚,提供全新的视角和思考方式。
通过开拓思维的边界,我们能够从不同的角度审视问题,挖掘出独特的解决方案。
其次,创造性思维能够激发创新能力,为问题解决提供新的可能性。
创造性思维注重从不同领域和角度寻找灵感,以不同的组合和变化形成全新的思维模式,从而突破传统的思维限制。
创造性思维还能激发我们的想象力和创意思考能力,使我们能够产生更多独特的想法和解决方案,从而更好地解决问题。
另外,创造性思维与问题解决之间存在着相辅相成的关系。
通过解决问题,我们能够培养和发展创造性思维的能力。
面对问题时,我们需要思考并提出各种可能的解决方案,这就要求我们要拥有独立思考和判断的能力。
而创造性思维的发展也需要我们经历不断解决问题的过程,不断思考和尝试,从而提升我们的问题解决能力。
此外,创造性思维也有助于培养我们的创新精神和创业意识。
创新是推动社会进步和发展的重要力量,而创造性思维恰恰是创新的核心能力。
通过创造性思维的训练和培养,我们不仅能够更好地解决问题,还能够面对新的挑战和机遇时提供新的创意和创新方案。
在创新和创业的过程中,我们常常需要寻找和解决一些独特的问题,而创造性思维的应用则成为我们成功的关键。
然而,创造性思维并非一蹴而就,它需要我们的耐心与坚持。
在面对问题时,我们需要主动培养创造性思维的意识,并不断进行锻炼和实践。
可以通过参加创意设计、艺术创作等活动,开拓思维,增加跨领域的知识储备,积极寻求不同的观点和意见,以激发自己的创造力。
第四章 问题解决与创造性
问题的成分
给定:一组已知的关于问题条件的描述, 给定: 即问题的起始状态。 目标: 目标:关于构成问题结论的描述,即问题 要求的答案或目标状态。 障碍: 障碍:正确的解决方法不是直接的显而易 见的,必须间接通过一定的的认知操作才 能改变给定状态,即通过思维活动才能找 到答案,逐渐达到目标状态。
什么是问题,什么不是问题?
(三)影响创造力产生的因素
4.创造性与发散思维 4.创造性与发散思维 所谓发散思维,指能从多种设想 出发,不按常规地寻求变异,使信息朝 着各种可能的方向辐射,多方面寻求答 案,从而引出更多的信息。
发散思维三种基本特征: 流畅性: 流畅性:指在限定的时间内能产生出较多 的解决问题的方案,也就是反应迅速。 灵活性(变通性): ):指对某个给定的问题 灵活性(变通性): 产生可供选择的多种解决方案,思想变化 多端,而不易受功能固着和习惯定势的影 响。 独特性: 独特性:指产生不寻常的反应和打破常规 的能力,表现为观点新颖,别出心裁。这 是创造性思维中最重要的成分。
(一)问题解决基本概述
4.问题解决的策略与方式 4.问题解决的策略与方式 算法式: 算法式:是指对于解决问题可用的各种 可能性方法逐个地去尝试,最终找出解 决方法的方式。 启发式: 启发式:是人们根据已有的知识经验, 理解问题情境中事物间的关系,探索解 决问题方法的一种策略。
(一)问题解决基本概述
定势对问题解决影响的实验材料
定势对问题解决影响的实验
陆钦斯(Luchins,1942)在一个实验中,要求 被试用大小不同的容器量出一定量的水,用数 字进行计算。实验分两组,实验组从第1题做 到第8题,控制组只做6,7,8三题。结果实验 组在解1-8题时,大多用B-A-2C的方法进行 计算,称间接法。而控制组在解7,8题时,采 用了简便的计算方式:A-C或A+C,称为直接 法。这说明实验组在做7,8题时,受到了前面 定势的影响,只有19%的人不受影响,而采用 了直接法。
教育心理学第09章问题解决与创造性
第九章问题解决与创造性第一节问题解决概述问题解决是高级形式的学习活动。
加涅认为:“教育课程的重要的最终目标就是教学生解决问题——数学和物理问题、健康问题、社会问题以及个人适应性问题。
”事实上我们每个人都是问题的解决者。
人类的文明史,从火的发明到宇宙飞船上天,就是一部问题解决史。
教学生解决问题的技能,显然是课堂学习的一个重要的中心内容。
一、问题解决的含义(一)问题1.什么是问题在日常生活和工作中,人们随时都会遇到各种各样的问题,并不断地去解决它们。
要详细了解问题解决的过程,首先应了解到底什么是问题。
