微波基础知识学习
微波的相关知识
微波的相关知识一、微波的产生微波能通常由直流电或50Hz交流电通过一特殊的器件来获得。
可以产生微波的器件有许多种,但主要分为两大类:半导体器件和电真空器件。
电真空器件是利用电子在真空中运动来完成能量变换的器件,或称之为电子管。
在电真空器件中能产生大功率微波能量的有磁控管、多腔速调管、微波三、四极管、行波管等。
在目前微波加热领域特别是工业应用中使用的主要是磁控管及速调管。
二、微波的热效应微波对生物体的热效应是指由微波引起的生物组织或系统受热而对生物体产生的生理影响.热效应主要是生物体内有极分子在微波高频电场的作用下反复快速取向转动而摩擦生热;体内离子在微波作用下振动也会将振动能量转化为热量;一般分子也会吸收微波能量后使热运动能量增加.如果生物体组织吸收的微波能量较少,它可借助自身的热调节系统通过血循环将吸收的微波能量(热量)散发至全身或体外.如果微波功率很强,生物组织吸收的微波能量多于生物体所能散发的能量,则引起该部位体温升高.局部组织温度升高将产生一系列生理反应,如使局部血管扩张,并通过热调节系统使血循环加速,组织代谢增强,白细胞吞噬作用增强,促进病理产物的吸收和消散等.化学效应等.在微波电磁场的作用下,生物体内的一些分子将会产生变形和振动,使细胞膜功能受到影响,使细胞膜内外液体的电状况发生变化,引起生物作用的改变,进而可影响中枢神经系统等.微波干扰生物电(如心电、脑电、肌电、神经传导电位、细胞活动膜电位等)的节律,会导致心脏活动、脑神经活动及内分泌活动等一系列障碍.对微波的非热效应,人们还了解的不很多.当生物体受强功率微波照射时,热效应是主要的(一般认为,功率密度在在10mW/cm2者多产生微热效应.且频率越高产生热效应的阈强度越低);长期的低功率密度(1 m W/cm2 以下)微波辐射主要引起非热效应.三、微波加热的原理微波是频率在300兆赫到300千兆赫的电波,被加热介质物料中的水分子是极性分子。
微波技术基础课程学习知识要点
《微波技术基础》课程学习知识要点第一章 学习知识要点1.微波的定义— 把波长从1米到0.1毫米范围内的电磁波称为微波。
微波波段对应的频率范围为: 3×108Hz ~3×1012Hz 。
在整个电磁波谱中,微波处于普通无线电波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽10000倍。
一般情况下,微波又可划分为分米波、厘米波、毫米波和亚毫米波四个波段。
2.微波具有如下四个主要特点:1) 似光性、2) 频率高、3) 能穿透电离层、4) 量子特性。
3.微波技术的主要应用:1) 在雷达上的应用、2) 在通讯方面的应用、3) 在科学研究方面的应用、4) 在生物医学方面的应用、5) 微波能的应用。
4.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。
一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。
第二章 学习知识要点1. 传输线可用来传输电磁信号能量和构成各种微波元器件。
微波传输线是一种分布参数电路,线上的电压和电流是时间和空间位置的二元函数,它们沿线的变化规律可由传输线方程来描述。
传输线方程是传输线理论中的基本方程。
2. 均匀无耗传输线方程为()()()()d U z dz U z d I z dzI z 2222220-=-=ββ 其解为 ()()()U z A e A e I z Z A e A e j z j zj z j z=+=---120121ββββ 对于均匀无耗传输线,已知终端电压U 2和电流I 2,则:对于均匀无耗传输线,已知始端电压U 1和电流I 1,则:()()⎪⎭⎪⎬⎫+=+= sin cos sin cos 022022Z z jU z I z I z Z jI z U z U ββββ其参量为 Z L C 000=,βπλ=2p ,v v p r =0ε,λλεp r=03. 终端接的不同性质的负载,均匀无耗传输线有三种工作状态: (1) 当Z Z L =0时,传输线工作于行波状态。
精选微波技术基础知识
1、第三章、微波集成传输线常用集成传输线的种类和主要特点2、第四章介质波导和光波导
1、传播条件和波型2、特性阻抗3、波长,相速4、功率容量5、衰减
了解
微波集成传输线
微波集成传输线的最大特点是 平面化
五种重要的传输线:带状线(Stripline)微带线(Microstrip line)槽线(Slotline)鳍线(Finline)共面线(Coplanar line)
式中
微波集成传输线-带状线
带状线—优缺点和应用
1、改变线宽一个参数就改变电路参数(特性阻抗)。2、在馈线、功分器,耦合器,滤波器,混频器,开关的设计中,体积小,重量轻,大批量生产的重复性好。3、立体电路的设计,适用于多层微波电路,LTCC等,辐射小。4、封闭的电路,调试难。5、电路需要同轴或波导馈入,引入不连续性,需要在设计时补偿。6、在多层电路设计中,存在不同节点常数的介质之间的连接,介质与金属导体的连接,分析方法非常复杂,尤其对3D电路,尚缺少各种不连续性的模型和相关设计公式,采用全波分析法或者准静态场分析。
毫米波鳍线混频器
介质波导和光波导
当毫米波波段→亚毫米波段→太赫兹波段时普通的微带线将出现一系列新问题1)高次模的出现使微带的设计和使用复杂2)金属波导的单模工作条件限制了其横向尺寸不能超过大约一个波长的范围。这在厘米波段和毫米波低频段不成问题。但到毫米波高频段,单模波导的尺寸就显得太小,不仅制造工艺困难,而且随着工作频率的提高,功率容量越来越小,壁上损耗越来越大,衰减大到不能容忍的地步。因此,对毫米波段的高端及来说,封闭的金属波导已不再适用。于是,适合于毫米波高频段、亚毫米波的传输线 —— 介质波导等非封闭式的传输线(或称开波导)便应运而生
