功能材料课程论文
功能材料课程教学改革与实践论文
功能材料课程教学改革与实践论文功能材料课程教学改革与实践论文摘要:成果导向是一种以学生学习成果为导向的教育理念,对工程教育认证的实施具有重要意义。
本文在工程教育认证背景下,探索性地将成果导向理念引入到功能材料的课程建设体系中。
充分以学生为中心,以教学成果为导向,从教学理念的定位、授课内容的选取和教学形式的安排等方面进行探索和实践。
引入实例教学、翻转课堂和企业导师制多模式教学方式,提高学生学习的积极性和主动性,以促进功能材料课程教学质量的提高和学生综合水平的培养。
关键词:功能材料;成果导向;工程认证;教学改革1引言随着我国经济的飞速发展,社会对人才的需求程度越来越高。
自我国加入“华盛顿协议”成为协议签订成员开始,工程教育专业认证的帷幕正式拉起,这也预示着我国高等教育人才的培养逐渐向国际标准接轨。
所谓工程教育认证,是实现工程学位国际互认和工程师资格国际互认的重要基础[1]。
工程教育认证的开展,必须遵循三个基本理念:成果导向(OutcomeBasedEducation,OBE)、以学生为中心、持续改进。
这些理念对促进专业建设与教学改革、保障和提高工程教育人才培养质量至关重要[2]。
其中,OBE已成为英国、美国、加拿大等先进国家教育改革的主流理念,并成功应用于工程教育专业认证方面。
因此,用OBE理念来引导我国工程教育的改革,具有重要的现实指导意义。
功能材料是指具有优异的热学、电学、磁学、光学、化学和生物学等性质及其相互转化的功能,用于非承载目的之先进材料[3,4]。
随着科学技术的发展,材料、能源和信息成为当代社会文明和国民经济的三大支柱,而功能材料是未来材料的主要发展方向。
因此,功能材料在近数十年得到了高度重视,功能材料的种类和应用范围越来越广,极大程度地影响着人类的生活和社会的发展。
功能材料课程是学生了解当今各类先进功能材料的一门基础课程,该课程以材料的功能性为主线,围绕不同种类功能材料的基本原理、特点和应用,阐述了功能材料的研究现状和发展趋势。
功能材料论文
功能材料论文
功能材料是指具有一定性能和特性,能够满足特定需求的材料。
在现代科技发展的大背景下,功能材料得到了广泛的应用和研究。
本文将从功能材料的定义、分类、应用以及发展前景等方面进行阐述。
首先,功能材料是指具有特殊功能和性能的材料。
功能材料可以根据其性能和用途分类,常见的功能材料包括光电材料、磁性材料、超导材料、催化材料等。
这些材料在光电器件、磁性存储、超导电性、催化反应等方面都有广泛的应用。
其次,功能材料在各个领域有着重要的应用。
例如,光电材料广泛应用于太阳能电池、光电二极管、液晶显示器等;磁性材料在信号处理、磁存储、传感器等方面有着重要的应用;超导材料在电能传输、磁共振成像、能源储存等方面有着巨大的潜力;催化材料可以加速化学反应速率,广泛应用于催化剂、汽车尾气净化等领域。
这些功能材料的应用对于提高能源利用效率、改善环境、推动科技进步都具有重要意义。
最后,功能材料具有广阔的发展前景。
随着科技的不断进步和需求的增长,对于功能材料的研究和应用也将不断提高和扩展。
例如,新型光电材料的研发将有助于提高光电器件的效率和稳定性,推动太阳能行业的发展;磁性材料在数据存储、信息通信等领域的需求不断增长,对材料性能的要求也越来越高;超导材料的应用前景非常广阔,可以推动能源领域的革命性变革;催化材料的研究和应用也有着巨大的潜力,在化学工业、环境治理等方面发挥更大的作用。
总之,功能材料具有特殊功能和性能,在各个领域有广泛的应用和重要的意义。
随着科技的不断进步和需求的增长,功能材料的研究和应用也将不断提高和扩展。
相信在未来的发展中,功能材料将为人类社会的发展做出更大的贡献。
功能材料论文
功能材料——蚕丝蛋白蚕丝蛋白(Fibroin)又名:丝素蛋白。
丝素蛋白,是从蚕丝中提取的天然高分子纤维蛋白,含量约占蚕丝的70%~80%,含有18种氨基酸,其中甘氨酸(gly)、丙氨酸(ala)和丝氨酸(ser)约占总组成的80%以上。
丝素本身具有良好的机械性能和理化性质,如良好的柔韧性和抗拉伸强度、透气透湿性、缓释性等,而且经过不同处理可以得到不同的形态,如纤维、溶液、粉、膜以及凝胶等。
蚕丝蛋白纤维是一种新型的功能性纤维,具有其它纤维及加工品无生物可替代的独特性能和无可比拟的旺盛生命力。
经过染织而成的各种色彩绚丽的蚕丝蛋白面料,更易缝制加工成各类高级成衣及运用于高档家纺市场。
蚕丝蛋白纤维所具有的特别功效有以下五点:第一,舒适感。
蚕丝蛋白纤维与人体有极好的生物相容性,加之表面光滑,手感柔软,其对人体的摩擦刺激系数较其他各类纤维要低的多。
因此,当我们的娇嫩肌肤与滑爽细腻的蚕丝蛋白纤维邂逅时,它以其特有的柔顺质感,依着人体的曲线,体贴而又安全地呵护着我们的每一寸肌肤。
第二,吸、放湿性好。
蚕丝蛋白纤维富集了许多胺基(-CHNH)、氨基(-NH2)等亲水性基团,又由于其多孔性,易于水分子扩散,所以它能在空气中吸收水分或散发水分,并保持一定的水分。
在正常气温下,它可以帮助皮肤保有一定的水分,不使皮肤过于干燥;在夏季穿着,又可将人体排出的汗水及热量迅速散发,使人感到凉爽无比。
正是由于这种性能,使蚕丝蛋白纤维更适合于与人体皮肤直接接触。
第三,光泽度好。
蚕丝蛋白纤维中含有的蚕丝蛋白,是从蚕儿吐出的雪白的蚕丝中提取,为纯天然产品,织成的面料含有丝般光泽,穿上之后光彩照人。
第四,抗紫外线,热晒牢度好。
蚕丝蛋白中的色氨酸、酪氨酸能吸收紫外线,因此蚕丝蛋白纤维具有较好的抗紫外线功能。
而由于载体是粘胶纤维,以及研发过程中的采用的一些高新技术使得蚕丝蛋白纤维在抗紫外线的前提下,热晒牢度较好,不会因为热晒而掉色,使面料颜色发生改变,从而降低美观效果。
功能材料在机械工程中的应用(论文)
机械工程材料课程论文功能材料在机械工程中的应用作者: 车辕摘要:功能材料是指具有特殊的电、磁、光、热、声、力、化学性能生物性能及其相互转化的功能,不是被用于结构目的,而是用已实现对信息和能量的感受、计测、显示、控制和转换位主要目的的高新材料。
功能材料是现代高新技术发展的先导和基础,是21世纪重点开发和应用的新型材料。
其在汽车上的应用也是显而易见的。
关键词:散热快耐高温高寿命Abstract: Functional material means of a special electricity, magnetic, light, heat, sound, power, chemical weapons and biological weapons mutual transformation function is not being used for structural purposes, but has been used to achieve energy information and feelings, or measuring, display, control and conversion spaces main purpose of the high material. Functional materials is a modern high-tech development and pilot basis, the focus is the development and application of 21 new materials. Its application in the car is obvious.Keyword: Heat release soon Withstand high temperatures High life 在没有学《机械工程材料》这门课程之前,我总是觉得这材料吗无非不就是些钢或是铁什么的,用当初弱智的想法总认为这门课没有多大意思,可是这个想法在上过课后可以说是彻彻底底的改变了,其实说为"改变"太轻了,应该说是"醒悟",为什么会这么说呢?想想这么多年来,自己总以为自己对汽车稍有些了解,正是因为这才报了汽车这专业,可是到头来,咱连钢和铁都没分得清,真是惭愧啊!难道这只是一个观念上的"改变"就行了吗?回答肯定是不行,观念的改变只是个表面现象,而真正让人得到是什么啊,是教训,是什么教训,是让一个人了解自我认识自我的教训,让自己知道了自己到底缺什么到底应该学些什么,这才是此教训的最终目的,之所以这样,我才叫这样的感想叫“醒悟”。
