中考数学专题复习:图形的变换

合集下载

2024年中考数学二轮专题复习之图形变换(简单)

2024年中考数学二轮专题复习之图形变换(简单)

中考二轮专题复习之 图形变换 知识点归纳 考点一:对称有关概念 1.轴对称 (1). 如果一个图形沿一条直线对折,对折后的两部分能 ,那么这个图形就是 ,这条直线就是它的 .(2). 如果一个图形沿一条直线折叠,如果它能与另一个图形 ,那么这两个图形成 ,这条直线就是 ,折叠后重合的对应点就是 .(3).如果两个图形关于 对称,那么对称轴是任何一对对应点所连线段的 .2.中心对称(1). 把一个图形绕着某一个点旋转 °,如果旋转后的图形能够与原来的图形 ,那么这个图形叫做 图形,这个点就是它的 .(2). 把一个图形绕着某一个点旋转 °,如果它能够与另一个图形 ,那么就说这两个图形关于这个点 ,这个点叫做 .这两个图形中的对应点叫做关于中心的 .(3). 关于中心对称的两个图形,对称点所连线段都经过 ,而且被对称中心所 .关于中心对称的两个图形是 图形.(4). 两个点关于原点对称时,它们的坐标符号 ,即点),(y x P 关于原点的对称点1P 为 . 对应训练1、如图,一只小狗正在平面镜前欣赏自己的全身像,此时,它所看到的全身像( )2、如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为( )A.①③B. ①④C.②③D.②④3、已知∠AOB=30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点所构成的三角形是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形4、如图,AD 是ΔABC 的中线,∠ADC=45°,把ΔADC 沿AD 对折,点C 落在点C ′的位置,则BC′与BC 之间的数量关系是 .5、如图,方格纸中有三个点A B C ,,,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.6、如图,在直角坐标系xOy 中, A(一l ,5),B(一3,0),C (一4,3).(1) 在右图中作出△ABC 关于y 轴的轴对称图形△A ′B ′C ′,并写出对应点的坐标;(2) 如果ABC △中任意一点M 的坐标为()x y ,,那么它的对应点N 的坐标是 .7.如图,将矩形ABCD 沿GH 对折,点C 落在点Q 处,点D 落在点E 处,EQ 与BC 交于点F.若AD =8 cm ,AB =6 cm ,AE =4 cm ,则△EBF 的周长是________cm .8、如图,菱形ABCD 的对角线相交于点O ,AC =2,BD =23,将菱形按如图方式折叠,使点B 与点O 重合,折痕为EF ,则五边形AEFCD 的周长为 .9、如图,正方形ABCD 中,AB =2,E 是CD 中点,将正方形ABCD 沿AM 折叠,使点B 的对应点F 落在AE 上,延长MF 交CD 于点N ,则DN 的长为 __________.考点二:平移旋转有关概念1. 一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为__ ___,它是由移动的 和 所决定.2. 平移的特征是:经过平移后的图形与原图形的对应线段 ,对应图形的 与 都没有发生变化,即平移前后的两个图形 ;且对应点所连的线段 .3. 图形旋转的定义:把一个图形 的图形变换,叫做旋转,叫做旋转中心, 叫做旋转角. 4. 图形的旋转由 、 和 所决定.①旋转 在旋转过程中保持不动.②旋转 分为 时针和 时针.③旋转 一般小于360º.5. 旋转的特征是:图形中每一点都绕着 旋转了 的角度,对应点到旋转中心的 相等,对应 相等,对应 相等,图形的 都没有发生变化.也就是旋转前后的两个图形 .对应训练1、如图,下列图案②③④⑤⑥⑦中, 是由①平移得出的, 是由①平移且旋转得出的。

北师大版中考数学复习《图形的变换》

北师大版中考数学复习《图形的变换》

Day7 图形的变换一、几何变换(轴对称、平移、旋转、折叠)1、图形的平移:2、图形的轴对称:对称,如图直线L是这两个图形的对称轴,点A和点E是对称点★记忆:简单来说就是能使得两个图形重合的直线就是对称轴。

要区分“对称轴”和“轴对称图形”。

“对称轴”是一条直线,“轴对称图形”是两个全等的图形如图,两个▲关于直线L对称,直线L是对应点B和点F连线BF的垂直平分线如图▲ABC和▲EFG是以直线L为对称轴的轴对称图形如图,两个▲关于直线L对称,直线L是对应点B和点F连线BF的垂直平分线3、图形的翻折翻折前后图形全等(对应线段和对应角都分别相等)4、图形的旋转转动一个角度,’、5、中心对称(特殊的旋转)二、视图、展开图、位似作图1、投影用光线照射物体,在某个平面上得到的影子叫做物体的投影.由一点(光源)(位似变换),2、三视图:主视图、俯视图、左视图①看得见的部分画成实线,被遮挡而看不见的部分画成虚线3、展开图有些立体图形是由一些平面图形围成的,将这些立体图形的表面剪开可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

注意:不是所有的立体图形都有平面展开图,如球体就不能展开。

4、位似作图(1)几何作图:对应点到位似中心的距离之比等于位似比★记忆:位似即位置相似,位置距离成比例位似又分为同侧位似和异侧位似★注意:位似比,即位似图形的相似比,指的是题目要求画的新图形与参照的原图形的相似比,所以以不同的图形为参照图,所得的位似比不同。

如上面左图同侧位似中,如果题目的意思是“以▲ABC为参照的原图,▲DEF为新图形,求出位似比”,则此时的位似比=DOAO= 95;而如果题目的意思是“以▲DEF为参照的原图,▲ABC为新图形,求出位似比”则此时的位似比=AODO= 59总之位似比总是原图形的数值作分母,口诀:位似比即旧分之新(位似比=新旧)(2)代数作图:如果以原点为位似中心,位似比为k,则原图形上的点(x,y)对应的位似图形上的点的坐标为(kx,ky)或(一kx,一ky)★记忆:如果是同侧位似则位似对应点的坐标是(kx,ky),如果是异侧位似则位似对应点的坐标是(一kx,一ky)。

中考数学《图形的变换》复习资料总结

中考数学《图形的变换》复习资料总结

中考数学《图形的变换》复习资料总结
中考数学《图形的变换》复习资料总结
考点一、平移 (3~5分)
1、定义
把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的.形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。

2、性质
(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动
(2)连接各组对应点的线段平行(或在同一直线上)且相等。

考点二、轴对称 (3~5分)
1、定义
把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。

2、性质
(1)关于某条直线对称的两个图形是全等形。

(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

3、判定
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4、轴对称图形
把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

考点三、旋转 (3~8分)
1、定义
把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质
(1)对应点到旋转中心的距离相等。