从认知心理学的观点来看,人们把问题定义为:给定信息和要达到的目标之间有某些障碍需要被克服的刺激情境。
其实就是个体不能用已有的知识经验直接处理当前所遇到的疑难情境。
也就是难题。
事实上,任何问题都必然含有四个基本的成分。
一是目的,即在某种情境下想要干什么。
一种情境可能有许多目的,也可能只有一种目的;目的可能很明确,也可能很模糊。
教学情境中的大多数问题目的是相当明确的。
二是个体已有的知识,这是指个体在问题情境一开始就已具备的知识技能。
三是存在的障碍,即解决问题的过程中遇到的种种需解决的因素。
四是解决的方法,个体可以用来解决问题的程序和步骤。
在问题解决的过程中,人们选择的方法常常会受到多种因素的制约,比如能力、知识、工具等。
另外,某一情境或事件是否成为问题,取决于个体主观的认知与感受,对缺乏某种知识经验的人可能是问题,而对知识经验丰富的人则未必是问题;对勤于思考、善于钻研的人是问题,对满足现状、不思进取者则未必是问题。
2.问题的分类现实生活中的问题是多种多样的,研究者倾向于把问题分为两类。
(1)有结构的问题。
已有的知识经验和目的都非常明确,个体只要按照一定的思维模式就呵获得问题的答案。
教科书上的练习题多属于有结构的问题。
(2)结构不良的问题。
已有的知识经验和目的都比较模糊,问题情境不明确、各种影响因素不确定,不易找出解答线索的问题。
问题的解决与创造性
第九章问题解决与创造性第一节问题解决概述一、问题解决的含义(一)问题问题是指给定信息和要达到的目标之间有某些障碍需要被克服的刺激情境。
研究者倾向于将问题分为两类:有结构的问题或界定清晰的问题与无结构的问题或界定含糊的问题。
(二)问题解决问题解决是指个人应用一系列的认知操作,从问题的起始状态到达目标状态的过程。
问题解决有下面几个基本特点:1.目的性2.认知性3.序列性二、问题解决的过程可以将问题解决的过程分为发现问题、理解问题、提出假设和检验假设四个阶段。
(一)发现问题(二)理解问题理解问题就是把握问题的性质和关键信息,摈弃无关因素,并在头脑中形成有关问题的初步印象,即形成问题的表征。
(三)提出假设提出假设就是提出解决问题的可能途径与方案,选择恰当的解决问题的操作步骤。
常用的方式主要有两种:算法式和启发式。
(四)检验假设检验假设就是通过一定的方法来确定假设是否合乎实际、是否符合科学原理。
检验假设的方法有两种:一是直接检验,二是间接检验。
三、影响问题解决的重要因素(一)问题的特征(二)已有的知识经验(三)定势与功能固着功能固着也可以看作是一种定势,即从物体通常的功能的角度来考虑问题的定势。
个体的智力水平、性格特征、情绪状态、认知风格和世界观等个性心理特性也制约着问题解决的方向和效果。
四、提高问题解决能力的教学在学校情境中,大部分问题解决是通过解决各个学科中的具体问题来体现的,这也意味着结合具体的学科教学来培养解决问题的能力是必要的,也是可行的。
具体可从以下几个方面着手。
(一)提高学生知识储备的数量与质量1.帮助学生牢固地记忆知识2.提供多种变式,促进知识的概括3.重视知识间的联系,建立网络化结构(二)教授与训练解决问题的方法和策略1.结合具体学科,教授思维方法2.外化思路,进行显性教学(三)提供多种练习的机会(四)培养思考问题的习惯1.鼓励学生主动发现问题2.鼓励学生多角度提出假设3.鼓励自我评价与反思第二节创造性及其培养一、创造性及其特征(一)创造性的含义创造性是指个体产生新奇独特的、有社会价值的产品的能力或特性。
问题解决与创造性培养教案
第八章问题解决与创造性培养第一节问题解决的概述一、问题与问题解决(一)问题1.含义问题是给定信息和目标之间有某些障碍需要被克服的刺激情境。
2.问题构成(1)给定信息:指有关问题初始状态的一系列描述;(2)目标:有关问题结果状态的描述;(3)障碍:在解决问题的过程中会遇到的种种需待解决的因素。
2.问题分类(1)定义明确的问题和定义不明确的问题(2)结构良好问题和结构不良问题支A.结构良好问题:具有明确的初始状态、目标状态以及解决方法的问题。
B.结构不良问题:没有明确初始状态或目标状态或解决方法的问题。