微波集成传输线-微带线
微波知识点(精华)
绪论1、微波是电磁波谱中介于超短波与红外线之间的波段。
频率(300MHz —3000GHz)。
波长(1m—0.1mm )微波分为:分米波、厘米波、毫米波、亚毫米波。
特点:似光性、穿透性、热效应特性、宽频带特性、散射性、抗低频干扰特性视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。
第一章2、微波传输线:是用以传输微波信息和能量的各种形式传输系统的总称3、T EM波指①无纵向电磁场分量的电磁波称为横电磁波②电矢量和磁矢量都与传播方向垂直TE波指电矢量与传播方向垂直,或者说传播方向上没有电矢量TM波是指磁矢量与传播方向垂直4、特性阻抗:传输线上导行波电压与电流的比值:①Z0= U:)(定义式),乙=厝恰(推出来的),仅由传输线自身的分布参数决定而与负载及信号源无关。
②对于均匀无耗传输线:Z0 =.;③平行双导线传输线的特性阻抗:Z0 =〕丝|门(d为传输线直径,D为间距,E r为相对介电常数,常用的特… d 性阻抗:250 Q , 400 Q , 600 Q )^In b(a,b分别为内外导体半径,常用的特性阻抗:④无耗同轴线的特性阻抗:Z0=50 Q , 75 Q);r :'5、传播常数Y是描述传输线上导行波沿导波系统传播过程中衰减和相移的参数。
, 是衰减常数,dB/m。
是相移常数,rad/m6、输入阻抗是传输线上任意一点Z处的输入电压与输入电流之比,——7、输入阻抗与特性阻抗的关系:Z in(z)=Z0fj茫8 反射系数:传输线上任意一点反射波电压(电流)与入射波电压(电流)的比值,】u = (定义式)U H6z)推出:«z)= r e42(z,其中=乙一Z° = K|e j°(『1为终端反射系数)乙+ Z0合起来就是:F(z)= - e j(^闵(指任一点的反射系数)对于均匀无耗传输线,】⑵大小均等,沿线只有相位按周期变化,周期为一,也就是一重复性()2 2Z -Z 19、对于-1 1 0,①当乞时,丨=0,此时传输线上任一点的反射系数都等于0,称之为负载匹配②当乙=Z0Z21 *Z0时,有反射波,不匹配1+『()10、输入阻抗与反射系数的关系:Z in(z)二Z00■(知道一个就可以推出其他的)1-r(z)11、驻波比:传输线上波腹点电压振幅与波节点电压振幅的比值为电压驻波比驻波比的取值范围是1:::::;当传输线上 无反射时,驻波比为1,当传输线 全反射时,驻波比趋于 无穷大。
简明微波知识点总结
简明微波知识点总结一、微波的产生微波是电磁波的一种,其频率范围通常定义为300MHz至300GHz。
微波的产生主要有以下几种方式:1. 电子运动产生的微波:当高速电子在磁场或者电场中运动时,会产生微波辐射。
这种产生微波的方式叫做“同步辐射”,是一种重要的微波源。
2. 电子射频振荡器产生的微波:电子射频振荡器是一种专门用来产生微波的设备,其工作原理是通过调谐某些特定的谐振频率,使得电子在强电场中振荡产生微波。
3. 微波管放大器:微波管放大器是一种设备,通过将微波信号输入到管中,然后通过电磁场的作用来放大微波信号。
4. 光学激光器产生的微波:激光器可以通过频率加倍或者调制的方式产生微波。
二、微波的特点微波具有一些独特的特性,使得它在很多领域有着广泛的应用:1. 穿透性强:微波在穿透物质时,能力比可见光和红外线更强。
这使得微波可以穿透一些通常不透明的物质,如水、塑料、衣物等。
2. 热效应:微波在物质中的能量损耗主要表现为产生热效应,这种热效应可以被应用于微波加热、烤箱等领域。
3. 反射和折射:微波在遇到边界时,会发生反射和折射现象。
这种特性被广泛应用于雷达、卫星通信等领域。
4. 定向传播:微波可以通过定向天线进行传播,这使得微波通信有着更多的灵活性和可靠性。
三、微波的应用由于微波具有穿透性强、热效应明显、定向传播等特点,使得它在很多领域有着广泛的应用:1. 通信领域:微波被广泛应用于通信领域,如无线电、卫星通信、雷达等。
通过微波通信技术,可以实现远距离、高速、高效率的信息传输。
2. 医疗领域:微波被应用于医学诊断和治疗领域。
如微波成像技术、微波治疗设备等,已经成为现代医疗的重要技术手段。
3. 加热领域:微波加热技术被广泛应用于食品加热、工业加热等领域。
由于微波在物质中的能量损耗主要表现为产生热效应,因此可以实现快速、均匀的加热效果。
4. 安全检测领域:微波成像技术被应用于安全检测领域,如机场安检、建筑结构探测等。
微波理论知识点总结
微波理论知识点总结微波是指波长在1毫米至1米之间的电磁波,它具有许多独特的特性和应用。
微波理论是研究微波的产生、传播、接收和应用的相关理论。
在通信、雷达、无线电频谱、天文学和材料加工等方面都有着广泛的应用。
1. 微波的概念和特性微波是电磁波的一种,波长范围在1毫米至1米之间。
与可见光波长相近,但由于其波长较短,因此具有许多独特的特性。
例如,微波能够穿透云层、雾气和一些障碍物,因此在雷达和通信中有着重要的应用。
此外,微波不会像可见光那样受到大气的散射和吸收,因此可以在大气层中进行远距离的传播。
2. 微波的产生和接收微波可以通过多种方式产生,常见的方法包括使用微波发射器、微波天线和微波放大器等。
微波接收则通过微波接收天线和微波接收器进行。
微波天线的设计对于接收微波信号具有重要影响,通常设计成具有较高的方向性和增益。
3. 微波传播微波在空间中的传播受到地形、大气条件和电磁波干扰等因素的影响。