中考数学总复习:图形的变换--知识讲解(基础)【含解析】

中考数学总复习:图形的变换--知识讲解(基础)【含解析】

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】中考总复习:图形的变换--知识讲解(基础)【考纲要求】1.通过具体实例认识轴对称、平移、旋转,探索它们的基本性质;2.能够按要求作出简单平面图形经过轴对称、平移、旋转后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;3.探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及其相关性质.4.探索图形之间的变换关系(轴对称、平移、旋转及其组合);5.利用轴对称、平移、旋转及其组合进行图案设计;认识和欣赏轴对称、平移、旋转在现实生活中的应用.【知识网络】【考点梳理】考点一、平移变换1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.【要点诠释】(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.2.平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等.【要点诠释】(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征;(2)“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.考点二、轴对称变换1.轴对称与轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点. 轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.轴对称变换的性质①关于直线对称的两个图形是全等图形.②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上.④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.3.轴对称作图步骤①找出已知图形的关键点,过关键点作对称轴的垂线,并延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.考点三、旋转变换1.旋转概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角.2.旋转变换的性质图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的形状、大小都没有发生变化.3.旋转作图步骤①分析题目要求,找出旋转中心,确定旋转角.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④按原图形连结方式顺次连结各对应点.4.中心对称与中心对称图形中心对称:把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心对称的对称点.中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫中心对称图形.5.中心对称作图步骤①连结决定已知图形的形状、大小的各关键点与对称中心,并且延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.【要点诠释】图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案.【典型例题】类型一、平移变换1.如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为____________.【思路点拨】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【答案与解析】∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;【总结升华】此题主要考查了平移的性质以及等边三角形的性质,根据题意得出A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′是解决问题的关键.举一反三:【变式】(2015•顺义区一模)如图,平行四边形ABCD中,点E是AD边上一点,且CE⊥BD于点F,将△DEC沿从D到A的方向平移,使点D与点A重合,点E平移后的点记为G.(1)画出△DEC平移后的三角形;(2)若BC=,BD=6,CE=3,求AG的长.【答案】解:(1)△AGB为△DEC平移后的三角形,如下图所示;(2)∵△AGB为△DEC平移后的三角形,∴BG=CE=3,BG∥CE,∵CE⊥BD,∴BG⊥BD.在Rt△BDG中,∵∠GBD=90°,BG=3,BD=6,∴DG==3,∵四边形ABCD是平行四边形,∴AD=BC=2,∴AG=D G﹣AD=3﹣2=.2.如图(1),已知ABC ∆的面积为3,且,AC AB =现将ABC ∆沿CA 方向平移CA 长度得到EFA ∆. (1)求ABC ∆所扫过的图形面积;(2)试判断,AF 与BE 的位置关系,并说明理由; (3)若,15︒=∠BEC 求AC 的长.【思路点拨】(1)根据平移的性质及平行四边形的性质可得到S △EFA =S △BAF =S △ABC ,从而便可得到四边形CEFB 的面积;(2)由已知可证得平行四边形EFBA 为菱形,根据菱形的对角线互相垂直平分可得到AF 与BE 的位置关系为垂直;(3)作BD ⊥AC 于D ,结合三角形的面积求解. 【答案与解析】(1)由平移的性质得 AF ∥BC ,且AF=BC ,△EFA ≌△ABC ∴四边形AFBC 为平行四边形 S △EFA =S △BAF =S △ABC =3∴四边形EFBC 的面积为9;(2)BE ⊥AF证明:由(1)知四边形AFBC 为平行四边形 ∴BF ∥AC ,且BF=AC 又∵AE=CA∴BF ∥AE 且BF=AE∴四边形EFBA 为平行四边形又已知AB=AC ∴AB=AE∴平行四边形EFBA 为菱形 ∴BE ⊥AF ;(3)如上图,作BD ⊥AC 于D ∵∠BEC=15°,AE=AB ∴∠EBA=∠BEC=15° ∴∠BAC=2∠BEC=30°BCA ('C )E∴在Rt△BAD中,AB=2BD 设BD=x,则AC=AB=2x∵S△ABC=3,且S△ABC=12AC•BD=12•2x•x=x2∴x2=3∵x为正数∴x=3∴AC=23.【总结升华】此题主要考查了全等三角形的判定,平移的性质,菱形的性质等知识点的综合运用及推理计算能力.类型二、轴对称变换3(2016•贵阳模拟)(1)数学课上,老师出了一道题,如图①,Rt△ABC中,∠C=90°,,求证:∠B=30°,请你完成证明过程.(2)如图②,四边形ABCD是一张边长为2的正方形纸片,E、F分别为AB、CD的中点,沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,折痕交AE于点G,请运用(1)中的结论求∠ADG的度数和AG的长.(3)若矩形纸片ABCD按如图③所示的方式折叠,B、D两点恰好重合于一点O(如图④),当AB=6,求EF的长.【思路点拨】(1)Rt△ABC中,根据sinB═=,即可证明∠B=30°;(2)求出∠FA′D的度数,利用翻折变换的性质可求出∠ADG的度数,在Rt△A'FD中求出A'F,得出A'E,在Rt△A'EG中可求出A'G,利用翻折变换的性质可得出AG的长度.(3)先判断出AD=AC,得出∠ACD=30°,∠DAC=60°,从而求出AD的长度,根据翻折变换的性质可得出∠DAF=∠FAO=30°,在Rt△ADF中求出DF,继而得出FO,同理可求出EO,再由EF=EO+FO,即可得出答案.【答案与解析】(1)证明:Rt△ABC中,∠C=90°,,∵sinB==,∴∠B=30°;(2)解:∵正方形边长为2,E、F为AB、CD的中点,∴EA=FD=×边长=1,∵沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,∴A′D=AD=2,∴=,∴∠FA′D=30°,可得∠FDA′=90°﹣30°=60°,∵A沿GD折叠落在A′处,∴∠ADG=∠A′DG,AG=A′G,∴∠ADG===15°,∵A′D=2,FD=1,∴A′F==,∴EA′=EF﹣A′F=2﹣,∵∠EA′G+∠DA′F=180°﹣∠GA′D=90°,∴∠EA′G=90°﹣∠DA′F=90°﹣30°=60°,∴∠EGA′=90°﹣∠EA′G=90°﹣60°=30°,则A′G=AG=2EA′=2(2﹣);(3)解:∵折叠后B、D两点恰好重合于一点O,∴AO=AD=CB=CO,∴DA=,∵∠D=90°,∴∠DCA=30°,∵AB=CD=6,在Rt△ACD中,=tan30°,则AD=DC•tan30°=6×=2,∵∠DAF=∠FAO=∠DAO==30°,∴=tan30°=,∴DF=AD=2,∴DF=FO=2,同理EO=2,∴EF=EO+FO=4.【总结升华】本题考查了翻折变换的知识,涉及了含30°角的直角三角形的性质、平行四边形的性质,综合考察的知识点较多,注意将所学知识融会贯通.举一反三:【变式】(2016·松北区模拟)如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50°.若将其右下角向内这出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C=度.【答案】∵∠CPR=12∠B=12×120°=60°,∠CRP=12∠D=12×50°=25°,∴∠C=180°-60°-25°=95°.4. 如图1,矩形纸片ABCD的边长分别为a,b(a<b).将纸片任意翻折(如图2),折痕为PQ.(P 在BC上),使顶点C落在四边形APCD内一点C′,PC′的延长线交直线AD于M,再将纸片的另一部分翻折,使A落在直线PM上一点A′,且A′M所在直线与PM•所在直线重合(如图3),折痕为MN.(1)猜想两折痕PQ,MN之间的位置关系,并加以证明.(2)若∠QPC的角度在每次翻折的过程中保持不变,则每次翻折后,两折痕PQ,•MN间的距离有何变化?请说明理由.(3)若∠QPC的角度在每次翻折的过程中都为45°(如图4),每次翻折后,非重叠部分的四边形MC′QD,及四边形BPA′N的周长与a,b有何关系,为什么?(1)(2)(3)(4)【思路点拨】(1)猜想两直线平行,由矩形的对边平行,得到一组内错角相等,翻折前后对应角相等,那么可得到PQ与MN被MP所截得的内错角相等,得到平行.(2)作出两直线间的距离.∵PM长相等,∠NPM是不变的,所以利用相应的三角函数可得到两直线间的距离不变.(3)由特殊角得到所求四边形的形状,把与周长相关的边转移到同一线段求解.【答案与解析】(1)PQ∥MN.∵四边形ABCD是矩形,∴AD∥BC,且M在AD直线上,则有AM∥BC.∴∠AMP=∠MPC.由翻折可得:∠MPQ=∠CPQ=12∠MPC,∠NMP=∠AMN=12∠AMP,∴∠MPQ=∠NMP,故PQ∥MN.(2)两折痕PQ,MN间的距离不变.过P作PH⊥MN,则PH=PM•sin∠PMH,∵∠QPC的角度不变,∴∠C′PC的角度也不变,则所有的PM都是平行的.又∵AD∥BC,∴所有的PM都是相等的.又∵∠PMH=∠QPC,故PH的长不变.(3)当∠QPC=45°时,四边形PCQC′是正方形,四边形C′QDM是矩形.∵C′Q=CQ,C′Q+QD=a,∴矩形C′QDM的周长为2a.同理可得矩形BPA′N的周长为2a,∴两个四边形的周长都为2a,与b无关.【总结升华】翻折前后对应角相等,对应边相等,应注意使用相应的三角函数,平行线的判断,特殊四边形的判定.类型三、旋转变换【高清课堂图形的变换例4】5.已知O是等边三角形ABC内一点,∠AOB=110°,∠BOC=135°,试问:(1)以OA,OB,OC为边能否构成一个三角形?若能,求出该三角形各角的度数;若不能,请说明理由;(2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时,以OA,OB,OC为边的三角形是一个直角三角形?【思路点拨】因为△ABC是等边三角形,所以可以运用旋转将△BCO转至△ACD.【答案与解析】(1)以OC为边作等边△OCD,连AD.∵△ABC是等边三角形∴∠BCO=∠ACD (∠BCO+∠ACO=60°,∠ACD+∠ACO=60°)∵ BC=AC,OC=CD∴△BCO≌△ACD (SAS)∴ OB=AD,∠ADC=∠BOC又∵OC=OD∴△OAD是以线段OA,OB,OC为边构成的三角形∵∠AOB=110°, ∠BOC=135°∴∠AOC=115°∴∠AOD=115°-60°=55°∵∠ADC=135°∴∠ADO=135°-60°=75°∴∠OAD=180°-55°-75°=50°∴以线段OA,OB,OC为边构成的三角形的各角是50°、55°、75°.(2)∠AOB+∠AOC+∠BOC=∠AOB+∠AOC+∠ADC=∠AOB+(∠AOD+∠DOC)+(∠ADO+∠CDO)=∠110°+(∠AOD+60°)+(∠ADO+60°) =360°∴∠AOD+∠ADO=130°∴∠OAD=50°当∠AOD是直角时,∠AOD=90°,∠AOC=90°+60°=150°,∠BOC=100°;当∠ADO是直角时,∠ADC=90°+60°=150°,∠BOC=150°.【总结升华】此题主要运用旋转的性质、等边三角形的判定、勾股定理的逆定理等知识,渗透分类讨论思想.6 . 如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针旋转α角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当α=30°时,求证:△AOE1为直角三角形.【思路点拨】(1)要证AE1=BF1,就要首先考虑它们是全等三角形的对应边;(2)要证△AOE1为直角三角形,就要考虑证∠E1AO=90°.【答案与解析】(1)AE1=BF1,证明如下:∵O为正方形ABCD的中心,∴OA=OB=OD.∴OE=OF .∵△E1OF1是△EOF绕点O逆时针旋转α角得到,∴OE1=OF1.∵ ∠AOB=∠EOF=900,∴ ∠E1OA=900-∠F1OA=∠F1OB.在△E1OA和△F1OB中,1111OE OFE OA FOBO A OB⎧⎪∠∠⎨⎪⎩===,∴△E1OA≌△F1OB(SAS).∴AE1=BF1.(2)取OE1中点G,连接AG.∵∠AOD=900,α=30°,∴ ∠E1OA=900-α=60°.∵OE1=2OA,∴OA=OG,∴ ∠E1OA=∠AGO=∠OAG=60°.∴ AG=GE1,∴∠GAE1=∠GE1A=30°.∴∠E1AO=90°.∴△AOE1为直角三角形.【总结升华】正方形的性质,旋转的性质,全等三角形的判定和性质,直角三角形的判定. 举一反三:【变式】如图,P为正方形ABCD内一点,若PA=a,PB=2a,PC=3a(a>0).(1)求∠APB的度数;(2)求正方形ABCD的面积.【答案】(1)将△ABP 绕点B顺时针方向旋转90°得△CBQ.则△ABP≌△CBQ且PB⊥QB.于是PB=QB=2a,.在△PQC中,∵,.∴.∴.∵△PBQ是等腰直角三角形,∴∠BPQ=∠BQP=45°.故∠APB=∠CQB=90°+45°=135°.(2)∵∠APQ=∠APB+∠BPQ=135°+45°=180°,∴三点A、P、Q在同一直线上.在Rt△AQC中,.∴正方形ABCD的面积.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

【中考一轮复习】图形的变换---轴对称与中心对称课件

【中考一轮复习】图形的变换---轴对称与中心对称课件

5.如图,将△ABC折叠,使点A与BC边中点D重合,
折痕为MN,若AB=9,BC=6,则△DNB的周长为( A )
A.12 B.13
C.14
D.15
A
C
Mቤተ መጻሕፍቲ ባይዱ
D
N
B
当堂训练
6.如图,Rt△ABC中,AB=9,BC=6,∠B=90º,将△ABC折叠,使A点与
BC的中点D重合,折痕为MN,则线段BN的长为( C )
是( C ) A.12厘米 B.16厘米 C.20厘米 D.28厘米
考点聚焦---轴对称
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合, 轴对称 那么就说这两个图形关于这条直线成轴对称,这条直线叫做对称
轴,折叠后重合的点是对应点,叫做对称点.
轴对称 如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重 图形 合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.
人教版中考数学第一轮总复习
第七单元 图形的变化
§7.3 轴对称与中心对称
目录
01 轴对称与轴对称图形 02 中心对称与中心对称图形
典型例题
【例1-1】下列四个图案中,不是轴对称图案的是( B )
A.
B.
C.
D.
解:A有3条对称轴,是轴对称图形,故本选项错误;
B没有对称轴,不是轴对称图形,故本选项正确;
△CDA,点A,B,C的坐标分别为(-5,2),(-2,-2),(5,-2),则点D的坐
标为( A )
A.(2,2) C.(2,5)
B.(2,-2) D.(-2,5)
y
A
D
A
x
B
C
做关于对称中心的对称点.