__________比较纬度结构良好问题结构不良问题问题条件/数据全部呈现部分呈现或冗余答案标准、唯一、确定多样开放,没有答案解决方案唯一的、规定性的多种方案涉及概念、规则、原理及组织常规的、经过良好组织不明确的学科单一跨学科目标界定清晰、确定模糊、不清晰评价标准单一多样化与真实生活的联系无联系来自真实的生活情境解决方法熟悉的、确定的、唯一不熟悉的、多样化的(二)问题解决1.问题解决的定义:问题解决的结果是形成一个新的解答,即超越过去所学规则的简单应用而产生一个解决方案。
(邵瑞珍,1988)根据问题的定义,所谓问题解决,是指问题解决者面临问题情境而没有现成方法可以利用时,将已知情境转化为目标情境的认知过程。
(皮连生,1996)任何受目标指引的认知操作序列。
问题解决的三个特征:目标指引性,操作序列,认知性操作。
(李伯黍,燕国材)★问题解决:由一定的问题情境引起,经过一系列具有目标指向性的认知操作,使问题得以解决的心理过程。
2.问题解决的分类A.创造性问题解决:需要开发出新步骤的问题解决。
8.常规性问题解决:使用现成步骤的问题解决。
二、问题解决的过程(一)问题解决是试误过程(桑代克)经典实验:桑代克的迷笼实验1.行为主义:刺激情境与适当反应之间的联结2.联结的形成:一系列盲目的操作,不断尝试错误,发现解决问题的办法,形成联结后,不断巩固这种联结,直到出现类似情境立即解决问题3.评价:①重视问题解决的过程和系列操作②但是由于是盲目操作,忽视了认知因素在问题解决中的作用。
创造性思维与问题解决
创造性思维与问题解决创造性思维与问题解决是一种重要而独特的思维方式和能力,其在现代社会中的重要性日益凸显。
创造性思维可以帮助我们发现问题、提出解决方案,并引导我们跳出传统思维的框框,从而在面对各种挑战时能够找到创新和独特的解决方法。
本文将从创造性思维的定义、特点以及在问题解决中的应用等方面进行阐述,以期更深入地理解创造性思维与问题解决的关系。
一、创造性思维的定义与特点创造性思维是指一种能够产生新颖、有意义和符合实际的想法和观点的思维方式。
与常规思维相比,创造性思维更为开放、灵活,并具有以下几个特点:1.非传统性:创造性思维超越传统思维的禁锢,不受框架限制,能够找到更多可能的解决方案。
2.联想性:创造性思维能够将看似独立的事物联系起来,创造出新的组合和关联,形成有力的创新。
3.风险承受能力:创造性思维鼓励尝试和冒险,对风险有一定的承受能力,不畏惧失败,从失败中吸取经验教训。
4.自由度与多样性:创造性思维追求自由度和多样性,不拘泥于常规与传统,能够勇于突破思维的条条框框。
二、创造性思维在问题解决中扮演着重要的角色。
传统思维常常困在一种模式中,对问题的理解和解决方式比较固化,而创造性思维能够突破这种思维的限制,创造出新的视角和解决方案。
下面将结合几个实际例子,探讨创造性思维如何应用于问题解决。
1.创造性思维推动科学创新科学研究需要创造性思维来突破现有的认识和观念,从而发现新的科学规律和解决方法。
例如,美国科学家罗伯特·诺伊斯在研究化学反应过程中,遇到了一个难题,无法解释某个观察结果。
然而,他没有束手无策,而是把问题转化为“如何才能重现这个观察结果”,并使用了一种非常规的实验方法。
最终,他发现了一种新型反应机理,填补了该领域的研究空白。
2.创造性思维激发商业创新在商业领域,创造性思维也发挥着重要的作用。
有时候,企业会面临市场需求的逐渐下滑以及竞争压力的增加。
这个时候就需要创造性思维来找到新的商业模式和创新的产品或服务。
问题解决与创造性_教育心理学第八章
学习动机对学习的影响