光电功能材料(王春雷)课程论文
目录目录 (2)原子力显微镜的基本原理和应用实例 (3)一、基于STM概念上的AFM的发展概述 (3)二、AFM的工作原理和工作模式 (3)(1) AFM的工作原理 (3)(2) AFM的工作模式 (4)(3) AFM中针尖与样品之间的作用力 (5)三、AFM在材料分析领域的应用 (6)(1) 高分子结晶形态观察 (6)(2) 非晶态单链高分子结构观察 (7)四、小结 (8)参考文献 (9)附录: (10)Imaging of Dynamic Viscoelastic Properties of a Phase-Separated Polymer Surface by Forced Oscillation Atomic Force Microscopy (10)原子力显微镜及其应用 (13)原子力显微镜在高分子领域的应用 (18)原子力显微镜的基本原理和应用实例14119X 某人摘要:本文简要介绍了原子力显微镜的发展,阐述了原子力显微镜的工作原理、工作模式及工作中针尖与样品之间的作用力,并对其在高分子结晶形态观察和非晶态单链高分子结构观察这两个领域的应用作了综述。
关键字:原子力显微镜,针尖,高分子结晶,非单链高分子一、基于STM概念上的AFM的发展概述在当今的科学技术中,如何观察、测量、分析尺寸小于可见光波长的物体,是一个重要的研究方向.1933年德国Ruska和Knoll研制了第一台电子显微镜.继后,许多用于表面结构分析的现代仪器问世.如透射电子显微镜(TEM)、扫描电子显微镜(SEM)、场离子显微镜(FIM)、俄歇电子能谱仪(AES)、光电子能谱(ESCA)等,但是多数技术都无法真正地直接观测物体的微观世界.1982年, Gerd Binnig和Heinrich Rohrer在IBM公司苏黎世实验室共同研制成功了第一台扫描隧道显微镜(scanning tunneling microscope, STM)[1],使人们首次能够真正实时地观察到单个原子在物体表面的排列方式和与表面电子行为有关的物理、化学性质[2]. STM的工作原理是基于量子理论中的隧道效应.将原子线度的极细探针和被研究的样品的表面作为两个电极,当样品的表面与探针针尖的距离非常近时(一般小于1nm),在外加电场作用下,电子会穿过两个电子之间的势垒流向另一电极,从而产生隧道效应.STM的探针是由针尖与样品之间的隧道电流的变化决定的,因此STM要求样品表面能够导电,从而使得STM只能直接观察导体和半导体的表面结构.对于非导电的物质则要求样品覆盖一层导电薄膜,但导电薄膜的粒度和均匀性难以保证,且导电薄膜掩盖了物质表面的细节.为了克服STM的不足之处, Binnig, Quate和Gerber决定用微悬臂作为力信号的传播媒介,把微悬臂放在样品和STM的针尖之间,于1986年推出了原子力显微镜(atomic force microscope, AFM)[3] .AFM是通过探针与被测样品之间微弱的相互作用力(原子力)来获得物质表面形貌的信息.因此,AFM除导电样品外,还能够观测到非导电样品的表面结构,且不需要用导电薄膜覆盖,其应用领域将更为广阔. 它得到的是对应于样品表面总电子密度的形貌,可以补充STM对样品观测得到的信息,且分辨率亦可达原子级水平[4].正如Binnig在研制出AFM之初时所指出的那样:”该仪器能测出小到单个原子间的相互作用力,若在低温条件下,甚至能检测10-18 N的微小作用力”[5].1988年,国外开始对AFM进行改进,研制出了激光检测原子力显微镜(Laser-AFM)[6-8].我国中国科学院化学所白春礼等人在1988年初成功地研制了国内第一台集计算机控制、数据分析和图像处理系统于一体的扫描隧道显微镜(STM).在同年底又研制出我国第一台原子力显微镜(AFM),其性能一下子就达到原子级分辨率.后来又在已有的STM和AFM的基础上[9,10],成功地研制出国内首台全自动Laser-AFM[11],其横向分辨率为0.13nm.以STM和AFM为基础,衍生出了一系列的扫描探针显微镜(scanning probe microscope, SPM),有激光力显微镜(LFM)、磁力显微镜(MFM)、扫描电化学显微镜(SECM)、近光光学显微镜(SNOM)、弹道电子发射显微镜(BEEM)、扫描离子电导显微镜(SICM)等.扫描探针显微镜(SPM)标志着对物质表面在纳米级上成像和分析的一个新技术领域的诞生,必将为纳米技术的发展注入新的活力.二、AFM的工作原理和工作模式(1)AFM的工作原理AFM的工作原理结构示意图见图1.图1 AFM工作原理在AFM中用一个安装在对微弱力极敏感的微悬臂上的极细探针代替STM中的简单的金属极细探针.当探针与样品接触时,由于它们原子之间存在极微弱的作用力(吸引或排斥力),引起微悬臂偏转.扫描时控制这种作用力恒定,带针尖的微悬臂将对应于原子间作用力的等位面,在垂直于样品表面方向上起伏运动,通过光电检测系统(通常利用光学、电容或隧道电流方法)对微悬臂的偏转进行扫描,测得微悬臂对应于扫描各点的位置变化,将信号放大与转换从而得到样品表面原子级的三维立体形貌图像.AFM的核心部件是力的传感器件,包括微悬臂(Cantilever)和固定于其一端的针尖.根据物理学原理,施加到Cantilever末端力的表达式为[12]F=KΔZ式中, ΔZ表示针尖相对于试样间的距离,K为Cantilever的弹性系数.力的变化均可以通过Cantilever被检测.根据力的检测方法,AFM可以分成两类:一类是检测探针的位移;另一类是检测探针的角度变化[3,7].由于后者在Z方向上的位移是通过驱动探针来自动跟踪样品表面形状,因此受到样品的重量及形状大小的限制比前者小.微悬臂和针尖是决定AFM灵敏度的核心.为了能够准确地反映出样品表面与针尖之间微弱的相互作用力的变化,得到更真实的样品表面形貌,提高AFM的灵敏度,微悬臂的设计通常要求满足下述条件:1、较低的力学弹性系数,使很小的力就可以产生可观测的位移; 2、较高的力学共振频率;3、高的横向刚性,针尖与样品表面的摩擦不会使它发生弯曲;4、微悬臂长度尽可能短;5、微悬臂带有能够通过光学、电容或隧道电流方法检测其动态位移的镜子或电极;6、针尖尽可能尖锐.AFM仪器的发展,也可以说是微悬臂和针尖不断改进的过程.一般AFM采用微机机械加工技术制作的硅、氧化硅及氮化硅(Si3N4)微悬臂.但近年来,日、美等国相继展开了把压电微悬臂代替普通微悬臂用于AFM的研究,取得了很好的效果.我国在这方面的工作也得到了重视.(2)AFM的工作模式AFM有三种不同的工作模式:接触模式(contact mode)、非接触模式(noncontact mode)和共振模式或轻敲模式(Tapping Mode).1、接触模式接触模式包括恒力模式(constant-force mode)和恒高模式(constant-height mode).在恒力模式中,通过反馈线圈调节微悬臂的偏转程度不变,从而保证样品与针尖之间的作用力恒定,当沿x、y方向扫描时,记录Z方向上扫描器的移动情况来得到样品的表面轮廓形貌图像.这种模式由于可以通过改变样品的上下高度来调节针尖与样品表面之间的距离,这样样品的高度值较准确,适用于物质的表面分析.在恒高模式中,保持样品与针尖的相对高度不变,直接测量出微悬臂的偏转情况,即扫描器在z方向上的移动情况来获得图像.这种模式对样品高度的变化较为敏感,可实现样品的快速扫描,适用于分子、原子的图像的观察.接触模式的特点是探针与样品表面紧密接触并在表面上滑动.