通常情况下,微波的传播距离受到频率和天线高度的影响,高频率的微波传播距离较短,而低频率的微波传播距离较远。
此外,微波还受到地形和大气层的影响,例如山脉、建筑物和大气湍流都会对微波的传播产生影响。
4. 微波器件和电路微波器件和电路是指在微波频段内工作的元器件和电路。
常见的微波器件包括微波天线、微波滤波器、微波耦合器、微波终端等。
微波电路主要由微波传输线、微波振荡器、微波放大器和微波混频器等组成,用于实现微波信号的处理、分析和放大。
5. 微波通信和雷达系统微波通信和雷达系统是微波技术的两个重要应用领域。
微波通信系统通过微波传输线、微波天线和微波接收器等设备实现无线通信。
雷达系统则利用微波的穿透能力和高精度进行目标探测、跟踪和识别,广泛应用于军事、航空、气象和海洋领域。
6. 微波在材料加工中的应用微波在材料加工中有着广泛的应用,例如微波加热、微波干燥和微波辐照等。
微波加热是利用微波能量对材料进行加热,通常应用于食品加工、化工和材料处理中。
微波技术基础
微波技术基础微波技术是现代通信和雷达系统中不可或缺的技术之一。
它广泛应用于无线通信、卫星通信、雷达探测等领域。
掌握微波技术的基础知识对于从事相关领域的技术人员来说至关重要。
本文将介绍微波技术的基础知识,帮助读者更好地理解和应用微波技术。
一、微波技术的定义和特点微波技术是指利用微波(300MHz-300GHz)进行信息传输和探测的技术。
微波技术具有以下特点:1. 高频特性:微波技术的工作频率较高,能够提供较大的带宽,实现高速数据传输。
2. 穿透力强:微波具有很强的穿透力,可以穿透大气层,适用于远距离通信和雷达探测。
3. 直线性好:微波的传播路径近似直线,适合于直线传播的应用场景。
4. 天线尺寸小:与低频通信相比,微波通信所需的天线尺寸较小,便于集成和应用。
二、微波技术的关键组件微波技术的关键组件包括:1. 微波振荡器:微波振荡器是微波技术中的核心部件,它能够产生稳定的微波信号。
2. 微波放大器:微波放大器用于放大微波信号,提高信号的传输功率。
3. 微波混频器:微波混频器用于实现微波信号与其他信号(如射频信号)的混合,实现信号的调制和解调。
4. 微波天线:微波天线用于发射和接收微波信号,是微波通信和雷达探测的关键组件。
三、微波技术在通信领域的应用微波技术在通信领域的应用广泛,包括:1. 无线通信:微波技术是无线通信技术的重要组成部分,如4G、5G等通信标准都采用了微波技术。
2. 卫星通信:微波技术是卫星通信的关键技术,可以实现全球范围内的通信覆盖。
3. 深空通信:微波技术是实现深空通信(如火星探测、月球探测等)的重要手段。
四、微波技术在雷达探测领域的应用微波技术在雷达探测领域也有广泛应用,包括:1. 雷达探测:微波技术可以用于雷达系统的发射和接收部分,实现目标的探测和跟踪。
2. 气象雷达:微波技术是气象雷达的关键技术,用于气象观测和天气预报。
3. 航空雷达:微波技术在航空雷达中也有广泛应用,如空中交通管制、飞行器探测等。
微波专业理论基础知识
Pfd +sd
=
Pfd I sd
=
Pmf I fd ⋅ Isd
30
•
【例1】现有一数字微波通信系统,某中继段
d=50km,处在C型端面,f=5GHz,自由空间收信电平
Pr0 = -43.6dBm,接收机实际门限电平Pr门= 74.8dBm(BER≤10-3),实际门限载噪比(C实/N固) =23.1dB,系统采用6:1波道备份和二重空间分集接收
4
技术表现 ¾抗干扰能力弱(雨水、温度、电磁等) ¾易受自然灾害影响 ¾容量受限 ¾设备便宜易组网 ¾建设速度快 ¾是光纤网络的补充
5
光纤、微波传输方式比较
传输媒介
光纤 光纤
微波 自由空间
抗自然灾害能力
弱
强
灵活性
较低
高
建设费用
高
低
建设周期 传输速率
长 频带宽、速率高
短 频带窄、速率低
6
微波通信的应用场合
根据查表(6-4)可知 C 型端面的 KQ=2.88×10-5, C=2.2, 并且 B=1,那么由式(6-9)可以计算出:
Pmf
=
2.88×10−5
×5×502.2
−31.2
×10 10
=
0.6×10-3
Pms=
2.88×10−5
×5×502.2
−33
×10 10
=
0
.4×10-3
32
因为采用了二重空间分集接收技术,如果两接 收系统的收信电平相等的话,平衰落储备应比Mf增 加3dB,对应的 0.3×10(-3),那么该中继段的衰 落概率为:
47
组网及监控-监控 9信道利用:微波传输系统专用监控 及公务信道或占用主用信道 9功能:主要完成信道切换、使用状 态报警等功能 9独立性:微波系统的监控可以自成 系统
微波工程基础第1章
波动方程的形式
波动方程的一般形式为▽²E + ₀²c²²E
= 0,其中E是电场强度,₀是真空中的
电常数,c是光速。
02
03
波动方程的解
对于特定的边界条件和初始条件,可
以通过求解波动方程得到电磁波的传
播特性。
微波的导波系统
导波系统的定义
导波系统是指能够引导电
磁波在其中传播的系统,
微波新器件的研发
总结词
详细描述
新型微纳加工技术的发展,新型微波器件如
的应用领域,提升微波系统的性能。
平面天线、集成电路、微波传感器等不断涌
现。这些新器件具有体积小、重量轻、功耗
低等优点,可广泛应用于通信、雷达、导航
、电子战等领域,提升系统的整体性能。
微波系统的集成化与小型化
微波工程基础第1章
目录
• 引言
• 微波基础知识
• 微波器件与电路
• 微波系统与应用
• 微波工程展望
01
引言
微波的定义与特性
微波是指频率在300MHz到300GHz
之间的电磁波,具有波长短、频率高
的特点。
微波具有穿透性、反射性、吸收性和