(一)学习动机的作用 动机主要有激发行为、为行为定向和维持行为三种作用,学习动机亦是如此。 首先,学习动机能够激发起适当的学习行为。学习动机促使学生进入学习状态,自觉主 动地进行各种学习活动。 其次,学习动机能够为学习行为定向。学习动机促使学生有选择地进行各种学习活动, 使学习活动指向特定的学习目标。 再次,学习动机能够维持学习行为。 (二)学习动机与学习效果的关系 首先,学习动机使学习者具有明确的学习目标,知道自己为什么而学习,朝哪个方向努 力。 其次,学习动机使学习者积极主动并持之以恒地寻求有关的信息。 动机水平与学习效果之间的关系也并不是简单的直线关系。动机的强度适中,对学习具 有较适宜的促进作用,作业水平较高,学习效率也高;而动机水平较弱或过强,作业水平较 高,学习效率也高;而动机水平较弱或过强,作业水平则不高,学习效率也不高。耶基斯与 多德森的研究表明,达到最高作业水平的动机强度为动机的最佳水平。 三、学习动机的分类 最常用的一种分类是根据学习活动的目标。将动机分为内在动机和外来动机。 内在动机指由学习活动本身作为学习的目标而产生的学习动力,即学习活动自身成为学 生的学习目标,学生在学习过程中获得满足,表现出强烈的求知欲并感受到学习的乐趣。 外来动机指由学习结果或学习活动以外的因素作为学习目标而产生的学习动力,即学习 的目标由学习的结果和意义,学习只是达到目标的手段。
创造性的培养 (一)创造性培养的基本原则(1)协同性 原则(2)主体性原则(3)活动性原则(4) 整体性原则(5)兴趣性原则 (二)创造 性培养的内容及方法1.创造意识的培养与 创造性教育2.创造人格的培养3.创造性 思维的培养(1)头脑风暴法(2)直觉思 维训练与头脑体操法4.创造方法的培养 (1)类比模拟法(2)聚焦发明法的训练 (3)设问探究法(4)列举法(5)移植法 (6)逆向求索法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题表征阶段有两个主要的结局: 第一,如果你对问题的表征,能使你联想起 一个即时的顿悟式的解决方案,那你就能解 决这一个问题了。 第二种,如果并没有一个现存的图式能使你 联想起一个即时的解答,你就得遵循寻求解 答的路线。很明显,这条路径并不如前面那 条途径有效,但有时,这是一条唯一的路。
(二)寻求解答阶段
(3)爬 山 法
爬山法的基本思想是设立一个目标,然后选取与起 始点邻近的未被访问的任一节点,向目标方向运动, 逐步逼近目标。这就像爬山一样,如果在山脚下,要 想爬到山顶,就得一点~点地往上走,一直走到最高 点。有时先得爬上矮山顶,然后再下来,重新爬上最 高的山顶。因此,爬山法只能保证爬到眼前山上的最 高点,而不~定是真正的最高点。爬山法在我们日常 生活中是有用的方法,不少实际的问题是靠这种方法 解决的。
二、问题解决的理论和模式
(一)试误说
问题解决过程首先要通过一系列的盲目的操作,不断地尝 试错误,发现一种问题解决的方法,即形成刺激情景与反应的 联络,然后再不断重复巩固这种联结,直到能立即解决问题 (二)顿悟说 认为人遇到问题时,会重组问题情景的当前结构,以弥补 问题的缺口,达到新的完形,从而联想起一种可行的解决方案。 这一过程的突出特点是顿悟,即对问题情景的突然领悟。 (三)信息加工论模式 信息加工论者把问题解决看作是信息加工系统(即大脑或 计算机)对信息的加工,把最初的信息转换成最终状态的信息。 (四)现代认知派的模式
四、问题解决的策略
(一)算法式策略 算法式策略是指对一个问题解决的所有可能途径都 加以尝试的一种策略,例如,要开一个四位数的密码 锁(每位数字号0至9),就要进行104次尝试。 (二)启发式策略 启发式策略是凭借经验来解决问题的一种策略。用 启发式策略解决问题,并不探索所有可能途径,仅仅 对经验中认定的最有可能成功解决问题的途径进行探 索。 。这一策略的优点是能提高问题解决的效率,缺 点是,如果受到已有经验的误导,走了错误的途径, 往往导致解决问题的失败。
(四)评价结果阶段
当你选择并完成某个解决方案之后,你还应该对 结果进行评价。评价结果的方法之一,就是寻找能够 证实或证伪这种解答的证据,对解答进行核查。 例如这样一个问题: 有3个人一起下象棋,每人下了2盘,问总共下了几 盘棋? 有的人脱口而出:6盘,这个答案适合3个人与其他 人下棋,不适于3人之间下棋。只要核查,马上就发现 解答有错误。 在解决数学问题时,常常采用验算的方法来评价解 答。
(2)逆向反推法
应用反推法,从目标开始,退回到未解决的最初的问 题,这种方法对解决几何证明题有时非常有效。
例如,已知下图中的ABCD是一个长方形, 证明AD=BC.
