非晶材料文献综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科生毕业设计(论文)文献综述文献综述题目:Ti基非晶合金的制备以及低温力学性能
*名:**
学院:材料学院
班级:04320701
指导教师:***
Ti基非晶合金的制备以及低温力学性能文献综述
1.非晶合金
1.1非晶合金概述
非晶合金材料是20世纪后期材料学领域发展迅速的新型材料,是亚稳金属材料的重要组成部分。从组成物的原子模型考虑,物质可分为两类:一类为有序结构,另一类为无序结构。晶体为典型的有序结构,而气态,液态和非晶态固体都属于无序结构。在非晶体中的原子,分子的空间排列不呈现周期性和平移对称性,晶态长程有序受到破坏,知识由于原子间的相互关联作用,使其在几个原子间距的区间内仍然保持着有序特征,即具有短程有序,人们把这样一类特殊的物质状态统称为非晶态[1]。
非晶合金长程无序但短程有序,是指原子在空间排列上不呈周期性和平移对称性,但在1-2nm的微小尺度内,与近邻或次近邻原子间的键合具有一定的规律性。短程有序可分为化学短程有序和几何短程有序。化学短程有序是指合金元素的混乱状态,即每个合金原子周围的化学成分与平均成分不同的度量;几何短程有序包括拓扑短程序和畸变短程序。非晶合金的微观结构与液态金属相似,但又非完全相同,液态金属的短程有序范围约为4个原子间距,而非晶合金约为5-6个原子间距,前者中原子可以做大于原子间距的热运动,后者的原子主要做运动距离小于一个原子间距的热运动。非晶合金结构特征可以用径向分布函数RDF(r)=4πr2ρ(r)加以描述。它表示以某个原子为中心,在半径r,厚度为d(r)的球壳内的平均原子数。非晶合金的RDF(r)上出现清晰的第一峰和第二峰,没有可分辨的其它峰出现。在X射线衍射谱上,不存在晶体所特有的尖锐衍射峰,而是出现宽展的馒头峰。它的电子衍射花样是由较宽的晕和弥散的环组成,不存在表征晶态的任何斑点和条纹[2]。
1.2非晶合金与块状非晶合金的发展历史
历史上第一次制备出非晶的是Kramer于1938年利用蒸发沉积的方法实现的,此后不久,Brenner等声称用电沉积法制备出了Ni-P非晶合金。1960年
Duwez等人用快速凝固方法第一次制备出了Au
75Si
25
非晶合金,这标志了非晶
合金的诞生,这种快速凝固法是将Au
75Si
25
金属直接喷射到Cu基底上直接激冷
得到的,这也开创了熔体激冷技术制备非晶合金的历史[3]。美国物理学家Turnbull[4]通过水银的过冷实验,提出了液态金属可以过冷到远离平衡熔点以下而不产生形核与长大的结论。根据他的理论:如果冷却速度足够快,温度最够低,几乎所有材料都能形成非晶态固体。而且他的研究中还发现Au-Si合金系中最容易形成金属玻璃的成分范围是在Au-Si的二元合金的热力学平衡共晶点附近,并提出了著名的评价合金系非晶形成能力的判据,即约化玻璃转变温度Tg/Tm。这一判据的提出为寻找其他高非晶形成能力合金系提供了非常有效的指导。
上世纪70-80年代时期,非晶合金主要集中研究Fe基,Nd基等非晶薄带和细丝上,但是形成非晶所必需的高冷却速率限制了非晶的几何尺寸,固限制了非晶合金的进一步应用。大块状非晶合金由此衍生出来。1974年Chen[5]等人用吸铸的方式制备出了世界上第一块毫米级的Pd-Cu-Si块状非晶合金,
1982年Turnbull等人采用[6]B
2O
3
对Pd
40
Ni
4
0P
20
合金熔体进行渣化处理以抑制合
金中非均质形核,临界冷却速度仅为10K/s,这是由于通过净化去除了合金熔体的杂质,从而避免了冷却过程中的异质形核。而大块非晶合金的真正突破是在20世纪90年代,日本Inoue研究组[7]和美国W.L.johnson研究组[8]各自独立研制出了一系列多元块状非晶合金。最具代表性的是Zr-Ti-Cu-Ni-Be合金体系,非晶形成能力已接近氧化物玻璃。实验得出了两点结论,一是非贵重金属元素为主的多元合金组合通过合理的成分设计也可以得到BMG,二是在普通铸造条件下就可以得到BMG,这也是BMG得以产业化生产,标志着非晶合金的研究从以提高冷却速度为主的时代过渡到了一成分设计为主的BMG时代,非晶合金有了一个十分光明的前景。
近年来,非晶合金发展也是十分迅速的,美国橡树岭国家实验室的吕昭平和C.T.Liu教授制备了厘米级的非晶钢,中科院物理所得汪卫华老师带领的研究小组做出了具有超大塑性的Zr基大块非晶合金。清华大学姚可夫老师的研究小组做出了超大塑性Pd基大块非晶合金。
1.3非晶合金的性能
非晶合金由于具有短程有序而长程无序的结构特点决定了其优异而独特的力学电磁学及耐腐蚀性能性能。首先来说,相同成分的块状非晶合金与晶态合
金相比,具有较低的弹性模量,但其弹性应变量可达2%左右,而晶体材料总是小于1%;而且,非晶合金具有极高的弹性比功,Zr基块状非晶合金的弹性比功为19.0MJ/m2 而弹性最好的弹簧钢弹性比功仅为2.24 J/m2 [9]。在Tg温度以上的过冷液态温度区域,非晶态合金表现出高应变超塑加工能力,如Zr基合金最大的延伸率为350%,La基为20000%,Fe为240%。而在温度远低于Tg 温度时,非晶态合金则表现出比晶态材料高2—3倍的断裂强度以及硬度[10]。
此外,Fe-Si-B等非晶合金具有优异的软磁性能,其磁损小,电阻率大可以替代传统硅钢片制作的电力变压器,并且大大降低了铁损耗。
1.4非晶合金的形成原理
合金熔体在降温过程中产生非晶相是一个受到动力学影响的基本平衡转变,在性质上接近二级相变。形成非晶相是与形成晶相(包括平衡相与亚平衡相)相竞争的过程,要使合金形成块体非晶,首先应使其合金熔体具有合理结构,这种结构与合金的种类、组元原子半径差及原子问的化学交互作用有关,决定了非晶形成过程中的热力学和动力学;其次,应有适当高的冷却速度;减少或消除异质形核[11]。
首先来说,临界冷却速度是公认的衡量玻璃形成能力的最重要的指标,适用于描述任何
体系的玻璃形成能力。临界冷却速率Rc=(Tm-Tn)/tn (式中Tm为合金熔点,Tn 和tn分别为鼻尖处所对应的温度与时间),当以高于临界冷速的冷却速度降温时,将会避免结晶,从而得到非晶组织。因此,临界冷速足越小,玻璃形成能力越强。由于Tn和tn均难以直接得到。用上式精确计算Rc有困难。因此可以用下式来确定临界冷却速率:
式中R是冷却速度,b是与材料有关的常数,T
l c熔化结束温度,T
xc
是凝固开始温
度。
非晶合金的形成过程就是抑制晶体形核和长大的过程。晶体的形核过程主要受制于2 个互相竞争的因素: 原子构形由液态转化为固态引起的自由能的变化,这个因素是晶胚不断长大的驱动力; 晶胚形成后导致液/固界面存在