新初三数学:图形的变换复习

新初三数学:图形的变换复习

图形的变换与计算【第一部分平移】【知识点】1、平移的概念.2、理解“对应点的连线平行且相等”等平移变换的基本特征;能够按照要求画出简单平面图形平移后的图形;能利用平移进行简单的图案设计.3、平移变换的确定:给定了平移方向和平移的距离,就确定了平移.4、图形在平移下的不变性和不变量.平移把任一线段变成与它平行且相等的线段,即在平移下,任一线段保持方向和长度不变;平移把任一个角变成与它相等的角,即在平移下,任一个角保持大小不变.【基础训练】一、选择题1.下列几种运动属于平移的有()①水平运输带上的砖在运动;②升降机上下做机械运动;③足球场上足球的运动;④超市里电梯上的乘客;⑤平直公路上行驶的汽车A.2种B.3种C.4种D.5种2.点A(1,2)向右平移2个单位得到对应点A’,则点A’的坐标是( )A.(1.4)B.(1.0) C.(-l,2) D.(3,2)二、填空题1.如图5-1-1所示,每个小正方形的边长都是1个单位长度,△ABC移到了△A′B′C′的位置,则平移的方向是,平移的距离是个单位长度.2.如图5-1-2所示,△ABC平移到△A′B′C′的位置,则与AA′平行的线段有,与AA′相等的线段是.【提高训练】一、选择题1.如图所示5-1-3,在平面内,将一个图形沿某个方向移动一定距离,这样的图形变换为平移,如图,将网格中的三条线段沿网格线的方向(水平或垂直)平移后组成一个首尾依次相接的三角形,至少需要移动()A.12格B.11格C.9格D.8格2.如图5-1-4所示:边长分别为和的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为,大正方形内除去小正方形部分的面积为(阴影部分),那么与的大致图象应为()二、解答题A.B.C.D.图5-1-3图5-1-4图2FD EA BC图1图5-1-5 图5-1-1 图5-1-21.已知如图5-1-5所示,图1和图2中的每个小正方形的边长都是1个单位.(1)将图1中的格点△ABC ,先向右平移3个单位,再向上平移2个单位,得到△A 1B 1C 1,请你在图1中画出△A 1B 1C 1.(2)在图2中画出一个与格点△DEF 相似但相似比不等于1的格点三角形.2.在平面直角坐标系中,直线l 过点M(3,0),且平行于轴.(1)如果△ABC 三个顶点的坐标分别是A(-2,0),B(-l,O),C(-1,2),△ABC 关于轴的对称图形是△A 1B 1C 1,△A 1B 1C 1关于直线的对称图形是△A 2B 2C 2,写出△A 2B 2C 2的三个顶点的坐标; (2)如果点的坐标是(,0),其中,点P 关于轴的对称点是,点关于直线的对称点是,求的长.3.如图5-1-7(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合。

人教版初三数学下册中考专题复习---------图形变换(一)

人教版初三数学下册中考专题复习---------图形变换(一)
(2)连接AD,交OC于点E,求∠AEO的度数.
ABCD是矩形,AD∥x轴,A( 3 ,3 ),AB=1,AD=2.
2
(1)直接写出B、C、D三点的坐标;
(2)将矩形ABCD向右平移m个单位,使点A、C 恰好同时落
在反比例函数y

k
x( x 0 )的图象上,得矩形A′B′C′D′
求矩形ABCD的平移距离m 和反比例函数的解析式.
真题解析:
够互相重合,这个图形就叫做轴对称图形,这条直线 就是它的对称轴。
真题解析:
1、(2015来宾)如图,在平面直角坐
标系中,将点M(2,1)向下平移2个 单位长度得到点N,则点N 的坐标为
( A) A.(2,﹣1) B.(2,3) C.(0,1) D.(4,1)
真题解析:
2、(2015钦州)在平面直角坐标系中,将
点A(x,y)向左平移5个单位长度, 再向上平移3个单位长度后与点B(﹣3,2)
重合A.,(则2点,A5的)坐标是(B.D ()﹣8,5)
C.(﹣8,﹣1) D.(2,﹣1)
3真、题(解2析0:15常州)将一张宽为4cm的长方形纸片
(足够长)折叠成如图所示图形,重叠部分是 A.
一个三角形,则这个三角形面积的最
小值是( B )
8
A.
3 cm2
B.8cm2
3
C. 16 3 cm2 3Байду номын сангаас
D.16cm2
真题解析:
4、(2015达州)如图,将矩形ABCD沿EF折叠, 使顶点C恰好落在AB边的中点C′上,点D落在 D′处,C′D′交AE于点M. 若AB=6,BC=9,则AM 的长为 .
M
真题解析:
5、(2015宜宾)如图,在平面直角坐标系中,四边形

【备战2023中考】中考数学一轮复习基础练——图形的变换(含答案)

【备战2023中考】中考数学一轮复习基础练——图形的变换(含答案)

【备战2023中考】中考数学一轮复习基础练——图形的变换时间:45分钟满分:80分一、选择题(每题4分,共32分)1.下列图形中,既是中心对称图形又是轴对称图形的是()2.如图,将△ABC沿BC方向平移1 cm得到对应的△A′B′C′.若B′C=2 cm,则BC′的长是()A.2 cm B.3 cm C.4 cm D.5 cm(第2题)(第3题)3.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是()A.32°B.45°C.60°D.64°4.几何体的三视图如图所示,这个几何体是()(第4题)(第5题)5.如图,△ABC与△DEF位似,点O为位似中心,已知OA∶OD=1∶2,则△ABC与△DEF的周长比为()A.1∶2 B.1∶3 C.1∶4 D.1∶56.如图,在等腰直角三角形ABC中,∠ACB=90°,点D为△ABC内一点,将线段CD绕点C 逆时针旋转90°后得到CE ,连接BE ,若∠DAB =15°,则∠ABE =( ) A .75° B .78° C .80°D .92°(第6题) (第7题)7.如图,在矩形ABCD 中,AB =5,AD =3,点E 为BC 边上一点,把△CDE 沿DE 翻折,点C 恰好落在AB 边上的点F 处,则CE 的长是( ) A .1 B.43 C.32D.538.如图,在平面直角坐标系中,点A ,B 的坐标分别为(0,2),(-1,0),将△ABO 绕点O 顺时针旋转得到△A 1B 1O ,若AB ⊥OB 1,则点A 1的坐标为( )(第8题)A.⎝ ⎛⎭⎪⎫255,455B.⎝ ⎛⎭⎪⎫455,255 C.⎝ ⎛⎭⎪⎫23,43 D.⎝ ⎛⎭⎪⎫45,85 二、填空题(每题4分,共16分)9.若点A 与点B (2,-3)关于y 轴对称,则点A 的坐标为________.10.如图,这个图案绕着它的中心旋转α(0°<α<360°)后能够与它本身重合,则α可以为________.(写出一个即可)(第10题)11.利用尺规作图,如图,作△ABC 边BC 上的高正确的是________.(第11题)12.在平面直角坐标系中,有A(3,-3),B(5,3)两点,现另取一点C(1,n),当AC+BC的值最小时,n的值为________.三、解答题(共32分)13.(14分)如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,点A,B,C的坐标分别为A(1,2),B(3,1),C(2,3),先以原点O为位似中心在第三象限内画一个△A1B1C1,使它与△ABC位似,且相似比为21,然后再把△ABC绕原点O逆时针旋转90°得到△A2B2C2.(1)画出△A1B1C1,并直接写出点A1的坐标;(2)画出△A2B2C2,并求出在旋转过程中,点A到点A2所经过的路径长.(第13题)14.(18分)如图,在△ABC中,∠ABC=135°,AC=3,现将△ABC绕点A顺时针旋转90°得到△ADE,再将线段ED绕点E顺时针旋转90°得到线段EF,连接BD,BF,DF.(第14题)(1)求证:B,D,E三点共线;(2)求BF的长.答案一、1.A 2.C 3.D 4.C 5.A 6.A 7.D 8.A 二、9.(-2,-3) 10.60°(答案不唯一) 11.② 12.-1三、13.解:(1)如图所示,△A 1B 1C 1即为所求,点A 1的坐标为(-2,-4).(第13题)(2)如图所示,△A 2B 2C 2即为所求.∵点A 的坐标为(1,2),故由勾股定理得OA =12+22=5, ∴点A 到点A 2所经过的路径长为90×π×5180=5π2.14.(1)证明:由旋转性质可知△ABC ≌△ADE ,AB =AD ,BC =DE =FE ,∠BAD =∠DEF=90°, ∴∠ADB =45°.∵∠ADE =∠ABC =135°,∴∠ADB +∠ADE =45°+135°=180°, 即B ,D ,E 三点共线.(2)解:由(1)易得△ABD 和△EDF 都是等腰直角三角形, ∴BD AB =DFDE = 2.∵DE =BC ,∴BD AB =DFBC= 2.由(1)可知B ,D ,E 三点共线,∠EDF =45°, ∴∠BDF =180°-∠EDF =180°-45°=135°, ∴∠BDF =∠ABC , ∴△ABC ∽△BDF , ∴BF AC =BDAB = 2. ∵AC =3,∴BF =3 2.。

中考数学黄金知识点系列专题31图形的变换

中考数学黄金知识点系列专题31图形的变换

中考数学黄金知识点系列专题31图形的变换聚焦考点☆温习理解一、平移1、定义把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。

2、性质(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动(2)连接各组对应点的线段平行(或在同一直线上)且相等。

二、轴对称1、定义把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。

2、性质(1)关于某条直线对称的两个图形是全等形。

(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

3、判定如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4、轴对称图形把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

三、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O 叫做旋转中心,转动的角叫做旋转角。

2、性质(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

四、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)1、平移(1)定义:把一个图形沿着某一直线方向移动,这种图形的平行移动,简称为平移。

(2)平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等。

(3)坐标的平移:点(x,y)向右平移a个单位长度后的坐标变为(x+a,y);点(x,y)向左平移a个单位长度后的坐标变为(x-a,y);点(x,y)向上平移a个单位长度后的坐标变为(x,y+a);点(x,y)向下平移a个单位长度后的坐标变为(x,y-a)。

2、轴对称(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称。

这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

(2)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。

这条直线叫做它的对称轴。

(3)轴对称的性质:关于某条直线对称的图形是全等形。

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(4)线段垂直平分线的性质线段垂直平分线上的点到这条线段两个端点的距离相等;与一条线段两个端点距离相等的点,在线段的垂直平分线上。

(5)坐标与轴对称:点(x,y)关于x轴对称的点的坐标是(x,-y);点(x,y)关于y轴对称的点的坐标是(-x,y);3、旋转(1)旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。

点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。

旋转的性质:①对应点到旋转中心的距离相等;①对应点与旋转中心所连线段的夹角等于旋转角;①旋转前后的图形全等。

(2)中心对称定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。

初三数学15 图形变换(平移、旋转、对称)-2024年中考数学真题分项汇编(全国通用)(解析版)

初三数学15 图形变换(平移、旋转、对称)-2024年中考数学真题分项汇编(全国通用)(解析版)