散射性等特性,这些特性使得微波在
通信、雷达、加热等领域具有广泛的
微波的传输线理论
传输线的定义
传输线是指用来传输电磁波的媒介,如同轴线、波导
等。
传输线的分类
根据结构和工作原理,传输线可分为均匀传输线和非
均匀传输线。
传输线的等效电路
传输线可以用等效电路来表示,其中电导和电感代表
能量损失,电容和电感代表波动效应。
微波的波动方程
波动方程的定义
微波电路设计基础学习知识
1、数字微波应用微波是无线电波的一种。
在我国无线电广播按波长分为:长波(LW波长在介于1000〜2000米,中波(MW)波长在介于200-600 米、短波(SW) 波长在介于10〜100米。
CDMA800 工作波长(35.93~36.36、34.09~34.48 )米。
在我国分配微波频率为:频率M (GHz) 1.52467811131518波- 长(cm)20157.55 4.29 3.75 2.73 2.312 1.67微波通信的特点:视距传输;电波在传播过程中遇到尺寸和工作波长相近的障碍物时,会绕过障碍物向前传播,这种现象叫做电波的绕射。
微波通信建设快、投资小、应用灵活;传输质量可靠,抗干扰能力强。
至今与光缆通信和卫星通信并列为现代通信传输的三大支柱,在中等容量的网络中,微波传输是一种最灵活、适应性最强的通信手段。
在移动网络中的应用:在移动接入网络中,随着网络不断扩容和无缝覆盖的需求,新建了大基础量移动基站,如城区的“楼宇室内覆盖”,边远地区的“边际网覆盖”,沿海地区“海岛移动覆盖”。
但由于市政建设限制(如架空线难、开挖路面铺管道难),在自然环境很恶劣的山区和海洋,光缆建设非常困难、造价太高,造成大量光纤死角,部分基站的接入必须采用无线方式解决,产生了大量无线传输需求。
如沿海城市大连,拥有诸多的岛屿,岛屿上的移动通信成为大连移动提高移动网络覆盖率的重要任务。
大连采用SDH微波作为各海岛移动基站的中继链路,并通过与光传输系统的连接,组成完整的传输网络。
SDH微波链路干线全长162.28公里,支线全长66.68公里,最长站距34.80公里,最短站距6.89公里,平均站距19.08公里,且全部为跨海电路(跨海微波链路的设计,由于海面环境和气候情况复杂,通常是所有微波应用中难度最大)。
使用微波设备不仅可以缓解传输网络资源不足的压力。
而且提高了整个网络工程进度,降低了整个网络投资。
在移动核心网络中,微波设备可提供高达2.5Gbps的传输容量,用来与光纤混合组网,作为城域光环和重要链路的备份。
《微波知识培训》课件
微波滤波器通常采用电抗元件和传输线结构,根据不同的设 计要求,可实现带通、带阻和陷波等不同的频率响应特性。
微波混频器
总结词
微波混频器是用于将两个不同频率的 信号转换为另一个频率的电子器件, 其工作原理是通过非线性效应将两个 信号相互调制。
详细描述
微波混频器通常采用固态电子器件, 如晶体管或场效应管,通过将两个不 同频率的信号输入到混频器中,实现 频率的变换和信号的解调。
微波的应用领域
总结词
微波的应用领域非常广泛,包括通信、 雷达、导航、加热、医学诊断和治疗等 。
VS
详细描述
在通信领域,微波用于无线通信、卫星通 信和光纤通信等领域,是现代通信的重要 手段之一。在雷达和导航领域,微波用于 目标检测、定位和导航等。在加热领域, 微波用于微波炉、物料干燥、物料熔化和 化学反应等领域。在医学领域,微波用于 医学成像、肿瘤治疗和疼痛缓解等。
微波振荡器
总结词
微波振荡器是产生微波信号的电子器 件,其工作原理是将直流电能转换为 微波能量。
详细描述
微波振荡器利用非线性效应,如谐波 产生、调频或反馈放大,在微波频段 产生振荡信号。常见的微波振荡器有 晶体振荡器和负阻振荡器等。
微波放大器
总结词
微波放大器是用于放大微波信号的电子器件,其工作原理是通过增加信号的幅度 来提高信号的功率。
详细描述
微波放大器通常采用固态电子器件,如晶体管或场效应管,利用其放大功能对微 波信号进行放大。根据工作频段和用途,微波放大器可分为低噪声放大器、功率 放大器和中频放大器等。
微波滤波器
总结词
微波滤波器是用于选择特定频率信号的电子器件,其工作原 理是通过设计特定的频率响应来选择性地传输或抑制特定频 率的信号。
射频微波(知识点)
一、射频/微波技术及其基础1、射频/微波技术的基础 ✓ 什么是微波技术研究微波的产生、放大、传输、辐射、接收和测量的科学。
射频/微波技术是研究射频/微波信号的产生、调制、混频、驱动放大、功率放大、发射、空间传输、接收、低噪声放大、中频放大、解调、检测、滤波、衰减、移相、开关等各个电路及器件模块的设计和生产的技术,利用不同的电路和器件可以组合成相应的射频/微波设备。
微波技术主要是指通信设备和系统的研究、设计、生产和应用。
✓ 微波技术的基本理论是以麦克斯韦方程为核心的场与波的理论2、射频/微波的基本特性✓ 频率高、穿透性、量子性、分析方法的独特性射频频段为30 ~ 300MHz ,微波频段为300MHz ~ 3000GHz ,相对应波长为1m ~0.1mm ,照射于介质物体时能深入到该物质的内部。
根据量子理论,电磁辐射能量不是连续的,而是由一个个的“光量子”组成,单个量子的能量与其频率的关系为e = h ·f式中,h = 4×10-15电子伏·秒 (eV ·S) 成为普朗克常数3、射频/微波技术在工程里的应用✓ 无线通信的工作方式1、单向通信方式通信双方中的一方只能接收信号,另一方只能发送信号,不能互逆,收信方不能对发信方直接进行信息反馈2、双向单工通信方式3、双向半双工通信方式通信双方中的一方使用双频双工方式,可同时收发;另一方则使用双频单工方式,发信时要按下“送话”开关。