针尖与样品之间的相互作用力是两者相接触原子间的排斥力,约为10-8~10-11N.接触模式通常就是靠这种排斥力来获得稳定、高分辨样品表面形貌图像.但由于针尖在样品表面上滑动及样品表面与针尖的粘附力,可能使得针尖受到损害,样品产生变形,故对不易变形的低弹性样品存在缺点.2、非接触模式非接触模式是探针针尖始终不与样品表面接触,在样品表面上方5~20nm距离内扫描.针尖与样品之间的距离是通过保持微悬臂共振频率或振幅恒定来控制的.在这种模式中,样品与针尖之间的相互作用力是吸引力(((范德华力.由于吸引力小于排斥力,故灵敏度比接触模式高,但分辨率比接触模式低.非接触模式不适用于在液体中成像.3、轻敲模式在轻敲模式中,通过调制压电陶瓷驱动器使带针尖的微悬臂以某一高频的共振频率和0.01~1nm的振幅在Z方向上共振,而微悬臂的共振频率可通过氟化橡胶减振器来改变.同时反馈系统通过调整样品与针尖间距来控制微悬臂振幅与相位,记录样品的上下移动情况, 即在Z方向上扫描器的移动情况来获得图像.由于微悬臂的高频振动,使得针尖与样品之间频繁接触的时间相当短,针尖与样品可以接触,也可以不接触,且有足够的振幅来克服样品与针尖之间的粘附力.因此适用于柔软、易脆和粘附性较强的样品,且不对它们产生破坏.这种模式在高分子聚合物的结构研究和生物大分子的结构研究中应用广泛.(3)AFM中针尖与样品之间的作用力AFM检测的是微悬臂的偏移量,而此偏移量取决于样品与探针之间的相互作用力.其相互作用力主要是针尖最后一个原子和样品表面附近最后一个原子之间的作用力.当探针与样品之间的距离d较大(大于5nm)时,它们之间的相互作用力表现为范德华力(V an der Waals forces).可假设针尖是球状的,样品表面是平面的,则范德华力随1/d2变化.如果探针与样品表面相接触或它们之间的间距d小于0.3nm,则探针与样品之间的力表现为排斥力(Pauli exclusion forces).这种排斥力与d13成反比变化,比范德华力随d的变化大得多.探针与样品之间的相互作用力约为10-6~10-9N,在如此小的力作用下,探针可以探测原子,而不损坏样品表面的结构细节.样品与探针的作用力还有其他形式,如当样品与探针在液体介质中相接触时,往往在它们的表面有电荷,从而产生静电力;样品与针尖都有可能发生变形,这样样品与针尖之间有形变力;特定磁性材料的样品和探针可产生磁力作用;对另一些特定样品和探针,可能样品原子与探针原子之间存在相互的化学作用,而产生化学作用力.但在研究样品与探针之间的作用力的大小时,往往假设样品与探针特定的形状(如平面样品、球状探针),可对样品和探针精心设计与预处理,避免或忽略静电力、形变力、磁力、化学作用力等的影响,而只考虑范德华力和排斥力[13].(4)AFM的针尖技术探针是AFM的核心部件.目前,一般的探针式表面形貌测量仪垂直分辨率已达到0.1nm,而STM更高,达到0.01nm,因此足以检测出物质表面的微观形貌.但是,探针针尖曲率半径的大小将直接影响到测量的水平分辨率.Bustamante等人[14]指出,当样品的尺寸大小与探针针尖的曲率半径相当或更小时,会出现“扩宽效应”,即实际观测到的样品宽度偏大.这种误差来源于针尖边壁同样品的相互作用以及微悬臂受力变形[15,16].另外,Li等人[17]发现某些AFM图像的失真在于针尖受到污染.一般的机械触针为金刚石材料,其最小曲率半径约20nm.普通的AFM 探针材料是硅、氧化硅或氮化硅(Si3N4),其最小曲率半径可达10nm.由于可能存在”扩宽效应”,针尖技术的发展在AFM中非常重要.其一是发展制得更尖锐的探针,如用电子沉积法制得的探针,其针尖曲率半径在5~10nm之间[18].其二是对探针进行修饰,从而发展起针尖修饰技术.目前,用于AFM针尖修饰的技术[19]主要有:1、自组单分子膜修饰AFM针尖.这种化学修饰过的AFM针尖可用来定量测定基底与针尖自组膜的尾部基团之间的粘附力和摩擦力[20,21]. 2、生物分子修饰AFM针尖.Florin等人[22]用生物素修饰了AFM针尖,首先测量了单个配体/受体对之间的相互作用力.3、纳米碳管修饰AFM针尖.纳米碳管材料的研究是目前热门课题之一[23].纳米碳管具有非常适合于作为AFM针尖材料的物理、化学性质:良好的外形比例、尖端极小、良好的弹性、碳原子的反应多种多样(易于制功能化AFM针尖)等.Wong等人[24]用单层纳米碳管和多层纳米碳管修饰AFM针尖,它具有很高的空间分辨率,并通过化学反应进行胺基或羧基自组装膜,使针尖具有高度的化学敏感性.这种用纳米碳管修饰的针尖能用于单个配体/受体对之间相互作用、单个酸碱反应基团化学力滴定、化学力成像识别基底处的不同基团等的测量.这些针尖修饰技术在传统探测的物理量(力场、电场、磁场等)的基础上,引入了“化学场”,从而大大地提高和改善了AFM的空间分辨率和物质识别能力.探针针尖的几何物理特性制约着针尖的敏感性及样品图像的空间分辨率.因此针尖技术的发展有赖于对针尖进行能动的、功能化的分子水平的设计.只有设计出更尖锐、更功能化的探针,改善AFM的力调制成像(force modulation imaging)技术和相位成像(phase imaging)技术的成像环境,同时改进被测样品的制备方法,才能真正地提高样品表面形貌图像的质量.三、AFM在材料分析领域的应用AFM可以在真空、超高真空、气体、溶液、电化学环境、常温和低温等环境下工作,可供研究时选择适当的环境,其基底可以是云母、硅、高取向热解石墨、玻璃等。
功能材料论文
功能材料论文传统材料在功能材料领域中起着重要作用。
功能材料指的是具有特殊功能的材料,比如具有导电、发光、吸附等性质的材料。
传统材料在功能材料领域中的应用主要有两个方面的意义。
首先,传统材料是功能材料的重要基础。
许多功能材料的研制都需要依赖传统材料的基础。
例如,导电材料的研发离不开金属和导电聚合物材料的支撑。
发光材料的研究也需要传统材料来实现。
另外,许多功能材料的性能也需要传统材料来进行改进。
例如,通过改变传统材料的结构和组分,可以改变其导电性能、热传导性能等。
因此,传统材料在功能材料领域中起着不可替代的作用。
其次,传统材料在功能材料应用中具有很大的潜力。
传统材料具有成熟的制备工艺和丰富的应用经验,这使得其在功能材料领域中具有广泛的应用前景。
例如,金属材料具有良好的导电性能和机械性能,可以用于制备导电材料和传感器。
聚合物材料具有良好的可塑性和化学稳定性,可以用于制备各种功能材料,如吸附材料、膜材料等。
陶瓷材料具有优异的耐高温性能和化学稳定性,可以用于制备高温材料和催化剂等。
需要注意的是,传统材料在功能材料领域中的应用还存在一些问题。
一方面,传统材料的性能可能无法满足功能材料的要求。
例如,金属材料的导电性能可能无法满足高频电子器件的需求。
因此,研究人员需要对传统材料进行改进和优化,以提高其性能。
另一方面,传统材料的制备技术可能无法满足功能材料的需求。
例如,传统陶瓷制备工艺可能无法制备具有特殊孔结构的陶瓷材料。
因此,研究人员需要开发新的制备方法,以满足功能材料的特殊需求。
总之,传统材料在功能材料领域中具有重要的作用和潜力。
传统材料是功能材料的基础,也是功能材料的重要组成部分。
通过改进和优化传统材料的性能和制备技术,可以进一步拓展功能材料的应用领域,推动功能材料的发展和应用。
功能材料论文
Z09016237 韩兴泉复合材料加工及应用技术功能材料的研究进展随着经济的迅速发展,人们对材料的需求日益增加。
为了满足这些现代技术对材料的需求,世界各国都非常重视功能材料的研究和开发。
功能材料作为现代技术的标志,引起了各国的关注,已经成为材料科学中的一个分支学科,并在不同程度上推动或加速了各种现代技术的进一步发展。
本篇综述简单介绍了功能材料的基本性能、特点和分类及其发展现状和发展趋势。
1. 前言材料是现代科技和国民经济的物质基础。
一个国家生产材料的品种、数量和质量是衡量其科技和经济发展水平的重要标志。