专题15 图形变换(平移、旋转、对称)一.选择题1.(2022·山东威海)图1是光的反射规律示意图.其中,PO是入射光线,OQ是反射光线,法线KO⊥MN,∠POK是入射角,∠KOQ是反射角,∠KOQ=∠POK.图2中,光线自点P射入,经镜面EF反射后经过的点是( )A.A点B.B点C.C点D.D点【答案】B【分析】根据光反射定律可知,反射光线、入射光线分居法线两侧,反射角等于入射角并且关于法线对称,由此推断出结果.【详解】连接EF,延长入射光线交EF于一点N,过点N作EF的垂线NM,如图所示:∠为入射角由图可得MN是法线,PNM因为入射角等于反射角,且关于MN对称∠由此可得反射角为MNB所以光线自点P射入,经镜面EF反射后经过的点是B故选:B.【点睛】本题考查了轴对称中光线反射的问题,根据反射角等于入射角,在图中找出反射角是解题的关键.2.(2022·湖南永州)剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有( )① ② ③ ④A .①②③B .①②④C .①③④D .②③④【答案】A【分析】根据中心对称图形的定义判断即可;【详解】解:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;∴是中心对称图形的是:①②③;故选:A .【点睛】本题主要考查中心对称图形的定义,掌握中心对称图形的定义是解题的关键.3.(2022·江苏无锡)雪花、风车….展示着中心对称的美,利用中心对称,可以探索并证明图形的性质,请思考在下列图形中,是中心对称图形但不一定是轴对称图形的为( )A .扇形B .平行四边形C .等边三角形D .矩形【答案】B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、扇形是轴对称图形,不是中心对称图形,故此选项不合题意;B 、平行四边形不一定是轴对称图形,是中心对称图形,故此选项符合题意;C 、等边三角形是轴对称图形,不是中心对称图形,故此选项不合题意;D 、矩形既是轴对称图形,又是中心对称图形,故此选项不合题意;故选:B .【点睛】此题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心是解题关键.4.(2022·贵州遵义)在平面直角坐标系中,点(),1A a 与点()2,B b -关于原点成中心对称,则a b +的值为( )A .3-B .1-C .1D .3【答案】C【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,求得,a b 的值即可求解.【详解】解:∵点(),1A a 与点()2,B b -关于原点成中心对称,∴2,1a b ==-211a b ∴+=-=,故选C .【点睛】本题考查了关于原点对称的两个点,横坐标、纵坐标分别互为相反数,代数式求值,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.5.(2022·内蒙古赤峰)下列图案中,不是轴对称图形的是( )A .B .C .D .【答案】A【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【详解】A 不是轴对称图形;B 、C 、D 都是轴对称图形;故选:A .【点睛】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.(2022·山东青岛)如图,将ABC 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C ''' ,则点A 的对应点A '的坐标是( )A .(2,0)B .(2,3)--C .(1,3)--D .(3,1)--【答案】C【分析】先画出平移后的图形,再利用旋转的性质画出旋转后的图形即可求解.【详解】解:先画出△ABC平移后的△DEF,再利用旋转得到△A'B'C',由图像可知A'(-1,-3),故选:C.【点睛】本题考查了图形的平移和旋转,解题关键是掌握绕原点旋转的图形的坐标特点,即对应点的横纵坐标都互为相反数.7.(2022·四川内江)如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是( )A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位【答案】D【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.【详解】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:D.【点睛】本题考查的是坐标与图形变化,旋转和平移的知识,掌握旋转和平移的概念和性质是解题的关键.8.(2022·广西)如图,在△ABC中,点A(3,1),B(1,2),将△ABC向左平移2个单位,再向上平移1个单位,则点B的对应点B′的坐标为()A.(3,-3)B.(3,3)C.(-1,1)D.(-1,3)【答案】D【分析】根据图形的平移性质求解.【详解】解:根据图形平移的性质,B′(1-2,2+1),即B′(-1,3);故选:D.【点睛】本题主要考查图形平移的点坐标求解,掌握图形平移的性质是解题的关键.9.(2022·湖南郴州)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形和中心对称图形的定义判断即可.【详解】解:A、该图形是轴对称图形,不是中心对称图形,故A选项错误;B、该图形既是轴对称图形,也是中心对称图形,故B选项正确;C、该图形不是轴对称图形,是中心对称图形,故C选项错误;D、该图形既不是轴对称图形,也不是中心对称图形,故D选项错误.故答案为B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,中心对称图形是要寻找对称中心旋转180度后与原图重合.10.(2022·广西贵港)若点(,1)A a -与点(2,)B b 关于y 轴对称,则-a b 的值是( )A .1-B .3-C .1D .2【答案】A【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数解答即可.【详解】∵点(,1)A a -与点(2,)B b 关于y 轴对称,∴a =-2,b =-1,∴a -b =-1,故选A .【点睛】本题考查了关于y 轴对称的点坐标的关系,代数式求值,解题的关键在于明确关于y 轴对称的点纵坐标相等,横坐标互为相反数.11.(2022·江苏常州)在平面直角坐标系xOy 中,点A 与点1A 关于x 轴对称,点A 与点2A 关于y 轴对称.已知点1(1,2)A ,则点2A 的坐标是( )A .(2,1)-B .(2,1)--C .(1,2)-D .(1,2)--【答案】D【分析】直接利用关于x ,y 轴对称点的性质分别得出A ,2A 点坐标,即可得出答案.【详解】解:∵点1A 的坐标为(1,2),点A 与点1A 关于x 轴对称,∴点A 的坐标为(1,-2),∵点A 与点2A 关于y 轴对称,∴点2A 的坐标是(-1,﹣2).故选:D .【点睛】此题主要考查了关于x ,y 轴对称点的坐标,正确掌握关于坐标轴对称点的性质是解题关键.12.(2022·北京)图中的图形为轴对称图形,该图形的对称轴的条数为( )A .1B .2C .3D .5【答案】D 【分析】根据题意,画出该图形的对称轴,即可求解.【详解】解∶如图,一共有5条对称轴.故选:D【点睛】本题主要考查了轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.13.(2022·山东临沂)剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题,以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形和中心对称图形的概念进行判断即可.【详解】A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.不是轴对称图形,是中心对称图形,故本选项不合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.既是轴对称图形,也是中心对称图形,故本选项符合题意;故选:D.【点睛】本题考查了轴对称图形和中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称;熟练掌握知识点是解题的关键.14.(2022·山东聊城)如图,在直角坐标系中,线段11A B 是将ABC 绕着点()3,2P 逆时针旋转一定角度后得到的111A B C △的一部分,则点C 的对应点1C 的坐标是( )A .(-2,3)B .(-3,2)C .(-2,4)D .(-3,3)【答案】A 【分析】根据旋转的性质解答即可.【详解】解:∵线段11A B 是将ABC 绕着点()3,2P 逆时针旋转一定角度后得到的111A B C △的一部分,∴A 的对应点为1A ,∴190APA ∠=︒,∴旋转角为90°,∴点C 绕点P 逆时针旋转90°得到的1C 点的坐标为(-2,3),故选:A .【点睛】本题主要考查了旋转的性质,练掌握对应点与旋转中心的连线是旋转角和旋转角相等是解答本题的关键.15.(2022·湖南)如图,点O 是等边三角形ABC 内一点,2OA =,1OB =,OC =AOB ∆与BOC ∆的面积之和为( )AB C D 【答案】C【分析】将AOB ∆绕点B 顺时针旋转60︒得BCD ∆,连接OD ,得到BOD 是等边三角形,再利用勾股定理的逆定理可得90COD ∠=︒,从而求解.【详解】解:将AOB ∆绕点B 顺时针旋转60︒得BCD ∆,连接OD ,OB OD ∴=,60BOD ∠=︒,2CD OA ==,BOD ∴∆是等边三角形,1OD OB ∴==,∵222214OD OC +=+=,2224CD ==,222OD OC CD ∴+=,90DOC ∴∠=︒,AOB ∴∆与BOC ∆的面积之和为21112BOC BCD BOD COD S S S S +=+=+⨯= C .【点睛】本题主要考查了等边三角形的判定与性质,勾股定理的逆定理,旋转的性质等知识,利用旋转将AOB ∆与BOC ∆的面积之和转化为BOC BCD S S + ,是解题的关键.16.(2022·内蒙古呼和浩特)如图,ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到EDC △,使点B 的对应点D 恰好落在AB 边上,AC 、ED 交于点F .若BCD α∠=,则EFC ∠的度数是(用含α的代数式表示)( )A .1902α︒+B .1902α︒-C .31802α︒-D .32α【答案】C【分析】根据旋转的性质可得,BC =DC ,∠ACE =α,∠A =∠E ,则∠B =∠BDC ,利用三角形内角和可求得∠B ,进而可求得∠E ,则可求得答案.【详解】解:∵将ABC 绕点C 顺时针旋转得到EDC △,且BCD α∠=∴BC =DC ,∠ACE =α,∠A =∠E ,∴∠B =∠BDC ,∴1809022B BDC αα︒-∠=∠==︒-,∴90909022A E B αα∠=∠=︒-∠=︒-︒+=,∴2A E α∠=∠=,318018018022EFC ACE E ααα∴∠=︒-∠-∠=︒--=︒-,故选:C .【点睛】本题考查了旋转变换、三角形内角和、等腰三角形的性质,解题的关键是掌握旋转的性质.17.(2022·内蒙古赤峰)如图,点()2,1A ,将线段OA 先向上平移2个单位长度,再向左平移3个单位长度,得到线段''O A ,则点A 的对应点'A 的坐标是( )A .()3,2-B .()0,4C .()1,3-D .()3,1-【答案】C 【分析】根据点向上平移a 个单位,点向左平移b 个单位,坐标P (x ,y )⇒P (x ,y +a )⇒P (x +a ,y +b ),进行计算即可.【详解】解:∵点A 坐标为(2,1),∴线段OA 向h 平移2个单位长度,再向左平移3个单位长度,点A 的对应点A ′的坐标为(2-3,1+2),即(-1,3),故选C .【点睛】此题主要考查了坐标与图形的变化--平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.18.(2022·黑龙江绥化)如图,线段OA 在平面直角坐标系内,A 点坐标为()2,5,线段OA 绕原点O 逆时针旋转90°,得到线段OA ',则点A '的坐标为( )A .()5,2-B .()5,2C .()2,5-D .()5,2-【答案】A 【分析】如图,逆时针旋转90°作出OA ',过A 作AB x ⊥轴,垂足为B ,过A '作A B x ''⊥轴,垂足为B ',证明()A OB BOA AAS '∠ ≌,根据A 点坐标为()2,5,写出5AB =,2OB =,则5OB '=,2A B '=,即可写出点A 的坐标.【详解】解:如图,逆时针旋转90°作出OA ',过A 作AB x ⊥轴,垂足为B ,过A '作A B x ''⊥轴,垂足为B ',∴90A BO ABO ∠'=∠=︒,OA OA '=,∵18090A OB AOB A OA '∠+∠=︒-∠'=︒,90AOB A ∠+∠=︒,∴A OB A ∠'=∠,∴()A OB BOA AAS '∠ ≌,∴OB AB '=,A B OB '=,∵A 点坐标为()2,5,∴5AB =,2OB =,∴5OB '=,2A B '=,∴()5,2A '-,故选:A .【点睛】本题考查旋转的性质,证明A OB BOA '∠ ≌是解答本题的关键.19.(2022·海南)如图,点(0,3)(1,0)A B 、,将线段AB 平移得到线段DC ,若90,2ABC BC AB ∠=︒=,则点的坐标是( )A .(7,2)B .(7,5)C .(5,6)D .(6,5)【答案】D 【分析】先过点C 做出x 轴垂线段CE ,根据相似三角形找出点C 的坐标,再根据平移的性质计算出对应D 点的坐标.【详解】如图过点C 作x 轴垂线,垂足为点E ,∵90ABC ∠=︒∴90ABO CBE ∠+∠=︒∵90CBE BCE +=︒∠∴ABO BCE Ð=Ð在ABO ∆和BCE ∆中,90ABO BCE AOB BEC =⎧⎨==︒⎩∠∠∠∠ ,∴ABO BCE ∆∆∽,∴12AB AO OB BC BE EC === ,则26BE AO == ,22EC OB ==∵点C 是由点B 向右平移6个单位,向上平移2个单位得到,∴点D 同样是由点A 向右平移6个单位,向上平移2个单位得到,∵点A 坐标为(0,3),∴点D 坐标为(6,5),选项D 符合题意,故答案选D【点睛】本题考查了图像的平移、相似三角形的判定与性质,利用相似三角形的判定与性质找出图像左右、上下平移的距离是解题的关键.20.(2022·广西)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神下列的四个图中,能由如图所示的会徽经过平移得到的是( )A .B .C .D .【答案】D【分析】根据平移的特点分析判断即可.【详解】根据题意,得不能由平移得到,故A 不符合题意;不能由平移得到,故B 不符合题意;不能由平移得到,故C 不符合题意;能由平移得到,故D 符合题意;故选D .【点睛】本题考查了平移的特点,熟练掌握平移的特点是解题的关键.21.(2022·广西)如图,在ABC 中,4,CA CB BAC α==∠=,将ABC 绕点A 逆时针旋转2α,得到AB C '' ,连接B C '并延长交AB 于点D ,当B D AB '⊥时, 'BB的长是( )A B C D 【答案】B【分析】先证'60B AD ∠=︒,再求出AB 的长,最后根据弧长公式求得 'BB.