从目标出发,进行反推时,学生会问: “如何才能证明A D与BC相等?如果我能 证明三角形ACD与BDC全等,那么就能证 明AD等干BC。”下一步的推理就是“如 果我能证明两边和一个夹角相等,那么就 能证明三角形ACD和三角形BDC全等。” 这样,学生从一个子目标出发反推到另一 个子目标。主要的启发式策略Fra bibliotek如下三种
1、手段一目标分析策略。将目标划分成许多子目标,将问题 划分成许多子问题,寻找解决每一个子问题的手段。这种策略 的核心是发现问题的当前状态与目标状态之间的差别,并采用 一定的步骤来缩小这种差别,最终使问题得到解决。
2.爬山法策略。这种策略的名称是一个形象的比喻。即在问 题解决的过程中,假定的目标是山顶。人们不可能一下子爬到 山顶。在探索达到山顶的路径时,只要遇到有岔道,我们就看 几条岔道中哪一个是向山上延伸的(而不是向山腰或山下延伸) 就选择哪一条道路。这种策略也称为局部最优选择法。 3.反推法策略。这种策略适合于解决那些从起始状态出发可 以有多种走法,但是只有一条路能够达到目标状态的问题。这 种策略常用于解决几何问题。
对于许多问题,图形表征是更为有效的方法。例如: “有甲、乙、 丙、丁四个村庄在 一条直线上。从甲庄到丁庄的距离是64000米, 从乙庄到丙庄的距离是16000米、现有小明和张华两个人自甲、丁 两庄同时出发,相对而行,小明每小时走3000米,张华每小时走 2OOO米。当小明走到丙庄时,张华刚好走到乙庄。问他们各走了 多少路”这道题对已学过相向而行相遇的问题的学生来说,构成了 问题情 境。而该题的问题情景命题很多。已知和未知条件不易把握。
表征问题的第二个任务是集中问题的所有句子达成对整个 问题的准确理解。我们来看这样一个例子: 两个火车站相距50千米,某个周六下午2:OO,两列火 车分别从两站相向而行,正当火车驶出车站时,有一只鸟 从第一列火车出发飞向第二列火车,到达第二列火车后, 又飞回第一列火车,如此反复,直到两车相遇,如果两列 火车的速度都为每小时12.5千米,小鸟的飞 行速度为每小 时50千米,请问在两车相遇之前,小鸟飞行了多少千米?
(三)信息加工理论模式
2 4 1 . 6 8 1 8 7 2 . 6 3 4 5
7
5
3
中间状态
初 始 状 态
目 的 状 态
1、奥苏贝尔等人的模式
2、格拉斯的模式
3、基克等人的模式
现代认知派的模式
从以上三种模式可见,现代认知派模式基 本上都认为,问题解决就是把问题划分成诸成 分,从记忆中激活旧有的信息,或寻找新的信 息。如果失败了,就可能退回到最初的问题, 另找方法,或重新定义问题或寻求解决问题的 方法。这种问题解决不是线性的,问题解决者 可能跳来跳去,跨步或联合一些步骤。
三、解决问题的过程
(一)理解和表征问题阶段 解决问题的第一步是确定问题到底是什么。这意昧着首先找出 相关信息而忽略无关的细节 。 在抽屉里有黑色和棕色两种短袜混在一起,黑裤和棕袜数量之 比为为4:5,请问:为了得到一双相同颜色的短袜,你要从抽 屉最多中取出多少只短袜来? 除了能识别问题的相关信息外,你还必须准确地表征问题。要 成功地表征习题就要完成两个任务。第一个是语言理解,理解 问题中每一个句子的含义 。 小船在静水中每小时比在流水中快64米。 这是一个关系命题,它描述了两种速度之间的关系 。 糖的价格是每千克 15元。 这是一个指定命题,它只指明了某种东西的价格,即一个单位 糖的价格。
1.算法式 一个算法就是为达到某一个目标或解决某个问题而采 取的一步一步的程序。它常与某一个特定的课题领域 相联系。在解决某一个问题时,如果你选择的算法合 适,并且你又能正确地完成这种算法,那么保证你能 获得一个正确的答案。在实际教学中,这样的例子屡 见不鲜,如做一位大数目除法。36748599/11,你只要 仔细地按照乘一减的算法,反复地做下去,就能获得 最终的解 。