因此,现在称材料、信息和能源为现代文明的三大支柱,又把新材料、信息和生物技术作为新技术革命的主要标志。
材料的发展虽然历史悠久,但作为一门独立的学科始于20世纪60年代。
材料的研究和制造开始从经验的、定性的和宏观的向理论的、定量的和微观的发展。
20世纪70年代,美国学者首先提出材料科学与工程这个学科全称。
1975年美国科学院发表的《材料与人类》专著中[1],对材料科学与工程定义为:探索和应用材料的成分、结构、加工和其性质与应用之间关系的一门学科。
功能材料的概念是美国 Morton J A于1965年首先提出来的。
功能材料是指具有一种或几种特定功能的材料,如磁性材料、光学材料等,它具有优良的物理、化学和生物功能,在物件中起着“功能”的作用[2]。
20世纪60年代以来,各种现代技术的兴起,强烈刺激了功能材料的发展。
为了满足这些现代技术对材料的需求,世界各国都非常重视功能材料的研究和开发。
同时,由于固体物理、固体化学、量子理论、结构化学、生物物理和生物化学等学科的飞速发展以及各种制备功能材料的新技术和现代分析测试技术在功能材料研究和生产中的实际应用,许多新功能材料不仅已经在实验室中研制出来,而且已经批量生产和得到应用,并在不同程度上推动或加速了各种现代技术的进一步发展。
因此,功能材料学科已经成为材料科学中的一个分支学科。
功能材料论文
功能材料论文功能材料是一类具有特殊功能或性能的材料,它们可以在各种领域发挥重要作用。
本文将就功能材料的定义、分类、应用以及未来发展方向进行探讨。
首先,功能材料是指具有特殊功能或性能的材料,它们可以通过特定的制备工艺和结构设计实现对光、电、磁、声、热等能量的转换、传感、存储和控制。
功能材料的研究和开发已成为当今材料科学与工程领域的热点之一。
其次,功能材料可以根据其功能特性进行分类,包括光学材料、电子材料、磁性材料、传感材料、储能材料等。
光学材料主要用于光学器件、显示器件和光学通信领域;电子材料主要用于电子器件、集成电路和电子元件领域;磁性材料主要用于磁记录、磁传感和磁存储领域;传感材料主要用于生物传感、化学传感和环境传感领域;储能材料主要用于电池、超级电容和储能器件领域。
再者,功能材料在各个领域都有着广泛的应用。
例如,光学材料在激光器、光纤通信和光学传感器中发挥着重要作用;电子材料在集成电路、半导体器件和电子元件中具有重要地位;磁性材料在磁记录、磁传感和磁存储领域有着广泛的应用;传感材料在生物传感、化学传感和环境传感领域发挥着重要作用;储能材料在电池、超级电容和储能器件中具有重要地位。
最后,功能材料的研究和开发具有重要的意义,未来的发展方向主要包括新型功能材料的设计与制备、功能材料的性能优化与调控、功能材料的应用拓展与产业化等方面。
随着科学技术的不断进步和社会需求的不断增长,功能材料必将在未来发挥着更加重要的作用。
综上所述,功能材料作为一类具有特殊功能或性能的材料,在当今社会发展中具有重要地位。
它们的研究和应用将为各个领域的发展提供重要支撑,未来的发展前景十分广阔。
希望本文能够对功能材料的研究和应用有所启发,推动功能材料领域的进一步发展。
无机功能材料课程论文综述
无机功能材料课程论文(工程硕士)纳米陶瓷的研究现状及发展趋势姓名赖福东专业化学工程与技术学号2111306048指导教师何湘柱完成时间2014年1月2日摘要20世纪80年代中期发展起来的纳米陶瓷,对陶瓷材料的性能产生了重要的影响,为陶瓷材料的利用开拓了一个新的领域,已成为材料科学研究的热点之一。
综述了纳米陶瓷材料近年来的发展与应用,重点论述了纳米陶瓷的制备、性能及应用现状,并对纳米陶瓷的未来发展进行了展望。
关键词纳米陶瓷性能表征制备技术Abstract Nanometer ceramics which are developed in the mid-eighties of the twentieth century have an important affect on the properties of ceramic materials. They have formed promising fields for the utilization of materials which has been one of the most popular fields of material research. The preparation and characterization of nanometer ceramic powders and the properties and application of nanometer ceramics are summarized.the future development of nanometer ceramics were discussed.Key words nanometer ceramics,property,characterization,manufacturing technology1 前言 (1)2纳米陶瓷的概念及其发展 (2)3纳米陶瓷的制备 (3)3.1纳米陶瓷粉体的物理法制备 (3)3.1.1惰性气体冷凝法 (3)3.1.2高能机械球磨法 (4)3.2 纳米陶瓷粉体的化学法制备 (4)3.2.1湿化学方法 (4)3.2.2化学气相法 (6)4 纳米陶瓷粉体的表征 (9)4.1化学成分表征 (9)4.2晶态表征 (9)4.3颗粒度表征 (10)4.4团聚体表征 (10)5 纳米陶瓷的性能 (10)5.1纳米陶瓷的致密化 (10)5.2纳米陶瓷的力学性能 (11)6纳米陶瓷的应用及其展望 (12)7纳米陶瓷生产、使用中存在的问题 (13)参考文献: (14)1 前言纳米陶瓷是纳米科学技术的重要分支,是纳米材料科学的一个重要领域。
功能材料及应用论文-单晶硅太阳能应用
生活中的功能材料——单晶硅太阳能电池研究及发展一、引言随着人类社会的不断发展,人与自然的矛盾也愈来愈突出。
目前全世界范围面临的最为突出的问题是环境与能源.即环境恶化和能源短缺。
人类的主要传统能源( 石油、煤炭、天然气) 的储存量是有限的,且对环境有污染,所以节能环保型能源的开发和利用迫在眉睫。
这个问题当然要通过各国政府采取正确的对策来处理。
发展新能源材料及相应的技术,将是解决这一些问题最为有效的方法之一。
太阳能是人类取之不尽,用之不竭的可再生能源,也是清洁能源,不产生任何的环境污染。
事实上近年来人们对太阳能材料的研制和利用,已显示了积极有效的作用。
这一新型能源材料的发展.既可解块人类面临的能源短缺问题,又不造成环境的污染。
从50年代的硅电池,60年代的G a A s 电池,70年代的非晶硅电池,80年代的铸造多晶硅电池,到90年代的I I一Ⅵ化合物电池的开发和应用,到现今有机聚合物太阳电池和纳米结构太阳电池的研究开发,构成了太阳能光电材料和器发展的历史脚印。
目前太阳能电池材料主要是单晶硅、多晶硅和非晶硅电池。
硅太阳能电池中以单晶硅太阳能电池转换效率最高,技术也最为成熟。
二、单晶硅太阳电池的生产制备工艺(一)、基本结构(二)、太阳能电池片的化学清洗工艺切片要求:①切割精度高、表面平行度高、翘曲度和厚度公差小。
②断面完整性好,消除拉丝、刀痕和微裂纹。
③提高成品率,缩小刀(钢丝)切缝,降低原材料损耗。
④提高切割速度,实现自动化切割。
具体来说太阳能硅片表面沾污大致可分为三类:1、有机杂质沾污:可通过有机试剂的溶解作用,结合兆声波清洗技术来去除。
2、颗粒沾污:运用物理的方法可采机械擦洗或兆声波清洗技术来去除粒径≥ 0.4 μm颗粒,利用兆声波可去除≥ 0.2 μm颗粒。
3、金属离子沾污:该污染必须采用化学的方法才能将其清洗掉。
硅片表面金属杂质沾污又可分为两大类:(1)、沾污离子或原子通过吸附分散附着在硅片表面。
建筑功能材料材料课程论文
建筑功能材料材料课程论文《建筑功能材料课程论文》建筑行业的蓬勃发展离不开各种材料的支撑,而建筑功能材料作为其中的重要组成部分,在提升建筑质量、改善使用体验、实现节能环保等方面发挥着关键作用。