【详解】解:,'CA CB B D AB =⊥ ,12AD DB AB ∴==,AB C '' 是ABC 绕点A 逆时针旋转2α得到,'AB AB ∴=,1'2AD AB =,在'Rt AB D ∆中,1cos ''2AD B AD AB ∠==,'60B AD ∴∠=︒,,'2CAB B AB αα∠=∠= ,11'603022CAB B AB ∴∠=∠=⨯︒=︒,4AC BC == ,cos304AD AC ∴=︒==2AB AD ∴==BB ∴'的长=60180AB π=,故选:B .【点睛】本题考查了图形的旋转变换,等腰三角形的性质,三角函数定义,弧长公式,正确运算三角函数定义求线段的长度是解本题的关键.22.(2022·内蒙古包头)如图,在Rt ABC 中,90,30,2ACB A BC ∠=︒∠=︒=,将ABC 绕点C 顺时针旋转得到A B C '' ,其中点A '与点A 是对应点,点B '与点B 是对应点.若点B '恰好落在AB 边上,则点A 到直线A C '的距离等于( )A .B .C .3D .2【答案】C【分析】如图,过A 作AQ A C '⊥于,Q 求解4,AB AC == 结合旋转:证明60,,90,B A B C BC B C A CB '''''∠=∠=︒=∠=︒ 可得BB C '△为等边三角形,求解60,A CA '∠=︒ 再应用锐角三角函数可得答案.【详解】解:如图,过A 作AQ A C '⊥于,Q由90,30,2ACB A BC ∠=︒∠=︒=,4,AB AC ∴===结合旋转:60,,90,B A B C BC B C A CB '''''∴∠=∠=︒=∠=︒BB C '∴ 为等边三角形,60,30,BCB ACB ''∴∠=︒∠=︒60,A CA '∴∠=︒sin 60 3.AQ AC ∴=︒== ∴A 到A C '的距离为3.故选C【点睛】本题考查的是旋转的性质,含30︒的直角三角形的性质,勾股定理的应用,等边三角形的判定与性质,锐角三角函数的应用,作出适当的辅助线构建直角三角形是解本题的关键.23.(2022·内蒙古通辽)冬季奥林匹克运动会是世界上规模最大的冬季综合性运动会,下列四个图是历届冬奥会图标中的一部分,其中是轴对称图形的为( )A .B .C .D .【答案】A【分析】根据轴对称图形的定义,即可求解.【详解】解:A 、是轴对称图形,故本选项符合题意;B 、不是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.24.(2022·四川内江)2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】A.不是轴对称图形,也不是中心对称图形,故A 错误;B.不是轴对称图形,也不是中心对称图形,故B 错误;C.既是轴对称图形,也是中心对称图形,故C 正确;D.不是轴对称图形,也不是中心对称图形,故D 错误.故选:C .【点睛】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.25.(2022·广西河池)如图,在Rt △ABC 中,90ACB ∠︒=,6AC =,8BC =,将Rt ABC 绕点B 顺时针旋转90°得到Rt A B C ''' .在此旋转过程中Rt ABC 所扫过的面积为( )A .25π+24B .5π+24C .25πD .5π【答案】A 【分析】根据勾股定理定理求出AB ,然后根据扇形的面积和三角形的面积公式求解.【详解】解:∵90ACB ∠︒=,6AC =,8BC =,∴10AB ==,∴Rt ABC 所扫过的面积为2901016825243602ππ⋅⋅+⨯⨯=+.故选:A .【点睛】本题主要考查了旋转的性质,扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解答的关键.26.(2022·上海)有一个正n 边形旋转90 后与自身重合,则n 为( )A .6B .9C .12D .15【答案】C【分析】根据选项求出每个选项对应的正多边形的中心角度数,与90 一致或有倍数关系的则符合题意.【详解】如图所示,计算出每个正多边形的中心角,90 是30 的3倍,则可以旋转得到.A. B. C. D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C .【点睛】本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.27.(2022·贵州毕节)矩形纸片ABCD 中,E 为BC 的中点,连接AE ,将ABE △沿AE 折叠得到AFE △,连接CF .若4AB =,6BC =,则CF 的长是( )A .3B .175C .72D .185【答案】D 【分析】连接BF 交AE 于点G ,根据对称的性质,可得AE 垂直平分BF ,BE =FE ,BG =FG =12BF ,根据E 为BC 中点,可证BE =CE =EF ,通过等边对等角可证明∠BFC =90°,利用勾股定理求出AE ,再利用三角函数(或相似)求出BF ,则根据FC =【详解】连接BF ,与AE 相交于点G ,如图,∵将ABE △沿AE 折叠得到AFE △∴ABE △与AFE △关于AE 对称∴AE 垂直平分BF ,BE =FE ,BG =FG =12BF∵点E 是BC 中点∴BE =CE =DF =132BC =∴5AE ===∵sin BE BG BAE AE AB ∠==∴341255BE AB BG AE ⋅⨯===∴12242225BF BG ==⨯=∵BE =CE =DF ∴∠EBF =∠EFB ,∠EFC =∠ECF∴∠BFC =∠EFB +∠EFC =180902︒=︒∴185FC ==故选 D 【点睛】本题考查了折叠对称的性质,熟练运用对称性质证明相关线段相等是解题的关键.二.填空题28.(2022·山东临沂)如图,在平面直角坐标系中,ABC 的顶点A ,B 的坐标分别是()0,2A ,()2,1B -.平移ABC 得到A B C ''' ,若点A 的对应点A '的坐标为()1,0-,则点B 的对应点B '的坐标是_____________.【答案】()1,3-【分析】根据点A 坐标及其对应点A '的坐标的变化规律可得平移后对应点的横坐标减小1,纵坐标减小2,即可得到答案.【详解】 平移ABC 得到A B C ''' ,点()0,2A 的对应点A '的坐标为()1,0-,∴ABC 向左平移了1个单位长度,向下平移了2个单位长度,即平移后对应点的横坐标减小1,纵坐标减小2,∴()2,1B -的对应点B '的坐标是()1,3-,故答案为:()1,3-.【点睛】本题考查了平移坐标的变化规律,即左减右加,上加下减,熟练掌握知识点是解题的关键.29.(2022·广西贵港)如图,将ABC 绕点A 逆时针旋转角()0180αα︒<<︒得到ADE ,点B 的对应点D 恰好落在BC 边上,若,25DE AC CAD ⊥∠=︒,则旋转角α的度数是______.【答案】50︒【分析】先求出65ADE ∠=︒,由旋转的性质,得到65∠=∠=︒B ADE ,AB AD =,则65ADB ∠=︒,即可求出旋转角α的度数.【详解】解:根据题意,∵,25DE AC CAD ⊥∠=︒,∴902565ADE ∠=︒-︒=︒,由旋转的性质,则65∠=∠=︒B ADE ,AB AD =,∴65ADB B ∠=∠=︒,∴180665550BAD ︒-∠=︒=︒-︒;∴旋转角α的度数是50°;故答案为:50°.【点睛】本题考查了旋转的性质,三角形的内角和定理,解题的关键是熟练掌握旋转的性质进行计算.30.(2022·广西贺州)如图,在平面直角坐标系中,OAB 为等腰三角形,5OA AB ==,点B 到x 轴的距离为4,若将OAB 绕点O 逆时针旋转90︒,得到OA B ''△,则点B '的坐标为__________.【答案】(4,8)-【分析】过B 作BC OA ⊥于C ,过B '作BD x ⊥轴于D ,构建OB D OBC '∆≅∆,即可得出答案.【详解】过B 作BC OA ⊥于C ,过B '作BD x ⊥轴于D ,∴90B DO BCO '∠=∠=︒,∴2390∠+∠= ,由旋转可知90BOB '∠=︒,OB OB '=,∴1290∠+∠=︒,∴13∠=∠,∵OB OB '=,13∠=∠,B DO BCO '∠=∠,∴OB D OBC '∆≅∆,∴B D OC '=,4OD BC ==,∵5AB AO ==,∴3AC ===,∴8OC =,∴8B D '=,∴(4,8)B '-.故答案为:(4,8)-.【点睛】本题考查了旋转的性质以及如何构造全等三角形求得线段的长度,准确构造全等三角形求得线段长度是解题的关键.31.(2022·四川泸州)点()2,3-关于原点的对称点的坐标为________.【答案】()2,3-【分析】根据两个点关于原点对称时,它们的坐标符号相反,可以直接得到答案.【详解】点()2,3-关于原点对称的点的坐标是()2,3-故答案为:()2,3-【点睛】本题主要考查了关于原点对称的点的坐标特点,两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P ′(-x ,-y ).32.(2022·吉林)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角()0360αα︒<<︒后能够与它本身重合,则角α可以为__________度.(写出一个即可)【答案】60或120或180或240或300(写出一个即可)【分析】如图(见解析),求出图中正六边形的中心角,再根据旋转的定义即可得.【详解】解:这个图案对应着如图所示的一个正六边形,它的中心角3601606︒∠==︒,0360α︒<<︒ ,∴角α可以为60︒或120︒或180︒或240︒或300︒,故答案为:60或120或180或240或300(写出一个即可).【点睛】本题考查了正多边形的中心角、图形的旋转,熟练掌握正多边形的性质是解题关键.33.(2022·贵州铜仁)如图,在边长为2的正方形ABCD 中,点E 为AD 的中点,将△CDE 沿CE 翻折得△CME ,点M 落在四边形ABCE 内.点N 为线段CE 上的动点,过点N 作NP //EM 交MC 于点P ,则MN +NP 的最小值为________.【答案】8 5【分析】过点M作MF⊥CD于F,推出MN+NP的最小值为MF的长,证明四边形DEMG为菱形,利用相似三角形的判定和性质求解即可.【详解】解:作点P关于CE的对称点P′,由折叠的性质知CE是∠DCM的平分线,∴点P′在CD上,过点M作MF⊥CD于F,交CE于点G,∵MN+NP=MN+NP′≤MF,∴MN+NP的最小值为MF的长,连接DG,DM,由折叠的性质知CE为线段DM的垂直平分线,∵AD=CD=2,DE=1,∴CE∵12CE×DO=12CD×DE,∴DO∴EO∵MF⊥CD,∠EDC=90°,∴DE ∥MF ,∴∠EDO =∠GMO ,∵CE 为线段DM 的垂直平分线,∴DO =OM ,∠DOE =∠MOG =90°,∴△DOE ≌△MOG ,∴DE =GM ,∴四边形DEMG 为平行四边形,∵∠MOG =90°,∴四边形DEMG 为菱形,∴EG =2OE GM = DE =1,∴CG ,∵DE ∥MF ,即DE ∥GF ,∴△CFG ∽△CDE ,∴FG CG DE CE =,即1FG , ∴FG =35,∴MF =1+35=85,∴MN +NP 的最小值为85.故答案为:85.【点睛】此题主要考查轴对称在解决线段和最小的问题,熟悉对称点的运用和画法,知道何时线段和最小,会运用勾股定理和相似三角形的判定和性质求线段长度是解题的关键.34.(2022·山东潍坊)小莹按照如图所示的步骤折叠A 4纸,折完后,发现折痕AB ′与A 4纸的长边AB 恰好重合,那么A 4纸的长AB 与宽AD 的比值为___________.1【分析】判定△AB ′D ′是等腰直角三角形,即可得出AB AD ,再根据AB ′= AB ,再计算即可得到结论.【详解】解:∵四边形ABCD 是矩形,∴∠D =∠B =∠DAB =90°,由操作一可知:∠DAB ′=∠D ′AB ′=45°,∠AD ′B ′=∠D =90°,AD =AD ′,∴△AB ′D ′是等腰直角三角形,∴AD =AD ′= B ′D ′,由勾股定理得AB ,又由操作二可知:AB ′=AB ,=AB ,∴AB AD ,∴A 4纸的长AB 与宽AD 1:1.【点睛】本题主要考查了矩形的性质以及折叠变换的运用,解题的关键是理解题意,灵活运用所学知识解决问题.35.(2022·山东潍坊)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO 绕原点O 逆时针旋转75︒,再沿y 轴方向向上平移1个单位长度,则点B ''的坐标为___________.【答案】(1)+【分析】连接OB ,OB '由题意可得∠BOB '=75°,可得出∠COB '=30°,可求出B '的坐标,即可得出点B ''的坐标.【详解】解:如图:连接OB ,OB ',作B M '⊥y 轴∵ABCO是正方形,OA=2∴∠COB=45°,OB=∵绕原点O逆时针旋转75︒∴∠BOB'=75°∴∠COB'=30°∵OB'=OB=∴MB'MO∴B'(∵沿y轴方向向上平移1个单位长度∴B''(1)故答案为:(1)【点睛】本题考查了坐标与图形变化﹣旋转,坐标与图形变化﹣平移,熟练掌握网格结构,准确确定出对应点的位置是解题的关键.36.(2022·湖南永州)如图,图中网格由边长为1的小正方形组成,点A为网格线的交点.若线段OA绕原点O顺时针旋转90°后,端点A的坐标变为______.【答案】()2,2-【分析】根据题意作出旋转后的图形,然后读出坐标系中点的坐标即可.【详解】解:线段OA 绕原点O 顺时针旋转90°后的位置如图所示,∴旋转后的点A 的坐标为(2,-2),故答案为:(2,-2).【点睛】题目主要考查图形的旋转,点的坐标,理解题意,作出旋转后的图形读出点的坐标是解题关键.三.解答题37.(2022·湖南)如图所示的方格纸(1格长为一个单位长度)中,AOB ∆的顶点坐标分别为(3,0)A ,(0,0)O ,(3,4)B .(1)将AOB ∆沿x 轴向左平移5个单位,画出平移后的△111AO B (不写作法,但要标出顶点字母);(2)将AOB ∆绕点O 顺时针旋转90︒,画出旋转后的△222A O B (不写作法,但要标出顶点字母);(3)在(2)的条件下,求点B 绕点O 旋转到点2B 所经过的路径长(结果保留)π.【答案】(1)见解析(2)见解析(3)52π【分析】(1)利用平移变换的性质分别作出A ,O ,B 的对应点1A ,1O ,1B 即可;(2)利用旋转变换的性质分别作出A ,O ,B 的对应点2A ,2O ,2B 即可;(3)利用弧长公式求解即可.(1)解:如图,111A O B ∆即为所求;(2)解:如图,222A O B ∆(即△A 2OB 2)即为所求;(3)解:在Rt AOB ∆中,5OB ==,905253602l ππ∴=⨯⨯=.【点睛】本题考查作图-旋转变换,平移变换,勾股定理、弧长公式等知识,解题的关键是掌握平移变换,旋转变换的性质.38.(2022·湖北荆州)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【答案】(1)见解析(2)见解析【分析】对于(1),以AC为公共边的有2个,以AB为公共边的有2个,以BC为公共边的有1个,一共有5个,作出图形即可;对于(2),△ABC是等腰直角三角形,以BC为对角线的菱形只有1个,作出图形即可.(1)如图所示.。