4、双向全双工通信方式通信双方可以通信进行发信和收信,这时收信与发信一般采用不同的工作频率,通-讲 开关按-讲 按-讲 受话器受话器二、电磁波频谱12、射频/✓GSM900系统的频道配置GSM-900系统采用等间隔方式,频道间隔为200KHz,同一信道的收发频率间隔为45MHz, 频道序号和频道标称中心频率的关系为F上行(n)= 890.2 +(n-1)×0.2 MHzF下行(n)= F上行(n)+ 45 MHz式中:频道序号 n = 1 ~ 124在我国的GSM900网络中,1~94号载频分配给中国移动使用,96~124号载频分配给中国联通使用,95号载频作为保护隔离,不用于业务。
微波理论和工程的基础知识
V SWR
| (z ) | 1 1
Z(z ) 1 j tan (z z) j tan (z z)
U(z )
mzx
U(z )
m in
第1章 微波理论和工程的基础知识
从表1-2-1 (1)三个工作参数的值之间是相互联系的。 (2)无耗传输线上任一点处的反射系数的模值为常数,
等于负载ZL处的反射系数ΓL(尽管线上距离负载电长度
1.1.1 麦克思韦方程组 电磁波的运动规律遵从19世纪给出的麦克思韦方程组,
是英国科学家麦克思韦对法拉第(Faraday)等前人的实 验成果的总结和发展。麦克思韦方程组是描述宏观电磁场 规律的基本方程。微分形式的麦克思韦方程组在空间中的 任何一点都成立,它由以下四个方程组成:
第1章 微波理论和工程的基础知识
第1章 微波理论和工程的基础知识
E jB
(1-1-10)
H jD J (1-1-11)
D
(1-1-12)
B 0
(1-1-13)
【注意】这里的复数量是前文瞬时值的有效值,它们
不再是时间的函数,但仍然是位置的函数。这种选择的理
由是:①在实际工程中,这些物理量通常是用有效值来标明
或测量的;②复数功率和能量的方程能同它们的瞬时值对
第1章 微波理论和工程的基础知识
一个工作在边界Γ包围的区域Ω内的实际工程问题中
(1)第一类边界条件,也称为狄利克莱(Dirichlet) 边界条件。这种边界条件直接给出变量在边界上的值:
U 1 U1
(1-1-16)
式中,Γ1为第一类边界,U1为已知函数,可以为常数或0。
第1章 微波理论和工程的基础知识
应式保持同样的比例因子。
第1章 微波理论和工程的基础知识
微波技术常考知识点
微波技术常考知识点一、知识概述《微波技术常考知识点》①基本定义:微波就是频率在300MHz - 300GHz之间的电磁波。
简单说吧,就像咱们手机通信或者微波炉加热用的那种电磁波,不过它的频率范围是特定的这么一段。
②重要程度:在电子信息工程之类的学科里可是相当重要的。
它是现代通信、雷达等多种技术的基础。
就好比盖房子,微波技术就是那些很关键的砖头。
如果不懂这个,好多关于无线技术的东西就理解不了。
③前置知识:你得先掌握基本的电磁学知识,像电场、磁场是咋回事,麦克斯韦方程组(虽然不用精通到能推导,但是大概原理要知道)。
还有就是简单的电路知识,毕竟微波也涉及到能量传输啥的。
④应用价值:实际应用太多了。
微波炉就是很常见的例子,微波在炉子里不断来回反射,让食物的水分子跟着它振动,就把食物加热了。
还有通信方面,像4G、5G网络很多频段都是微波频段,能把咱们手机的信息快速传出去传回来。
二、知识体系①知识图谱:微波技术在整个电子通信相关学科里像是一个枢纽。
它连接着各种无线通信、雷达探测,一边连着基础的电磁理论,一边又关联着很多复杂的系统工程。
②关联知识:和电磁场理论关联可紧密了,很多公式都是从电磁场那些理论推导来的。
还有和电路知识也有关,像微波电路就涉及到传统电路理论的一些延伸。
跟通信原理更是离不开,因为微波就是通信的一种传输载体。
③重难点分析:掌握难度就在于它concept(概念)不容易理解得透彻。
像波导(一个特殊的能让微波传输的部件),概念理解起来有点抽象。
关键点就是要弄清楚微波在各种传输部件中的特性。
④考点分析:在考试里可以说非常重要。
考查方式么,很多都是考微波的特性、传输参数,有时候还会出一些关于微波电路设计的小题目。
比如出个微波某部件的传输损耗相关题目。
三、详细讲解【理论概念类】①概念辨析:比如微波的波长这个概念。
微波波长很短,在毫米到分米这个量级。
它决定了很多微波的特性,像在小尺寸的天线里,短波长的微波就能方便地让天线实现小型化。
微波技术基础知识
传输媒质为空气和介质的非均匀媒质,微带线的电磁场存 在纵向分量,不能传播纯TEM波。
但是,主模的纵向场分量远小于横向场分量。因此, 主模具有纯TEM相似的特性; 纯TEM的分析方法也对微带线适用。 ———准TEM近似法
D. D. Grieg and H. F. Englemann, “Microstrip—A New Transmission Technique for the Kilomegacycle Range,” Proc. IRE, Vol. 40, pp. 1644– 1650, Dec. 1952.
微波集成传输线-微带线
最后,抑制波导模和表面波,保证单模传输为
min
r (2W 0.8h) 4 r 1h
微带线设计中,金属屏蔽盒高度取H ≥(5 ~ 6)h, 接地板宽度取L≥(5 ~ 6)W
微波集成传输线-微带线
有效相对介电常数→准TEM波引入的
H. A. Wheeler, Transmission-line properties of parallel wide strips by a conformal mapping approximation, IEEE Trans. Microwave Theory Tech. 12:280–289 (May 1964).