建筑功能材料具有多种特性和功能,满足了现代建筑日益多样化的需求。
保温隔热材料就是其中一类重要的功能材料。
在寒冷的冬季,良好的保温材料能够有效减少室内热量的散失,保持温暖舒适的环境;而在炎热的夏季,它又能阻挡外部热量的传入,降低空调的能耗。
常见的保温隔热材料如聚苯乙烯泡沫板、岩棉等,它们的保温性能取决于材料的导热系数、孔隙率等特性。
防水材料也是建筑中不可或缺的功能材料。
建筑物长期暴露在外界环境中,受到雨水、地下水等的侵蚀,如果防水处理不当,容易出现渗漏问题,影响建筑的结构安全和使用寿命。
新型的防水材料如高分子防水卷材、防水涂料等,具有更好的防水性能和耐久性。
这些材料的防水原理通常是通过形成连续的防水层,阻止水分的渗透。
隔音材料对于营造安静舒适的室内环境至关重要。
城市中的噪音污染日益严重,有效的隔音材料能够减少外界噪音的传入,同时也能降低室内声音的传播,保护居民的隐私。
隔音材料的隔音效果与其密度、厚度、孔隙结构等因素有关。
例如,隔音棉通过内部的多孔结构吸收声音能量,从而达到隔音的目的。
除了上述几种常见的建筑功能材料,还有防火材料、采光材料等。
防火材料能够在火灾发生时延缓火势的蔓延,为人员疏散和消防救援争取时间。
采光材料则能够充分利用自然光线,减少人工照明的需求,实现节能减排。
在建筑功能材料的选择和应用中,需要综合考虑多方面的因素。
首先是建筑的使用功能和环境要求。
例如,对于住宅建筑,保温隔热和隔音性能是重点考虑的因素;而对于工业厂房,可能更关注防火和耐腐蚀性能。
其次是材料的性能和质量。
要选择符合国家标准和规范的材料,并确保其质量稳定可靠。
此外,成本也是一个重要的考量因素。
在满足功能要求的前提下,应选择性价比高的材料,以控制建筑成本。
有机功能材料合成技术课程小论文
有机功能材料合成技术课程论文、光电有机功能材料的发展摘要:随着环境问题与能源问题的日渐严峻,作为清洁能源的太阳能的利用越来越受重视。
有机太阳能电池在第三代太阳能电池器件中将承担极其重要的角色。
相比于无机材料,有机材料存在明显优势,但是与无机太阳能电池相比,有机太阳能电池的转化效率还较低。
如何从本质上解决有机半导体光电转换效率低的问题,是太阳能电池研究的关键。
关键词:有机光电材料,太阳能电池正文:有机太阳能电池的研究进展众所周知,传统能源储量不是无限可再生的,随着人类大规模的生产和过度的使用,在不久以后其不再能满足人类的需要,为了持续人类社会不断发展,科研工作者刻不容缓地寻找和开发可替代的新能源。
其中,太阳能因其来源广、可再生、天然无污染等特点得到了社会各界强烈的反响。
而有机太阳能电池(OSCs)作为重要的新能源已成为研究的热点,但要想实现商业化道路依然还有诸多困难需要得到解决,特别是在光电转换效率方面还没办法达到产业化的最低要求,这使得其成为争相研究的范畴之一。
众所周知,传统能源储量不是无限可再生的,随着人类大规模的生产和过度的使用,在不久以后其不再能满足人类的需要,为了持续人类社会不断发展,科研工作者刻不容缓地寻找和开发可替代的新能源。
其中,太阳能因其来源广、可再生、天然无污染等特点得到了社会各界强烈的反响。
而有机太阳能电池(OSCs)作为重要的新能源已成为研究的热点,但要想实现商业化道路依然还有诸多困难需要得到解决,特别是在光电转换效率方面还没办法达到产业化的最低要求,这使得其成为争相研究的范畴之一。
众所周知,传统能源储量不是无限可再生的,随着人类大规模的生产和过度的使用,在不久以后其不再能满足人类的需要,为了持续人类社会不断发展,科研工作者刻不容缓地寻找和开发可替代的新能源。
其中,太阳能因其来源广、可再生、天然无污染等特点得到了社会各界强烈的反响。
而有机太阳能电池(OSCs)作为重要的新能源已成为研究的热点,但要想实现商业化道路依然还有诸多困难需要得到解决,特别是在光电转换效率方面还没办法达到产业化的最低要求,这使得其成为争相研究的范畴之一。
功能高分子材料课程总结论文
功能高分子材料课程总结我们都知道,材料是与我们日常生活息息相关的,而高分子材料由于具有许多优良性能,适合现代化生产,经济效益显著,因而在工业上取得了突飞猛进的开展,其中功能高分子材料就是它的一个重要应用,它可以在高分子材料的主链或者侧链上参加一些具有特殊功能的功能基团,使高分子同时具有高分子的性质和这些功能基团,即高分子材料功能化。
这个学期齐教师给我们详细讲解了功能高分子材料这门学科,让我对功能高分子材料这门学科有了根本的认识,比方,吸附别离高分子材料、高分子别离膜、电功能高分子材料、光功能高分子材料、环境降解高分子材料、生物医用高分子材料等材料的作用、性能、应用。
也让我深刻了解到功能高分子材料的重要性,下面就谈谈我对这门学科了解到的一些内容。
一、功能高分子材料的定义及特点〔1〕功能高分子材料的定义一般说来,性能是指材料对外部作用的表征与抵抗特性,而功能那么是外部作用引起材料内部变化而产生的输出特性,因而我们可定义为:对物质、能量和信息具有传输、转换或贮存作用的高分子及其复合材料称为功能高分子材料,通常也可简称为功能高分子,有时也称为精细高分子或特种高分子(包括高性能高分子)。
(2)功能高分子材料的分类功能高分子从制造和构造的角度可分为两类:一类是高分子本身具有特殊功能作用的构造型功能高分子;另一类是高分子本身不具有功能作用,而仅仅作为基体或载体与其他功能材料进展复合而制成的复合型功能高分子材料,按照功能特性通常可分成:光、电、磁、热、力、声、化学和生物等八大类。
(3)功能高分子材料的特点功能高分子之所以开展迅速,是因为除了具有重量轻、易加工、可大面积成膜、原材料来源广泛等优点之外,还具有如下特点:①涉及面广;②技术密集,附加值高;③开发难度大,周期长,竞争剧烈;④专用性强,品种多,产量小,价格贵。
(4)功能高分子材料的应用功能高分子材料主要应用在制备吸附别离高分子材料、高分子别离膜、电功能高分子材料、光功能高分子材料、环境降解高分子材料、生物医用高分子材料等方面。
材料科学中的功能材料合成与应用毕业论文
材料科学中的功能材料合成与应用毕业论文(正文)在材料科学领域,功能材料合成与应用一直是一个备受关注的研究领域。
功能材料通过合成与应用的方式,可以赋予材料以特定的性能和功能,从而满足不同领域的需求。
本篇毕业论文将重点探讨功能材料合成与应用在材料科学中的重要性和应用领域。
一、功能材料合成方法的研究合成是功能材料研究的重要一环,不同的合成方法可以得到具有不同性能和功能的材料。
目前,常用的功能材料合成方法包括溶液法、气相法、凝胶法等。
其中,溶液法是最为常见和常用的一种方法,通过控制反应条件和物质配比,可以合成出具有特定结构和性能的材料。
气相法则是利用气相反应来合成材料,该方法通常能得到高纯度和高度结晶的材料。
凝胶法则是通过溶胶和凝胶的转化来获得材料,该方法适用于复杂结构和多孔材料的合成。
二、功能材料在电子领域的应用功能材料的合成与应用在电子领域具有广泛的应用前景。
以半导体材料为例,通过合成和控制材料的结构,可以使其具有优异的导电性和光电性能,从而应用于电子器件的制造过程中。
例如,通过控制溶液中物质的浓度和反应温度,在材料表面形成钽铁矿结构的功能材料,可以作为高效的光电转换材料,应用于太阳能电池中。
此外,功能材料合成与应用还可以用于研究基于新型材料的电子器件,如柔性显示屏、光电存储器等。
三、功能材料在能源领域的应用功能材料在能源领域也有重要的应用价值。
例如,合成和应用纳米复合材料可以提高材料的储能性能和循环寿命,用于制造高性能的锂电池和超级电容器。
此外,功能材料还可以被应用于燃料电池、光电催化等能源转换和储存系统中,提高能源利用效率和增强能源转化能力。
四、功能材料在医学领域的应用在医学领域,功能材料合成与应用也具有广泛的应用前景。
例如,合成具有生物相容性的功能材料,可以作为人工组织和器官的替代品,用于修复和重建人体组织。
同时,功能材料的应用还可以用于药物传递系统,通过控制材料的结构和性能,提高药物的稳定性和释放效率,从而实现定向、可控的药物传递。