2022年九年级数学复习专题---图形的变换(平移、翻折、旋转)综合问题题

2022年九年级数学复习专题---图形的变换(平移、翻折、旋转)综合问题题

2022年中考数学复习专题---图形的变换(平移、翻折、旋转)综合题班级:___________姓名:___________学号:___________1.综合与实践 问题情境:综合与实践课上,同学们以“三角形纸片的折叠与旋转“为主题展开数学活动,探究有关的数学问题. 动手操作:已知:三角形纸片ABC 中,6120AB AC BC BAC ==∠=︒,,.将三角形纸片ABC 按如下步骤进行操作: 第一步:如图1,折叠三角形纸片ABC ,使点C 与点A 重合,然后展开铺平,折痕分别交BC AC ,于点D E ,,连接AD ,易知AD CD =.第二步:在图1的基础上,将三角形纸片ABC 沿AD 剪开,得到ABD ∆和ACD ∆.保持ABD ∆的位置不变,将ACD ∆绕点D 逆时针旋转得到FDG ∆(点F G ,分别是A C ,的对应点),旋转角为()0360αα︒<<︒问题解决:(1)如图2,小彬画出了旋转角0120α︒<<︒时的图形,设线段FG AC ,交于点P ,连接AG DP ,.小彬发现DP 所在直线始终垂直平分线段AG .请证明这一结论;(2)如图3,小颖画出了旋转角90α=︒时的图形,设直线AF 与直线CG 相交于点O ,连接CF 判断此时COF ∆的形状,说明理由;(3)在ACD ∆绕点D 逆时针旋转过程中,当FG BC ⊥时,请直接写出B F ,两点间的距离.2.如图,△ABC 中,已知∠C=90°,∠B=60°,点D 在边BC 上,过D 作DE ⊥AB 于E . (1)连接AD ,取AD 的中点F ,连接CF ,EF ,判断△CEF 的形状,并说明理由(2)若.把△BED 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m=3.问题背景:如图1,在矩形ABCD 中,30AB ABD =∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F . 实验探究:(1)在一次数学活动中,小明在图1中发现AEDF=_________. 将图1中的BEF 绕点B 按逆时针方向旋转90︒,连接,AE DF ,如图2所示,发现AEDF=_________. (2)小亮同学继续将BEF 绕点B 按逆时针方向旋转,连接,AE DF ,旋转至如图3所示位置,请问探究(1)中的结论是否仍然成立?并说明理由. 拓展延伸:(3)在以上探究中,当BEF 旋转至D 、E 、F 三点共线时,AE 的长为____________.4.如图,在Rt ABC 中,90ACB ∠=︒,CD 平分ACB ∠.P 为边BC 上一动点,将DPB 沿着直线DP 翻折到DPE ,点E 恰好落在CDP 的外接圆O 上. (1)求证:D 是AB 的中点.(2)当60BDE ∠=︒,BP =DC 的长.(3)设线段DB 与O 交于点Q ,连结QC ,当QC 垂直于DPE 的一边时,求满足条件的所有QCB ∠的度数.5.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点,F E ,使OF=2OA ,OE 2OD =,连接EF ,将FOE ∆绕点O 按逆时针方向旋转角α得到F OE ''∆,连接,AE BF ''(如图2).(1)探究AE '与BF '的数量关系,并给予证明; (2)当30α=︒时,求证:AOE '为直角三角形.6.如图,在△ABC 中,AB =∠B =45°,∠C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF . ①如图2,当点P 落在BC 上时,求∠AEP 的度数. ②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.7.如图1,点C 在线段AB 上,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 和正方形BCMN , 连结AM 、BD .(1)AM与BD的关系是:________.(2)如果将正方形BCMN绕点C顺时针旋转锐角α(如图2).(1) 中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB、DM,若AC=4,BC=2,求AB2+DM2的值.8.已知正方形ABCD,一等腰直角三角板的一个锐角顶点与A重合,将此三角板绕A点旋转时,两边分别交直线BC、CD于M、N.(1)当M、N分别在边BC、CD上时(如图1),求证:BM+DN=MN;(2)当M、N分别在边BC、CD所在的直线上时(如图2),线段BM、DN、MN之间又有怎样的数量关系,请直接写出结论;(不用证明)(3)当M、N分别在边BC、CD所在的直线上时(如图3),线段BM、DN、MN之间又有怎样的数量关系,请写出结论并写出证明过程.9.如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.(1)如图,当BP=BA时,∠EBF=______°,猜想∠QFC =______°;(2)如图,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明.(3)已知线段AB=BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式.10.我们知道,直角坐标系是研究“数形结合”的重要工具.请探索研究下列问题:(1)如图1,点A 的坐标为(-5,1),将点A 绕坐标原点(0,0)按顺时针方向旋转90°,得对应点A ',若反比例函数(0)k y x x=>的图像经过点A ',求k 的值.(2)将(1)中的(0)ky x x =>的图像绕坐标原点(0,0)按顺时针方向旋转45°,如图2,旋转后的图像与x 轴相交于点B ,若直线x =C 与点D ,求△BCD 的面积. (3)在(2)的情况下,半径为6的M 的圆心M 在x 轴上,如图3,若要使△BCD 完全在M 的内部,求M 的圆心M 横坐标xm 的范围(直接写出结果,不必写详细的解答过程).11.对于平面直角坐标系xOy 中的点A 和点P ,若将点P 绕点A 逆时针旋转90︒后得到点Q ,则称点Q 为点P 关于点A 的“垂链点”,图1为点P 关于点A 的“垂链点”Q 的示意图.(1)已知点A 的坐标为(0,0),点P 关于点A 的“垂链点”为点Q ;①若点P 的坐标为(2,0),则点Q 的坐标为________; ②若点Q 的坐标为(2,1)-,则点P 的坐标为________; (2)如图2,已知点C 的坐标为(1,0),点D 在直线113y x =+上,若点D 关于点C 的“垂链点”在坐标轴上,试求出点D 的坐标;(3)如图3,已知图形G 是端点为(1,0)和(0,2)-的线段,图形H 是以点O 为中心,各边分别与坐标轴平行的边长为6的正方形,点M 为图形G 上的动点,点N 为图形H 上的动点,若存在点(0,)T t ,使得点M 关于点T 的“垂链点”恰为点N ,请直接写出t 的取值范围.12.如图,正比例函数y =12x 与反比例函数()0k y x x =>的图象交于点A ,将正比例函数y =12x 向上平移6个单位,交y 轴于点C ,交反比例函数图象于点B ,已知AO =2BC . (1)求反比例函数解析式;(2)作直线AB ,将直线AB 向下平移p 个单位,恰与反比例函数图象有唯一交点,求p 的值.13.综合与实践:问题情境:(1)如图,点E 是正方形ABCD 边CD 上的一点,连接BD 、BE ,将DBE ∠绕点B 顺针旋转90︒,旋转后角的两边分别与射线DA 交于点F 和点G .①线段BE 和BF 的数量关系是______.②写出线段DE 、DF 和BD 之间的数量关系.并说明理由;操作探究:(2)在菱形ABCD 中,60ADC ∠=︒,点E 是菱形ABCD 边CD 所在直线上的-点,连接BD 、BE ,将DBE ∠绕点B 顺时针旋转120︒,旋转后角的两边分别与射线DA 交于点F 和点G .①如图,点E 在线段DC 上时,请探究线段DE 、DF 和BD 之间的数量关系,写出结论并给出证明;②如图,点E在线段CD的延长线上时,BE交射线DA于点M,若2==,直接写出线段FM和AGDE DC a的长度.14.两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=4.固定△ABC不动,将△DEF 进行如下操作:(1)操作发现如图①,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC,CF,FB,四边形CDBF的形状在不断的变化,那么它的面积大小是否变化呢?如果不变化,请求出其面积.(2)猜想论证如图②,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)拓展探究如图③,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,求sinα翻折问题姓名:___________班级:___________学号:___________1.如图将矩形纸片ABCD 沿AE 翻折,使点B 落在线段DC 上,对应的点为F . (1)求证:EFC DAF ∠=∠;(2)若3tan 4AE EFC =∠=,求AB 的长.2.如图,在Rt△ABC 中,∠C=90°,AC=BC=2,AD 是BC 边上的中线,将A 点翻折与点D 重合,得到折痕EF ,求:CE AE 的值.3.如图,点A ,M ,N 在O 上,将MN 沿MN 折叠后,与AM 交于点B .(1)若70MAN ∠=︒,则ANB ∠=________°; (2)如图1,点B 恰好是翻折所得MN 的中点, ①若MA MN =,求AMN ∠的度数;②若tan MAN ∠=tan AMN ∠的值; (3)如图2,若222AB BN MN +=,求MBAB的值.4.已知矩形ABCD 中,AB =2,BC =m ,点E 是边BC 上一点,BE =1,连接AE ,沿AE 翻折△ABE 使点B 落在点F 处.(1)连接CF ,若CF ∥AE ,求m 的值;(2)连接DF ,若65≤DF ,求m 的取值范围.5.如图1,一张矩形纸ABCD ,ABa AD=,点,E F 分别在边,CD AB 上,且AE EF =,把ADE 沿AE 翻折得到AGE .(1)如图1,若1AD =.(Ⅰ)当AD DE =时,AFE ∠=_____度; (Ⅱ)当//AG EF 时,求AF 的长度.(2)若直线EG 与边AB 交于点H ,当2AH FH =时,求a 的最小值.6.如图,在折纸游戏中,正方形ABCD 沿着BE ,BF 将BC ,AB 翻折,使A ,C 两点恰好落在点P . (1)求证:45EBF ∠=︒.(2)如图,过点P 作//MN BC ,交BF 于点Q . ①若5BM =,且10MP PN ⋅=,求正方形折纸的面积. ②若12QP BC =,求AM BM的值.7.如图,在ABC 中,12,120AC BC ACB ==∠=︒,点D 是AB 边上一点,连接CD ,以CD 为边作等边CDE △.(1)如图1,若45CDB ∠=︒,求等边CDE △的边长;(2)如图2,点D 在AB 边上移动过程中,连接BE ,取BE 的中点F ,连接,CF DF ,过点D 作DG AC ⊥于点G . ①求证:CFDF .