五种重要的传输线:
指元器件、传输线导带等 在同一平面
带状线(Stripline)
注意耦合线结构
微带线(Microstrip line)
槽线(Slotline) 鳍线(Finline) 共面线(Coplanar line)
微波知识点总结
微波知识点总结微波是一种电磁辐射波,其频率范围通常被定义为30GHz到300GHz之间。
微波技术在通信、雷达、天文学、材料处理和烹饪等领域有着广泛的应用。
本文将介绍微波的基本原理、特性、应用和安全注意事项。
一、微波的基本原理微波是一种电磁波,其频率高于无线电波和低于红外线波段。
微波的波长通常在1mm到1m之间,因此它们的波长比可见光长得多,而比无线电波短得多。
微波的产生主要有两种方式,一种是通过天线接收自然界中产生的微波,另一种是通过电子设备产生微波。
在接收自然界中产生的微波时,需要用到微波接收天线和微波接收机。
而在电子设备中产生微波时,则需要用到微波发射器。
微波的传播主要有两种方式,即自由空间传播和波导传播。
自由空间传播是微波通过空间传播,而波导传播则是微波通过波导进行传播。
自由空间传播适用于空间通信和雷达系统,而波导传播适用于微波通信和微波设备中的微波传输。
二、微波的特性1. 与电磁波的相互作用微波的传播特性主要受其频率和波长的影响。
由于微波的波长较短,它们可以更好地适应高频信号的传输,因此在通信和雷达系统中有着重要的应用。
2. 高频率微波的频率通常在30GHz到300GHz之间,因此它们具有较高的穿透能力和分辨率,可以用于无线通信、雷达探测和医学诊断等领域。
3. 衰减特性微波在大气中的传播会受到吸收、散射和折射等因素的影响,因此它们的传播距离比较有限。
此外,微波在大气中的传播过程中还会受到气候条件和大气层的影响,因此在无线通信和雷达系统中需要对其进行信号处理和校正。
4. 穿透性微波在一些特定的材料中具有较强的穿透能力,如玻璃、陶瓷和塑料等材料,因此它们可以被用于材料处理和医学成像中。
5. 辐射微波可以被用于辐射加热和干燥,其能量可以迅速转化为热能,因此在食品加热和化工生产中有着广泛的应用。
三、微波的应用1. 通信微波通信是一种通过微波进行传输的无线通信技术,其传输距离较远且传输速度快,因此在移动通信和卫星通信中有着广泛的应用。
微波技术总结知识点
微波技术总结知识点微波技术的基本原理微波是电磁波的一种,波长短于毫米级的电磁波称为微波。
微波技术利用微波进行通信和处理信号,主要包括微波通信技术、微波信号处理技术以及微波器件技术。
微波通信技术是指利用微波进行通信的技术,通常采用微波天线和微波谐振器等设备来传送和接收信号。
微波通信技术在军事和民用领域都有着广泛的应用,可以实现远距离、高速率和大容量的数据传输。
微波信号处理技术是指利用微波对信号进行处理的技术,包括微波滤波器、微波放大器、微波混频器等器件。
这些器件可以对信号进行放大、滤波、混频等操作,以满足不同的通信需求。
微波器件技术是指用于处理微波信号的器件技术,主要包括微波天线、微波电路、微波集成电路等。
这些器件可以完成微波信号的发送、接收和处理,是微波技术的重要组成部分。
微波技术的应用领域微波技术已经广泛应用于通信、雷达、医疗、无线电视、卫星通信等领域,使得这些领域的设备更加高效、精密和方便。
下面将分别介绍微波技术在这些领域的应用。
在通信领域,微波技术主要应用于微波通信系统、微波网络和微波设备中。
微波通信系统利用微波进行信号传输,可以实现高速率和大容量的数据传输,适用于长距离通信。
微波网络是指采用微波进行连接的通信网络,可以覆盖大范围的区域,适用于城市和农村的通信需求。
微波设备包括微波发射器、微波接收器和微波天线等设备,可以实现对微波信号的发送、接收和处理。
在雷达领域,微波技术主要应用于雷达系统、雷达信号处理和雷达器件中。
雷达系统利用微波进行目标检测和跟踪,可以实现对目标的远程监测和控制。
雷达信号处理是指对雷达信号进行处理和分析,以获得目标的位置、速度等信息,是雷达系统中的重要环节。
雷达器件包括雷达天线、雷达电路和雷达传感器等器件,可以实现对雷达信号的发送、接收和处理。
在医疗领域,微波技术主要应用于医疗设备、医疗通信和医疗图像处理中。
医疗设备利用微波进行医疗诊断和治疗,可以实现对人体的无损检测和治疗。
天线和微波技术基础知识概述
天线和微波技术基础知识概述天线和微波技术是现代通信领域中非常重要的组成部分。
天线作为接收和发射无线信号的关键装置,而微波技术则主要用于传输和处理高频率的电磁信号。
本文将对天线和微波技术的基础知识进行概述,以帮助读者加深对这一领域的了解。
一、天线基础知识1. 天线的定义和作用天线是一种通过电磁辐射和感应的方式,将电磁信号转换为自由空间中的电磁波,或者将电磁波转换为电信号的装置。
它负责将信号从发射源传输到接收源,或者将接收到的信号转换为电信号。
2. 天线的分类根据天线的形式和使用场景,可以将其分为多种类型,如:(1)微带天线:用于无线通信和雷达系统,具有体积小、重量轻、成本低的优点。
(2)偶极子天线:应用广泛,适用于各种频率范围和工作环境。
(3)扩展频带天线:可以在多个频段上工作,适应不同通信需求。
(4)阵列天线:通过组合多个天线单元,实现波束和指向性辐射。
(5)喇叭天线:用于辐射高功率无线信号,可在长距离范围内传输。
3. 天线参数天线的性能主要由以下参数来衡量:(1)增益:表示天线向某个方向传输/接收信号的能力,可以通过增加天线尺寸或精心设计来提高。
(2)方向性:指示天线向某个方向辐射/接收信号的能力,可以通过改变天线结构来实现。
(3)驻波比:用于衡量天线的适配性和效率,一般要求越小越好。
二、微波技术基础知识1. 微波的概念和特点微波是一种频率范围在300 MHz至300 GHz之间的电磁波,具有高频率、短波长和较强的穿透能力。
微波技术在无线通信、雷达、卫星通信等领域有着广泛的应用。
2. 微波器件和系统(1)微波集成电路(MIC):它是一种将微波元器件(如传输线、滤波器、放大器等)集成在同一芯片上的技术,可以实现尺寸小、性能优越的微波电子元器件。
(2)高频开关:用于控制微波信号的通断,具有快速响应、低损耗的特点。
(3)微波天线系统:结合天线和微波技术,用于将微波信号进行传输和接收。
(4)微波滤波器:用于筛选和处理特定频率范围内的微波信号,以满足通信系统的要求。
微波基础知识..