功能材料论文
西南科技大学课程论文报告论文题目:碳纤维增强环氧树脂基复合材料的研究课程:新型功能材料姓名:陈永乐学号:2012010005专业:材料工程二〇一三年七月碳纤维增强环氧树脂基复合材料的研究摘要:碳纤维增强聚合物基复合材料一直以来都是研究的热点,作为所有基体材料中应用得最广泛的环氧树脂,也是研究得最多的。
本文简述了TDE-85环氧树脂的改性研究,固化剂的固化特性和预浸料的制备方法,综述了近几年国内外碳纤维增强环氧树脂基复合材料的研究进展和应用,并作了碳纤维/环氧树脂复合材料在汽车燃料电池方面的应用展望。
关键词:碳纤维,环氧树脂,基体,复合材料,预浸料Abstract:Carbon fiber reinforced polymer matrix composites has always been a hot research, epoxy resin which is not only the most widely used of all the matrix materials, but also the most studied. This paper describes the Modification of TDE-85 epoxy,characteristics of curing agents and the preparation of prepreg, reviewing carbon fiber reinforced epoxy resin composites research and applications in civil and abroad in recent years, and made of carbon fiber / epoxy composites in the automotive fuel cell in the application prospectKeywords:Carbon fiber,epoxy resin,substrate,composite,prepreg0前言在众多复合材料(金属基复合材料、陶瓷基复合材料和碳基复合材料)中,碳纤维增强聚合物复合材料(Carbon Fiber Reinforced Polymer Composite,简称CFRP)以其较高比强度、比刚度、抗疲劳、尺寸稳定性和耐腐蚀好等优异性能,在航空航天、国防军工、建筑材料、汽车工业以及体育运动休闲器材等领域均得到了广泛的应用[1]。
功能材料期末论文
功能材料(论文)题目稀土磁性材料研究现状学院材料科学与工程专业高分子材料班级姓名学号指导教师贾晓林2010年11月8日稀土磁性材料研究现状摘要:材料是社会技术进步的物质基础与先导。
现代高技术的发展,更是紧密依赖与材料的发展。
稀土元素因其独特的电、光、磁、热性能而被人们称为新材料的“宝库”,是国内外科学家,尤其是材料专家最关注的一组元素。
目前,稀土磁性材料作为一组重要的稀土新材料,在国内外的研究已初具规模,这些新材料的应用不仅极大地改造和提升了传统产业,而且构成了当今世界先导型、知识型产业的核心竞争力。
为此,加强稀土磁性材料的研发,大力扶持国内稀土产业将变得尤为重要。
关键词:稀土、磁性材料、研究现状、发展趋势一、各种稀土磁性材料的简单论述1.1、稀土永磁材料稀土由于其独特的4f电子层结构,可以在一些与3d元素化合物组合成的晶体结构中形成单轴磁各向异性,而具有十分优异的超常磁性能。
表1列出了各类稀土永磁体与传统的铁氧体、铝镍钴永磁体的磁性能,显然稀土永磁体比传统永磁体具有高得多的磁性能。
稀土永磁体中,钕铁硼的磁能积最高,但它的居里温度低,工作温度低,温度系数高。
虽然现在已开发出工作温度达到200℃的钕铁硼,但在许多地方还是不能替代工作温度高,温度系数低的钐钴永磁。
现已开发出工作温度可达400℃、500℃的Sm2(Co,Cu,Fe,Er)17磁体[3]。
10年前发明的稀土—铁—氮永磁材料,理论磁能积与钕铁硼接近,但居里温度高,温度系数小,耐腐蚀性能好,与粘结磁体中使用的快淬钕铁硼相比,具有很强的竞争力。
其中的NdFe12N x永磁是我国科学家杨应昌院士发明的[4],其NdFe12N x实验室样品的磁能积已达到22MGOe,超过MQ-2钕铁硼磁粉。
纳米晶双相交换耦合稀土永磁材料是高磁晶各向异性的稀土永磁相与高饱和磁化强度的软磁相在纳米尺度内交换耦合而获得兼具二者优点的复合永磁材料,理论计算表明,纳米稀土复合永磁体的最大磁能积远远超过钕铁硼。
功能材料论文
功能材料的发展现状以及应用前景摘要功能材料是指具有特定光,电,磁,声,热,湿,气,生物等特性的各类材料。
这些材料在能源,通信,电子,激光,医药等方面都具有广泛的应用,但它们的发展现状以及应用前景究竟怎么样呢?通过查找一些基本的书籍及文献,本文将简单介绍纳米材料,高分子材料,光学材料的发展现状以及应用前景。
关键词:纳米材料光学材料高分子材料发展现状应用前景第一章引言纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料。
其应用于电声器件,陶瓷,传感器,半导体器件,催化剂,医疗,加点,环保,计算机等。
纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。
我国已努力赶上先进国家水平,研究队伍也在日渐壮大。
高分子材料是由相对分子质量较高的化合物构成的材料,通常分子量大于10000。
高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料,按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等,是生命起源和进化的基础。
而其在我们的日常生活更是起着非常重要的作用。
光学材料是指近l0年来,随着现代光学、光电子及信息技术的发展而兴起的光电数码产品和信息产品所应用的技术含量高、制作难度大、光学性能优越的光学材料,一般是指镧系光学玻璃、环保系列光学玻璃、低熔点及磷酸盐光学玻璃等。
由于光电信息产品的信息采集、传输、存储、转换和显示都与光学材料密切相关,使光学材料的功能得到了迅速开发,在高科技领域得到了日益广泛的应用。
纳米材料,高分子材料,光学材料现已广泛应用于计算机,医学,航空航天,能源,环境以及我们的日常生活,并在其中起着举足轻重的作用,而当今社会对这些材料的研究层出不穷,但究竟研究到了什么样的地步呢?本文将通过查找资料的形式总结了这些材料的发展现状以及应用前景。
第二章光、纳米、高分子材料的发展现状及应用前景2.1 纳米材料2.1.1 纳米材料的应用前景纳米材料的物化性能与微米多晶材料有着巨大的差异,具有奇特的力学、电学、瓷学、光学、热学及化学等多方面的性能,从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域起着重要的作用,其应用前景不可估量。
关于新型功能材料的论文
院系:XXX 姓名:XXX 学号:XXX1.摘要智能混凝土是现代建筑材料与现代科技相结合的产物,是传统混凝土材料发展的高级阶段。
回顾了智能混凝土的发展历史和研究现状,展望了智能混凝土的发展趋势和应用前景,阐述了研究中应注意的问题。
2.简介智能材料,指的是“能感知环境条件,做出相应行动”的材料。
它能模仿生命系统,同时具有感知和激励双重功能,能对外界环境变化因素产生感知,自动作出适时。
灵敏和恰当的响应,并具有自我诊断、自我调节、自我修复和预报寿命等功能。
智能混凝土是在混凝土原有组分基础上复合智能型组分,使混凝土具有自感知和记忆,自适应,自修复特性的多功能材料。
根据这些特性可以有效地预报混凝土材料内部的损伤,满足结构自我安全检测需要,防止混凝土结构潜在脆性破坏,并能根据检测结果自动进行修复,显著提高混凝土结构的安全性和耐久性。
正如上面所述,智能混凝士是自感知和记忆、自适应。