2启发式 所谓启发式就是使用一般的策略试图去解决问题。这种 一般的策略可能会导致一个正确的答案。例如,在解上面 连加题时(1+2+3+4+5+……+10000=?),就可以 根据其特点,转换成加乘除法(l+10000) X(10000/ 2 )进行简便计算。 (1)手段目的分析法:将目标划分成许多子目标,将 问题划分成许多子问题,寻找解决每一个子问题的手段。 例如,写一篇20页的论文对某些学生而言是十分头痛的问 题,但如果将这个任务划分成几个子任务如选题、查找信 息资料、阅读和组织信息、指定大纲等等,他们就可能表 现得好一些。
(l)从下图条件中能得出什么结论? (2)根据下图中的 条件求证:BD=CD (9.1) BE=CE(9.2)
第一题不构成问题,这只是将已知的定理直接运用于新的 情景。第二题才构成问题,因为要转换和组合已知的定理, 才能达到既定的目的
解决问题都具有一些共同的特点
①解决问题是解决新的问题,即所遇到的问题是初次遇到的 问题。 ②在解决问题中,要把掌握的简单规则(包括概念)重新组 合,以适用于当前问题。因此,原先习得的简单规则,是解决 问题过程中的思维的素材。 ③问题一旦解决,人的能力或倾向随之发生变化。在解决问 题中产生的高级规则(已有规则的组合)贮存下来构成学生 “知识宝库”(认知结构)中的一个组成部分,以后遇到同类 情景时,借助回忆即可作出回答而不再视为问题了。所以解决 问题是更为高级的一种学习活动。
第一步 求出小鸟在火车相遇之前飞行的时间(实际上是火车相遇 前行驶的时间) 小鸟飞行时间= 两站距离÷(第一列火车的速度十第二列火车 的速度 = 50÷(12.5+12. 5)= 2(小时) 第二步 求出小鸟在两车相遇前飞行的距离 飞行距离= 小鸟飞行速度×小鸟飞行时间 = 50×2= 100(千米)
(二)问题解决
已知这样三个定理: 1.如果两个三角形的两条边及其夹角对应 相等,那么这两个三角形全等。 2.如果两个三角形全等,那么这两个三角 形的所有对应的边和角都相等。 3. 三角形中两边相等,那么它们所对应的角 也相等。 现在求证这样两题: (l)从下图条件中能得出什么结论? (2)根 据 下 图 中 的 条 件 求 证 : BD=CD (9.1) BE=CE(9.2)
在解决包含这两种命题的问题时,你一定要弄清每个
句子告诉了你什么。有些句子可能比另一些句子要难。有
研究表明,关系命题比指定命题难于理解和记忆。在一个 研究中,学生复述关系命题的错误是指定命题的三倍。有 些学生将关系命题转换成了指定命题,如将“小船在静水 中的速度比在流水中每小时快64米”记成了“小船在静水 中的速度为每小时6千米”。一旦误解了问题中每个句子 的含义,你就很难正确地表征整个问题。
第六章 问题解决和创造性
第一节 问题解决 一、问题解决的性质 (一)问题
不管是简单还是复杂,持续的时间长还是短,每一 个问题都必然包含四种成分:①目的。即在某种情景 下想要干什么。一种情景可能有许多目的,也可能只 有一种目的;目的可能很明确,也可能很模糊。教学 情景中的大多数问题目的是相当明确的。②个体已有 的知识。这是指个体在问题情景一开始,就已具备的知 识技能。已有知识因人因事而异。③障碍。指在解决 问题的过程中会遇到的种种需解决的因素,障碍是否 明确,因人因事而异。④方法。指个体可以用来解决 问题的程序和步骤。在问题解决的过程中,可以使用 的方法常常会受到某些方面的限制,如资金、工具等。