•
微波通信系统框图
信 源
信 源 编 码
发信 基带 处理
调 制
上 变 频
功 率 放 大
滤 波
天 馈 系 统 传输媒介
同步系统
收 信
信 源 解 码
收信 基带 处理
解 调
下 变 频
低 噪 声 放 大
滤 波
天 馈 系 统
第一章、微波基础知识
微波无线通信系统组成 1. 收发信机
2. 调制解调单元
3. 天馈系统 4. 各种不同的配置(1+0/N+1,同频/异频)
第一章、微波基础知识
传输速率及容量:
Line Rate (Mb/s)
2.048 8.192 16.384 34.368 51.84 155.52 622.08 2488.32 Sub-STM-1 STM-1 STM-4 STM-16
0.8 f I 10Fd / 10 f *d f
式中:Δf/f-两个频率之差与中心频率的比值。 公式中其它参数的取值范围如下: 2GHz≤f≤11GHz; 30km≤d≤70km; Δf/f≤5 %. 超出这个范围将导致误差。该公式仅仅对于I≥5有效。
第一章、微波基础知识
副瓣
半功率角
侧视图
第一章、微波基础知识
Байду номын сангаас
微波传播自由空间损耗
可见频率提高一倍或距离增加一倍,自由 空间损耗都将增加6dB
第一章、微波基础知识
第一章、微波基础知识
如收发两点T、R相距d,另一动点P,并PT+PR=d+nλ/2(λ为工作 波长),此动点在平面上轨迹为一椭圆。它以TR为轴旋转就构成 一椭球,这椭球的内部空间称为第n菲涅尔区(Fn)。P点(椭 球上的动点)至TR垂直线段PO为路径TR上O点的第一菲涅尔半 径。当d及λ一定时,在同一路径TR不同点上,Fn的大小是不同 的,以路径中点的Fn最大。当n=1时为第一菲涅尔区和第一菲 涅尔半径F1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1+1 PASOLINK ODU(带分支单元)的安装图
1+0 PASOLINK ODU的安装图
b:采用软波导连接的方式(如图):适用于口径大于0.6m的天线,先将ODU安装到
ODU安装支架上,ODU安装支架与天线馈源之间采用软波导连接。安装时必须保证 ODU的极化方向、ODU安装支架的极化方向、天线的极化方向三者一致。
微波基础知识学习
谭国江制
2006年4月
系统组成
1. 单端和站点配置 无保护的单端(1+0)的配置包括: 一个射频单元(ODU) 一面天线 同轴电缆 一个室内单元(IDU)
有中继站微波传输系统
1.1天线 在微波通信系统中,它的通信方式是点对点的接力通信。信号从一点的发信机能 够传到另一点的收信机,这两点之间传输的电磁波是离不开天线的。天线性能的 好坏,将直接影响到通信质量。如果天线出现问题,进行检修与处理时常常都要 中断业务,在日常维护中天线也是微波传输部门维护重点。它的基本功能是沿馈 线传播的电磁波变为自由空间传播的电磁波或将自由空间传播的电磁波变为是沿 馈线传播的电磁波。所以说,天线是电磁波的出口和入口。对天线的基本要求是 天线效率高,旁瓣电平低,交叉极化鉴别率高,电压驻波比低,工作频带宽,现 在微波通信系统中常常采用的是卡塞格伦天线。 PASOLINK天线包括直径0.2m到1.8m的全套系列。它们具有极好的机械稳定性。 所有0.2m到1.8mPASOLINK天线不需用波导就可直接安装到ODU上,这样可节省 费用,提高安全性,安装更快更容易。采用PASOLINK的杆式安装结构,在更换 ODU时毋须变动天线和安装架,包括定向器。天线的反射罩涂有白色的漆,安装 架为热浸合的镀锌结构。
Pasolink系统有无保护1+0和保护1+1两种结构。保护系统对重要的系统单元进行备份以提高系统 的性能。无保护系统的室内单元高度为1RU,可直接安装到标准的19”机架上。保护系统的1+1室 内单元高度为2RU。 1+1保护系统的室外安装方式有两种。一种为利用RF混合电路作分支电路的单面天线型,另一种 为两面天线无分支单元的结构,两面天线直接安装在室外单元上。这两种情况下使用的室外单元 与1+0系统时使用的室外单元是一样的,即1+1系统与1+0系统的室外单元是通用的(参见图)。
2.1 室内单元(IDU)概述 室内单元(IDU)作为Super Star CFM微波系列产品的主控部件将提供以下功能: l l l 与室外单元(ODU)和用户端设备相连接 对本地和远端进行管理 为ODU供电
室内单元的MDP将信号转换成4PSK 中频电平或者相反。利用插入技术形成一个数字 勤务信道(DSC),PCM编码提供一个VF信道。用LSI,VLSI和集成电路技术把所有的数 字处理功能组合在印刷电路板上。室内单元的详细框图见图
-50
-55
-60
-65
-70
-75
-80
-85
-90
表2. ODU BNC口的电压与接收电平对照表
天线与ODU的连接
NEC的ODU与天线的连接方式有两种: a:直接连接的方式(如图):适用于口径为0.3m和0.6m的天线,采用这种连接方式,节省 了成本(软波导),且减少了因使用软波导带来的插入损耗。安装时必须保证ODU的极化 方向与天线的极化方向一致。
44.7
46.0
46.9
1.8m
40.3
45.0
46.0
48.0
49.4
-
表1. 天线的频段、口径及其增益对应表
方向图:它显示出天线在不同方向辐射的相 对大小。
VRSSI (V)
1.15
1.05
0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
PRx (dBm )
-40
-45
1.2对天线的主要要求
天线增益:用来表示天线集中辐射的程度
7/8GHz 天线口径 增益(dBi) 13GHz 15GHz 18GHz 23GHz 24/26GH z
0.3m
-
30.8
31.9
34.0
34.9
36.0
0.6m
30.4
35.5
36.6
38.7
40.1
41.1
1.2m
36.9
41.5
42.6
ODU与天线采用软波导连接
天线的调节