自修复等多种功能的综合,缺一不可,以目前的科技水平制备完善的智能混凝土材料还相当困难。
但近年来损伤自诊断混凝土、温度自调节混凝土。
仿生自愈合混凝土等一系列智能混凝土的相继出现;为智能混凝土的研究打下了坚实的基础。
3.内容3.1分类3.1.1损伤自诊断混凝土自诊断混凝土具有压敏性和温敏性等自感应功能其中最常用的是碳类、金属类和光纤。
下面主要介绍碳纤维智能混凝土。
碳纤维是一种高强度、高弹性且导电性能良好的材料。
在水泥基材料中掺入适量碳纤维不仅可以显著提高强度和韧性,而且其物理性能,尤其是电学性能也有明显的改善,可以作为传感器并以电信号输出的形式反映自身受力状况和内部的损伤程度。
在入碳纤维的损伤自诊断混凝土中,碳纤维混凝土本身就是传感器,可对混凝土内部在拉、压、弯静荷载和动荷载等外因作用下的弹性变形和塑性变形以及损伤开裂进行监测。
试验发现,在水泥浆中掺加适量的碳纤维作为应变传感器,它的灵敏度远远高于一般的电阻应变片。
在疲劳试验中还发现,无论在拉伸或是压缩状态下,碳纤维混凝土材料的体积电导率会随疲劳次数发生不可逆的降低。
功能材料论文
功能材料论文功能材料,是指在特定的条件下,通过其特殊的结构与组成所具有的特殊性能和功能的材料。
它们在各个领域都扮演着重要的角色,如电子、光电、催化、能源等。
本论文将对功能材料的概念、分类和应用进行详细的探讨,并介绍一些具有代表性的功能材料。
一、功能材料概念功能材料主要指具有特殊性能和功能的材料,它们在特定条件下可以实现特定的物理、化学或生物作用。
与传统结构材料不同,功能材料的性能主要来自于其特殊的结构和组成。
功能材料的发展,旨在满足人们对新型材料的需求,并推动科学技术的进步和产业的发展。
二、功能材料分类功能材料根据其性能和功能可以分为多个类别。
以下是几种常见的功能材料及其主要特性:1. 光电材料:光电材料是指对光与电的能量转换和传输过程具有特殊性能的材料,包括光电导体、光电半导体和光电绝缘体等。
它们在太阳能电池、光传感器等领域具有广泛的应用。
2. 催化材料:催化材料是指在化学反应过程中,通过其特殊的结构和组成,能够加速反应速率或降低反应温度的材料。
催化材料广泛应用于催化剂、汽车尾气净化等领域,具有重要的经济和环保意义。
3. 磁性材料:磁性材料是指在外磁场作用下,具有特殊的磁性行为和性质的材料。
它们广泛应用于电子设备、磁记录材料等领域,对推动信息技术发展起到了重要作用。
4. 超导材料:超导材料是指在特定的温度下,电阻为零,电流可以无损耗地通过的材料。
超导材料在能源传输和磁共振等领域具有广泛的应用前景。
5. 电池材料:电池材料是指用于储能和能量转换的材料,包括锂离子电池材料、燃料电池材料等。
随着电动汽车和可再生能源的发展,电池材料将发挥越来越重要的作用。
三、功能材料应用功能材料在各个领域都有重要的应用。
以下是几个典型的功能材料应用举例:1. 功能材料在电子领域的应用:光电材料在光电器件中的应用,如太阳能电池、光传感器等;磁性材料在硬盘、磁记录材料中的应用;二维材料在柔性显示、传感器等领域的应用。
2. 功能材料在能源领域的应用:锂离子电池材料、燃料电池材料在新能源储存和转换中的应用;光催化材料在光能利用和水分解中的应用;超导材料在能源传输和磁共振成像中的应用。
LED论文-功能材料
生活中的功能材料——发展迅速的LED技术目录一、介绍LED背景知识二、LED的功能原理三、LED的分类四、LED的生产及工艺五、LED的应用六、LED的研究及发展现状七、我国LED的市场需求情况及未来发展八、参考文献一、介绍LED背景知识(一)、了解光和简介LED、LED历史介绍1、光的本质、物体发光方式光是一种能量的形态,它可以从一个物体传播到另一个物体,无需任何物质作媒介。
通常将这种能量的传递方式谓之辐射,其含义是能量从能源出发沿直线(在同一介质内)向四面八方传播。
关于光的本质,早在十七世纪中叶就被牛顿与麦克斯韦分别以“微粒说”、“波动说”进行了详细探讨,并成为当前所公论的光具有“波粒二重性”的理论基础。
约100 多年前,人们又进一步证实了光是一种电磁波,更严格地说,在极为宽阔的电磁波谱大家族中,可见光的光波只占有很小的空间,其波长范围处在380nm-770nm之间包含了人眼可辩别的紫、锭、蓝、绿、黄、橙、红七种颜色,它的长波方向是波长范围在微米量级至几十千米的红外线、微波及无线电波区域;它的短波端是紫外线、x 射线、r 射线。
物体的发光方式通常可分成二类,即热光与冷光。
所谓热光又称之谓热辐射,是指物质在高温下发出的热。
在热辐射的过程中,特内部的能量并不改变,通过加热使辐射得以进行下去,低温时辐射红外光、高温时变成白光。
众所周知,当钨丝在真空式惰性气氛中加热至很高的温度,即会发出灼眼的白光。
冷光是从某种能源在较低温度时所发出的光。
发冷光时,某个原子的一个电子受外力作用从基态激发到较高的能态。
由于这种状态是不稳定的,该电子通常以光的形式将能量释放出来,回到基态。
由于这种发光过程不伴随物体的加热,因此将这种形式的光称之为冷光。
其实,太阳光就是一种最为常见的白光,三棱镜可将太阳光分解成上述的七种颜色,实验已证明,只要采用其中的蓝、绿、红三种颜色,即可合成自然界中所有色彩,包括白色的光,我们通常将蓝、绿、红三种颜色称之为三原色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仿生材料的最新动态摘要:材料科学和生物技术的交叉领域的研究越来越受到重视,而其中的三大研究分枝天然生物材料、生物医用材料、仿生材料倍受人们注目。
而仿生学是一门交叉学科,它融合了生命科学、信息科学、脑与认知科学、工程技术、数学与力学以及系统科学等七大学科,是探讨生物体材料结构与形成过程,并借鉴生物材料的结构及其特殊构效关系来启迪人工材料的设计与制作的新兴综合型学科。
本文综述了仿生材料学的概念及研究意义,以及仿生材料学的研究热点、研究进展和发展趋势。
关键词:仿生学;仿生材料;发展趋势;生物结构;结构功能The latest developments of biomimetic materialsBiomimetic materials is based on the biological properties of a kind of new materials, according to biological in the chemical properties of the sound and light electromagnetic physics or anticorrosive antifouling and research materials, the main useof military, aerospace, life, at present the development of biomimetic materials is still in primary stage, all aspects of the use and need to put with the study of the multi.引言仿生学是人们研究生物体结构与功能的工作原理,并根据这些原理发明出新的设备和工具,创造出适用于生产、学习、生活的先进技术而发展的一门学科。
仿生学的典范成就并非仅仅来自对自然的模仿,而是努力探索自然系统背后的原理与机制,然后对其加以具体应用的结果。
最简单且著名的仿生成果是在超音速飞机的机翼上安装“翅痣”,这是从蜻蜓那里借鉴来的,因此,飞机克服了音障,从而制造出了两倍乃至三倍音速的超音速飞机。
仿生学的研究运用有众多的领域,如生化仿生、医学仿生、电磁仿生、军事仿生、工程仿生等。
仿生学也包括仿人,如电脑、机器人的发明等。
课文中讲的生物多跟动物有关,其实,人类也在向植物学习,如传说鲁班从一种边缘有小齿的叶子上受到启发,发明了锯子等。
生物经过长时间的动力学自组装过程,各个组分之间按照最佳的结构和组合方式组装,最终形成特有的复合结构,来适应复杂多变的环境要求。