②如图3,将CFD 沿CF 翻折得CFD ',连接BD ',求出BD '的最小值.8.在矩形ABCD 中,1AB =,BC a =,点E 是边BC 上一动点,连接AE ,将ABE △沿AE 翻折,点B 的对应点为点B '.(1)如图,设BE x =,BC =E 从B 点运动到C 点的过程中. ①AB CB ''+最小值是______,此时x =______; ②点B '的运动路径长为.(2)如图,设35BE a =,当点B 的对应点B '落在矩形ABCD 的边上时,求a 的值.9.如图1,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CD 边的垂直平分线EH 交BD 于点E ,连接AE ,CE .(1)过点A 作//AF EC 交BD 于点F ,求证:AF BF =;(2)如图2,将ABE △沿AB 翻折得到'ABE △.①求证:'//BE CE ;②若'//AE BC ,1OE =,求CE 的长度.10.如图,矩形ABCD 中,已知6AB =.8BC =,点E 是射线BC 上的一个动点,连接AE 并延长,交射线DC 于点F .将ABE △沿直线AE 翻折,点B 的对应点为点B ',延长AB '交直线CD 于点M .(1)如图1,若点B '恰好落在对角线AC 上,求BE CE的值. (2)如图2.当点E 为BC 的中点时,求DM 之长.(3)若32BE CE =,求sin DAB '∠.11.【基础巩固】(1)如图①,ABC ACD CED α∠=∠=∠=,求证:ABC CED ∽△△.【尝试应用】(2)如图②,在菱形ABCD 中,60A ∠=︒,点E ,F 分别为边,AD AB 上两点,将菱形ABCD 沿EF 翻折,点A 恰好落在对角线DB 上的点P 处,若2PD PB =,求AE AF的值. 【拓展提高】(3)如图③,在矩形ABCD 中,点P 是AD 边上一点,连接,PB PC ,若2,4,120PA PD BPC ==∠=︒,求AB 的长.12.如图,在ABC 中,60B ∠=︒,AD BC ⊥于点D ,CE AB ⊥于点E ,AB CE =.(1)如图1,将ABD △沿AD 翻折到AFD ,AF 交CE 于点G ,探索线段AB 、AG 、CG 之间有何等量关系,并加以证明;(2)如图2,H 为直线BC 上任意一点,连接AH ,将AH 绕点A 逆时针旋转60°到AH ',连接CH ',若BD =,求CH '的最小值.13.如图,在矩形ABCD 中,12BC AB =,F 、G 分别为AB 、DC 边上的动点,连接GF ,沿GF 将四边形AFGD 翻折至四边形EFGP ,点E 落在BC 上,EP 交CD 于点H ,连接AE 交GF 于点O(1)GF 与AE 之间的位置关系是:______,GF AE 的值是:______,请证明你的结论;(2)连接CP ,若3tan 4CGP ∠=,GF =CP 的长14.如图,在矩形ABCD 中,8AB =,10BC =,点P 在矩形的边CD 上由点D 向点C 运动.沿直线AP 翻折ADP ∆,形成如下四种情形,设DP x =,ADP ∆和矩形重叠部分(阴影)的面积为y .(1)如图4,当点P 运动到与点C 重合时,求重叠部分的面积y ;(2)如图2,当点P 运动到何处时,翻折ADP ∆后,点D 恰好落在BC 边上?这时重叠部分的面积y 等于多少?15.如图1,ABC 中,AB AC =,点D 在BA 的延长线上,点E 在BC 上,连接DE 、DC ,DE 交AC 于点G ,且DE DC =.(1)找出一个与BDE ∠相等的角;(2)若AB =mAD ,求DG GE的值(用含m 的式子表示); (3)如图2,将ABC 沿BC 翻折,若点A 的对应点A '恰好落在DE 的延长线上,求BE EC的值.16.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.(1)如图1,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当时,求AE的值.(2)如图2,在AC上取一点E,使得CE=13AC,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′交BC于点F,求证:DF=CF.。

中考数学图形的变换专题复习题及答案

中考数学图形的变换专题复习题及答案

热点11 图形的变换(时间:100分钟总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.在图形的平移中,下列说法中错误的是()A.图形上任意点移动的方向相同; B.图形上任意点移动的距离相同C.图形上可能存在不动点; D.图形上任意对应点的连线长相等2.如图所示图形中,是由一个矩形沿顺时针方向旋转90•°后所形成的图形的是()A.(1)(4) B.(2)(3) C.(1)(2) D.(2)(4)3.在旋转过程中,确定一个三角形旋转的位置所需的条件是()①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角.A.①②④ B.①②③ C.②③④ D.①③④4.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是(• )A.△COD B.△OAB C.△OAF D.△OEF5.下列说法正确的是()A.分别在△ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,•则△ADE•是△ABC 放大后的图形;B.两个位似图形的面积比等于位似比;新课标第一网C.位似多边形中对应对角线之比等于位似比;D.位似图形的周长之比等于位似比的平方6.下面选项中既是中心对称图形又是轴对称图形的是()A.等边三角形 B.等腰梯形 C.五角星 D.菱形7.下列图形中对称轴的条数多于两条的是()A.等腰三角形 B.矩形 C.菱形 D.等边三角形8.在如图所示的四个图案中既包含图形的旋转,•又有图形的轴对称设计的是()9.钟表上2时15分,时针与分针的夹角是()A.30° B.45° C.22.5° D.15°10.如图1,已知正方形ABCD的边长是2,如果将线段BD绕点B旋转后,点D•落在CB的延长线上的D′处,那么tan∠BAD′等于()A.1 B.2 C.22D.22(1) (2) (3)二、填空题(本大题共8小题,每小题3分,共24分)11.一个正三角形至少绕其中心旋转________度,就能与本身重合,•一个正六边形至少绕其中心旋转________度,就能与其自身重合.12.如图2中图案,可以看作是由一个三角形通过_______次旋转得到的,每次分别旋转了__________.13.如图3,在梯形ABCD中,将AB平移至DE处,则四边形ABED是_______四边形.14.已知等边△ABC,以点A为旋转中心,将△ABC旋转60°,•这时得到的图形应是一个_______,且它的最大内角是______度.15.•如果两个位似图形的对应线段长分别为3cm•和5cm,•且较小图形的周长为30cm,则较大图形周长为________.16.将如左图所示,放置的一个Rt△ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的主视图是右图所示四个图形中的_______(只填序号).17.如图4,一张矩形纸片,要折叠出一个最大的正方形纸,小明把矩形的一个角沿折痕翻折上去,使AB边和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判定方法是________.(4) (5)18.如图5,有一腰长为5cm,底边长为4cm的等腰三角形纸片,•沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有_______个不同的四边形.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)19.如图,平移图中的平行四边形ABCD使点A移动至E点,作出平移后的图形.20.如图,作出Rt△ABC绕点C顺时针旋转90°、180°、270°后的图案,•看看得到的图案是什么?21.如图,P是正方形内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若BP=3,求PP′.22.如图所示,四边形ABCD是正方形,E点在边DE上,F点在线段CB•的延长线上,且∠EAF=90°.(1)试证明:△ADE≌△ABF.(2)△ADE可以通过平移、翻转、旋转中的哪种方法到△ABF的位置.(3)指出线段AE与AF之间的关系.23.如图,魔术师把4张扑克牌放在桌子上,如图(1),然后蒙住眼睛,请一位观众上台把某一张牌旋转180°,魔术师解开蒙具后,看到四张牌如图(2)所示,•他很快确定了哪一张牌被旋转过,你能说明其中的奥妙吗?24.如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点,将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中的阴影部分).若∠A=120°,•AB=4cm,求梯形ABCD的高CD.25.如图,正方形ABCD 内一点P ,使得PA :PB :PC=1:2:3,请利用旋转知识,•证明∠APB=135°.(提示:将△ABP 绕点B 顺时针旋转90°至△BCP ′,连结PP ′)答案:一、选择题1.C 2.B 3.A 4.C 5.C 6.D 7.D 8.D 9.C 10.B二、填空题11.120 50 12.4,72°,144°,216°,288° 13.平行 14.菱形,12015.•50cm 16.(2) 17.对角线平分内角的矩形是正方形 18.4三、解答题19.解:略 20.解:略.21.解:由放置的性质可知PBP ′=∠ABC=90°,BP ′=BP=3,在Rt △PBP ′中,PP ′=22'BP BP +=32.22.解:(1)90909090EAF BAF BAE BAD DAE BAE ∠=︒⇒∠+∠=︒⎫⇒⎬∠=︒⇒∠+∠=︒⎭∠EAF=∠EAD , 而AD=AB ,∠D=∠ABF=90°,故△ADE ≌△ABF .(2)可以通过旋转,将△ADE 绕点A 顺时针旋转90°就可以到△ABF 的位置.(3)由△ADE ≌△ABF 可知AE=AF .23.解:图(1)与图(2)中扑克牌完全一样,说明被旋转过的牌是中心对称图形,而图中只有方块4是中心对称图形,故方块4被旋转过.24.解:由题意可知△ABD ≌△EBD ,∴∠ADB=∠EDB,由于AD∥BC,∴∠ADB=∠DBE.∴∠EDB=∠DBE,∴ED=EB,∴DE=AB=4cm.∵∠CDE=30°,∴CD=DE·cos30°=4×32=23.25.证明:旋转后图形如图,设AP=x,PB=2x,PC=3x,则由旋转的性质可知CP′=x,BP′=2x,∠PBP′=90°,∴PP′=22x,所以∠BP′P=45°.在△PP′C中,P′P2+P′C2=8x2+x2=9x2,又∵PC2=9x2,∴P′P2+P′C2=PC2.∴∠PP′C=90°,∴∠BP′C=90°+45°=135°.∴∠APB=135°.。