为了调整最佳天线方向,NEC提供数字万表表电缆用于连接数字万用表和ODU。这种类型的电缆在一 端是BNC接头,另一端有一对接线柱。BNC接头连接到ODU的RSSI测试口的BNC接口上,接线柱连 接到万用表。 调整天线的方法(:天线安装时,先将一跳的两个站的天线分别对准对站,在设备加电的情况下,将 调整天线用的万用表电缆接到ODU的RSSI接口和数字万用表上。一个站的天线先不动,先调整另一个 站天线的水平方位使数字万用表上的电压值最大后,锁定水平方位的螺母;再调整天线的俯仰使数字 万用表上的电压值最大后,锁定俯仰的螺母。再调整另一个站的水平方位和俯仰,方法同前。照以上 方法反复调整两个站的水平方位和俯仰,直到数字万用表上的电压出现最大值后,最后锁定天线的方 位和俯仰的螺母,天线调整完毕。值得注意的是两面天线都必需工作在天线的主瓣上,一般说副瓣较 窄, 作为额外的附件,地杰公司提供通用的安装托架以便天线可固定在不同直径的抱杆上。所有类型天线 的方位角均从0-360°可调,仰角±15°可调。天线定位粗略调整和精细调整时需使用万用表。
1.5:接地与防雷
NEC公司不提供任何外部专门的接地附件,在安装地点通常可找到一种合适的接地方式。 注意:因为IDU未通过电源接地,所以要求必须通过IDU前面板的接地螺栓来强制实现。 请注意所有器件的可靠接地是完成正常操作和雷击保护的前提。ODU和IDU最好使用同一套 的接地系统。对于中频电缆接地推荐使用低端接地,如果电缆很长,建议每50m做1个接地。 IDU和ODU都内置有合理的浪涌和过压保护装置。安装时需在杆塔顶端设置避雷针,它可以保 护从避雷针顶端到地的45度角的圆锥体空间。天线不要固定在塔的顶端。 通常地线的安装要求尽量短且直。
同轴电缆
收发信单元(ODU)和基带(IDU)间用同轴电缆连接。同轴电缆可传输I/O数据信号 ,DC电源,告警信号,TX功率,频率和TX功率控制信号,RX电平和ODU初级电压监 测信号和一对公务话(OW)信号。根据电缆型号的不同,IDU—ODU间的电缆长度最长可 达450m。 由于TX(850MHz)和RX(70MHz)中频(IF)不同,所以只需一根同轴电缆。这样使得设备 安装更快更容易。
管理系统
电脑桌面:开始→程序→附件→通讯→超级终端→名称随写/确定→连接时使用选 COM1/确定→每秒位数选9600/确定→文件→属性→设置→ASC11码设置→选以挽行 符作为发送行末尾/确定 键入ctrl D ↓ (回车) Password 口令 Change PASSSWORD?(No:0/Yes:1) 选0 ↓ (回车) 改变口令 1.Setting 2.Maintenance 3.Monitoring 4.Exit Select Function:3 Monitoring 1.data 2.alarm/starus 3.Menu 4.Exit 设置 维护 监视 退出
HOGH BER ALM(No.1/No.2) (alarm:-/-) 高误码告警 LOW BERALM(No.1/No.2) (alarm:-/-) 低误码告警 BER ALM(No.1/No.2) (alarm:-/-) 误码告警 MOD ALM(No.1/No.2) (alarm:-/-) 调制告警 DEM ALM(No.1/No.2) (alarm:-/-) 解调告警 ACL ALM(No.1/No.2 (alarm:-/-) 告警控制逻辑告警 OPR ALM(No.1/No.2) (alarm:-/-) 工作告警 MDP CPU ALM(No.1/No.2) (alarm:-/-) MDP单元CPU告警 Miss Match(No.1/No.2) (alarm:-/-) 失配 Software Version (Ver:1.00/1.70) 软件版本 Press any key to continue---
Select Item No:1
选择项目
1.Monitoring of data 监视数据 ODU primary power supply voltage1 :4.10V ODU电源监视电压1 transmitter power1 :0.00V 发信功率1 receiving level1 :3.20V 收信电平1 ODU primany power supply voltage2 :4.12V ODU电源监视电压2 transmitter power2 :3.98V 发信功率2 receiving level2 : 3.23V 收信电平2
OUTPUT LOSS1-16 (alarm ) 输出丢失1-16 WS INPUT LOSS (alarm:-) 旁路输入丢失 WS AIS RCVD (alarm:-) 旁路告警指示信号接收 WS AIS SEND (alarm:-) 旁路告警指示信号发送 WS OUTPUT LOSS (alarm:-) 旁路输出丢失 34M INPUT LOSS (No.1/No.2) (alarm:-/-) 34M信号输入丢失 34M AIS RCVD (No.1/No.2) (alarm:-/-) 34MAIS信号接收 34M AIS SEND (No.1/No.2) (alarm:-/-) 34MAIS信号发送 34M OUTPUT LOSS (No.1/No.2) (alarm:-/-) 34M信号输出丢失 Press any key to continue 按任意键继续 (continueing Monitiring of alarm/status) TX DPU CLKLOSS(No.1/No.2) (alarm:-/-) 发DPU时钟丢失 RW DPU CLK LOSS(No.1/No.2) (alarm:-/-) 收DPU时钟丢失 TX CLK LOSS1-4 (alarm:----) 发时钟丢失1-4 RX CLK LOSS1-4 (alarm:----) 收时钟丢失1-4 34M TX CLK LOSS(No.1/No.2) (alarm:-/-) 34M发时钟丢失 34M RX CLK LOSS(No.1/No.2) (alarm:-/-) 34M收时钟丢失 MUX ALM 1-4.(No.1/No.2) (alarm:----/----) 复接告警1-4 TX DPU ALM(No.1/No.2) (alarm:-/-) 发DPU告警 FSYNC ALM(No.1/No.2) (alarm:-/-) 帧同步告警