某种意义上来说自组装产物的缺陷程度最低,结构和功能达到了理想状态[1]。
科学家已经从纳米层面系统的分析与研究生物体外形、结构、力学功能,可以作为工程设计的依据,为仿生设计出高性能材料提供理论支撑。
自从20世纪末开始,国内外投入很大的人力物力从事仿生工作,并且取得了许多重要成果:如仿生自然叶片蒸腾作用的热效应[2]、仿生离子通道[3]、仿生分子及细胞传感器[4]、仿生耦合聚晶金刚石钻头[5]、仿生动物消化系统的反应器[6]等。
如今,已经有许多仿生结构材料应用于医学修复、传感器及量子器件等多个领域。
仿生材料学以阐明生物体材料结构与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作[7 ]。
仿生材料学是仿生学的一个重要分支,是指从分子水平上研究生物材料的结构特点、构效关系,进而研发出类似或优于原生物材料的一门新兴科学,是化学、材料学、生物学、物理学等学科的交叉。
生物材料/料是一个跨学科研究的领域,从力学的角度来说,是要搞明白生物材料的力学特性和其他物理特性是如何由生物体内的结构和组织控制的,以及自然材料(如骨骼、木材等)在各个领域的应用。
仿生材料的研究期望通过结构仿生和功能仿生及其理论计算与模拟,获得高效、低能耗、环境和谐与快速智能应变的新材料及其新性质,制备类似于生物的结构或者形态,得到具有特殊性能的人造材料,如人工类珐琅质、高强韧陶瓷、仿生人工骨材料、仿蜘蛛人造纤维;仿造自然界动物和植物的特异功能和智能响应,发展具有与生物相似或者超越生物现有功能的人工材料,如仿荷叶自清洁材料、仿鲨鱼的自润滑材料、在基因改造的细胞中高效合成手性分子和大分子等[ 8 ]。
自然材料的诸多优越特性吸引着广大科学研究人员,使他们从更微观的层次师法自然,利用从生物体那里获得的启示为人类的文明进步服务,同时设法揭开自然界有机体性能形成的秘密。
本文介绍了近年来仿生材料学的几个重要的发展方向和研究进展情况,并探讨了仿生材料学的发展趋势。
为仿生材料学的研发提供一点启示。
1.研究现状国际上对天然生物材料及仿生材料研究的重视始于20世纪80年代。
目前,国际上一流大学都已把生物材料放在优先发展的地位。
中国生物与仿生材料研究者在这一领域已取得国际瞩目的研究成果。
自1988年中国生物无机化学家王夔院士和材料学家李恒德院士将生物矿化的概念介绍到国内后,中国的生物矿化研究开始逐渐形成规模。
其中很重要的一个方面就是在学习矿化材料合成方法的基础上,研究并实施新的材料制备策略。
而深入进行这些工作的一个重要前提就表征天然生物矿物的分级结构及探索生物矿化的基本机理2.仿生材料用化学方法模拟自然界中生物体功能的一门学科。
如模拟酶反应、模拟生物膜的功能等。
仿生光化学—光能的仿生利用和仿生发光、仿生农药—绿色农药、仿生材料、仿生传感器等。
其中仿生农药、仿生材料和仿生传感器和我们生活联系密切。
仿生农药—绿色农药:许多天然植物如苦楝、臭椿等在长期的进化中形成了完善的自我保护机制,产生能够杀灭病虫害而不危害人畜和有益生物、环境、生态的化学物质。
有些植物还能够通过叶、皮、根等分泌释放某些化学物质,会对周围其他植物的生长产生抑制促进作用,譬如洋槐树皮挥发一种物质能杀死根株周围的杂草,使其附近寸草不生。
将植物中的这些成分进行提取分离,进而通过人工合成制成仿生农药,就是名副其实的绿色农药。
利用昆虫的性外激素合成的性引诱剂是仿生农药的另一个方面。
利用昆虫的觅偶、标迹、聚集等活动的信息传递是通过分泌、释放微量化学物质即“化学信使”来实现的,这种“化学信使”就是昆虫的性外激素。
近年来,我国合成了大量昆虫性外激素,利用昆虫性引诱剂来诱杀害虫和进行虫情测报,使害虫自投罗网。
科学家还发展了许多控制昆虫生长发育的药剂,即昆虫生长调节剂,比如利用蜕皮素或类似物使昆虫过早或过迟蜕皮而死亡,或利用保幼素使幼虫不能发育成为成虫。
这也是灭杀害虫的一个手段。
著名的生物矿化和仿生纳米材料学家, 英国Bristol 大学S。
Mann 教授在2002 年美国Gordon 会议上有一个题为“基质诱导成核: 一个矿化过程的介观现象?”的精彩报告。
报告指出, 生物矿物通常在有机的模板如大分子框架、脂膜或细胞壁表面合成。
因此, 第一需要理解生物源的矿物生长和形态发生,例如, 磷酸钙、碳酸钙和氧化硅如何在有机分子和有机表面存在时发生沉积过程。
第二, 利用生物结构和系统, 在实验室内模拟矿化过程, 从而在有机组分如病毒和细胞内合成无机材料, 这将是仿生材料合成最主要的推动力。
第三, 生物矿物的力学性质的研究, 为具有高的断裂韧性和强度的人工骨等人工合成材料的制备提供方法。
3.仿生材料设计陶瓷材料的脆性和增韧[9]一直是研究的热点问题之一,也是陶瓷材料得到广泛应用的关键问题之一。
现在人们提出长纤维或晶须增韧补强、颗粒弥散强化、相变增韧等多项强韧化措施,也取得了积极的成果,但是这些措施很有限,没有从本质上解决陶瓷材料的脆性问题。
贝壳珍珠层通过简单组成和复杂结构的精妙组合获得了优良的综合性能在珍珠层中,报石含量为99 ,以蛋白质为主的有机质不到1%。
正是这些有机质将不同尺寸的报石晶片按特殊的层状结构构成了这种复合材料,其断裂韧性比纯报石高出3000倍以上。
由此得到启发,可以用简单的成分进行复杂的结构组合,改变以前复杂成分简单结构的设计思想,这样更可以提高材料的性能。
陶瓷材料的这种仿生结构设计,在很大程度上能改善陶瓷材料的脆性本质,为陶瓷材料的强韧化提供了一条崭新的研究和设计思路。
设计时可以考虑:①简单组成,复杂结构;②引人弱界面层,使裂纹在弱界面层中消耗大量的断裂能;③采用非均质设计,精细结构。
黄勇等用基体陶瓷层(如四氮化三硅)模拟报石晶片,弱界面层(氮化硼)模拟有机质层制备的纤维独石结构陶瓷的断裂韧性高达24 MPa耐断裂功高达4000 J/m2以上。
根据对珍珠层进一步的研究,我国学者还设计了从芳纶纤维增强环氧树脂叠层仿珍珠层复合材料。
材料弯曲实验表明,这种仿珍珠层结构的断裂功比对应的陶瓷提高了两个数量级采用生物矿化的原理制造陶瓷薄膜涂层可以有效地克服传统薄膜制造技术的弱点,生物陶瓷材料均是在常温常压下形成,且对晶体结构粒径、形态及晶体学定向进行严格的控制。
目前这种仿生陶瓷薄膜涂层制造技术[10]已成为仿生材料工程的重要研究方向之一。
另外有机大分子调制技术的出现,为生物陶瓷的制备和性能优化提供了极好的途径,同时为解决陶瓷脆性问题提供了新思路,并可能导致材料设计和制备领域的一次革命。
4.仿生制备仿生制备是近年来新的研究课题。
最早的尝试是材料的成分仿生。
天然硬组织很少由纯的无机矿物构建, 几乎所有优异的生物矿化材料都采取了有机分子调控无机相生长的策略。
因此, 生物材料专家开始考虑如何将性能完全不同的有机相与无机相结合起来, 制备具有优异力学性能,甚至具有天然材料分级结构。
仿生制备不仅仅是一个材料学问题,它的发展最终成为一个涉及分子生物学、细胞学、疾病医学和组织工程材料学、化学、生物力学的新的交叉学科。
有两篇文献讨论了[11]骨的细胞、分子生物学和组织工程构建问题, 以及如何进行骨骼疾病的治疗。
来自材料科学、生命科学, 以及医学、化学、物理和其他工程学科的专家共同合作、协同攻关的现象已经越来越普遍。
5应用5.1医学中的价值在现代医学中,很多人造骨的出现,解决了医学上的困惑,卵是鸟类和爬虫类生育在体外的动物的最大细胞。
它的壳,是石灰质构成的,内部有卵白和卵黄。
美国学者Finks 对此发表了非常有趣的假说,认为卵的结构无论从力学或者工学的观点来思考,都有许多值得学习的地方,人类现在的包装技术与之相比相形见绌。
卵壳的形成过程与牙齿和骨头的发育过程相同,被称之为钙化过程,与无机和有机的界面化学相关,据有关报道,人们正在研究一种人造骨。
相信在不远的将来,通过对有机和无机复合材料形成技术的研究,不仅在包装技术方面人们会学习和采用生物卵壳的形成方式,同时在医学科学中也会开创新的领域。