初三数学(青岛版)图形的变换复习(中考题选)带答案

初三数学(青岛版)图形的变换复习(中考题选)带答案

初三数学第二章图形与变换复习(NO:005)知识总结1、(2012浙江)如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为 102、(2012绍兴)在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD ,点A 的坐标是(0,2).现将这张胶片平移,使点A 落在点A′(5,﹣1)处,则此平移可以是( B )A . 先向右平移5个单位,再向下平移1个单位B . 先向右平移5个单位,再向下平移3个单位C . 先向右平移4个单位,再向下平移1个单位D . 先向右平移4个单位,再向下平移3个单位3、(2012湖北咸宁,6,3分)如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0),则E 点的坐标为( C ).A .(2,0)B .(23,23) C .(2,2) D .(2,2)4、(2012年广西玉林市,10,3)如图,正方形ABCD 的两边BC 、AB 分别在平面直角坐标系内的x 轴、y 轴的正半轴上,正方形A ′B ′C ′D ′与正方形ABCD 是以AC 的中点O ′为中心的位似图形,已知AC=23,若点A ′的坐标为(1,2),则正方形A ′B ′C ′D ′与正方形ABCD 的相似比是( B )5、(2012聊城)如图,在方格纸中,△ABC 经过变换得到△DEF,正确的变换是( B ) A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格 B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格 C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180° D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180°6、(2012山东德州)由图中左侧三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是( C )A B DF(第6题)(A ) (C ) (D )(B )7、(2007潍坊)如图,两个全等的长方形ABCD 与CDEF ,旋转长方形ABCD 能和长方形CDEF 重合,则可以作为旋转中心的点有( A )A .1个B .2个C .3个D .无数个8、(2008潍坊)如图,在平面直角坐标系中,Rt OAB △的顶点A的坐标为,若将OAB △绕O 点逆时针旋转60后,B 点到达B '点,则B '点的坐标是)23,33(第7题 第8题 第9题9、(2009潍坊)如图,已知Rt ABC △中,9030ABC BAC AB ∠=∠==°,°,,将ABC △绕顶点C 顺时针旋转至A B C '''△的位置,且A C B '、、三点在同一条直线上,则点A 经过的最短路线的长度是( D )cm .A .8B.C .32π3D .8π310、(2012广东汕头)如图,将△ABC 绕着点C 顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是 80011、(2012贵州六盘水)两块大小一样斜边为4且含有30°角的三角板如图5水平放置.将△CDE 绕C 点按逆时针方向旋转,当E 点恰好落在AB 上时,△CDE 旋转了 30 度.第10题第11题 第12题12、(2012中考)如图,在△ABC 中,∠ACB =90º,∠B =30º,AC =1,AC 在直线l 上.将△ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得 到点P 2,此时AP 2=2+3;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3 +3;…,按此规律继续旋转,直到得到点P 2012为止,则AP 2012=【 】A .2011+671 3B .2012+671 3C .2013+671 3D .2014+671 3'B①② ③1P 2 P 3 … l又∵2012÷3=670…2,∴AP 2012=670(3+3)+(2+3)=2012+6713故选B .13、(2012山东泰安)如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B=120°,OA=2,将菱形OABC 绕点O 顺时针旋转105°至OA B C '''的位置,则点B '的坐标为(2,2-)14、(2012广州)如图4,在等边△ABC 中,AB=6,D 是BC 上一点,且BC=3BD ,△ABD 绕点A 旋转后得到△ACE ,则CE 的长度为 2 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转中心,角α叫做旋转角.
2. 旋转的三大要素: ⑪_旋__转__中__心___、旋转方向和旋转角.
3. 旋转的性质: (1)对应点到旋转中心的距离相等; (2)对应点与旋转中心所连线段的夹角⑫ _等__于__ 旋转角; (3)旋转前、后的图形全等.
考点4 网格中图形变换作图
网格作图主要利用轴对称、中心对称、平移及 旋转的性质作图.
得解.
解:∵四边形ACDE 为菱形,AB =AC =1, ∴DE =AE =AC =AB =1,AC∥DE, ∴∠AEB =∠ABE,∠ABE =∠BAC =45°, ∴∠AEB =45°,∠EAB =90°, ∴△ABE 为等腰直角三角形, ∴BE = 2AB =2, ∴BD =BE -DE = 2 -1.
(1)求证:BE =CF;
E
A
(2)当四边形ACDE为菱形时, F
求BD 的长.
D
B
C
(1)【思路分析】先由旋转的性质得到对应边、角的
等量关系,进而得到∠EAB =∠FAC,再利用AB =AC可得 AE =AF,再根据旋转的性质即可解证.
证明:∵△AEF 是由△ABC 绕点A 按顺时针方向旋转
得到的,
(3)线段B1C1变换到B1C2的过程中扫过区域


4
面积为_____.
【思路分析】(1)分别将点A、B、C向上平移6
个单位,再分别向右平移3个单位,最后依次连 接两次平移后的点即可得解;(2)分别将线段
A1B1、B1C1、C1A1旋转90度后依次连接即可;(3) 线段B1C1扫过的图形为圆心角为90°的扇形,根
3.坐标变换的规律
1.一般地,在直角坐标系中,将点(x,y)向右(或左)平移a个单位 长度,可以得到对应点_(_x_+_a_,_y_)_(或_(_x_-_a_,_y_)_);将点(x,y)向上 (或下)平移b个单位长度,可以得到对应点_(_x_,_y_+_b_)_(或_(_x_,_y_-_b_)_).
据扇形的面积计算公式即可求解.
解:(1)(2)如解图所示;
A1
B1
C1
A2
A
C2
B
C
(3)扫过图形的面积为 90 π 32 9 π 360 4
类型三 图形变化的相关证明与计算
例3 (’15襄阳)如图,△ABC 中,AB =AC = 1,∠BAC =45°,△AEF是由△ABC 绕点A 按顺 时针方向旋转得到的,连接BE、CF相交于点D.
类型二 网格作图
例2 (’15巴中)如图,在边长为1个单位长度 的小正方形组成的网格中,给出了格点三角形 ABC(顶点是网格线的交点).
(1)先将△ABC 竖直向上平移6个单位,再 水平向右平移3个单位得到△A1B1C1,请画出 △A1B1C1;
(2)将△A1B1C1绕B1点顺时针旋转90°,得 △A2B1C2,请画出△A2B1C2;
轴对称图形两个图形沿一条直线 直线折叠后,直线两旁的部 对折后能够完全重合,那么
义 分能够互相重合,那么这个 称这两个图形成③轴__对__称__, 图形叫做②_轴__对__称__图__形__, 这条直线叫做对称轴 这条直线叫做对称轴
(1)对应线段相等,对应角④__相__等__;对称点所连 的线段被对称轴⑤_垂__直__平__分__ 性 (2)轴对称变换不改变图形的形状和⑥_大__小___,只 改变图形的位置 质 (3)成轴对称的两个图形,它们对应线段的延长线 相交,交点在⑦_对__称__轴__上__
全重合,那么这个图形叫 形关于这个点对称或中心对
做中心对称图形,这个点 称,这个点叫做对称中心性
叫做对称中心

性 (1)对应点的连线经过对称中心,且被对称中心平分; 质 (2)对称中心有且只有一个
考点3 图形的旋转(高频考点)
1. 定义:
将一个平面图形F上的每一个点绕这个平面 内一定点O 旋转同一个角α(即把F上每一个点 与定点的连线绕定点旋转角α)得到图形F′, 图形的这种变换就叫做旋转,这个定点O 叫旋
∴AE =AB,AF =AC,∠EAF =∠BAC, ∴∠EAF +∠BAF =∠BAC +∠BAF,即∠EAB =∠FAC, ∵AB =AC,∴AE =AF, ∴△AEB 可由△AFC 绕点A 按顺时针方向旋转得到, ∴BE =CF;
(2)【思路分析】由菱形的性质得到DE =AE =AC =AB =1,AC∥DE,再根据等腰直角三角形的性质即可
1. 对称图形:
(1)作轴对称图形:利用对应点到对称轴的距 离相等找出点关于对称轴的对称点,再连线; (2)作中心对称图形:连接关键点与对称中心 并延长,使得延长线与延长前的线段相等,则延 长线上线段的另一点即为关键点的对应点.
2. 平移作图:
(1)确定平移方向、平移距离; (2)找关键点; (3)分别平移关键点得到其对应点; (4)连接对应点.
第六章 图形的变换 相似与解直角 三角形
第1课时 图形的变换
考点1 图形的平移 1. 定义:
把图形上所有的点都按同一方向移动相等 的距离叫做平移.
2. 性质:
(1)平移前后,对应线段平行(或在一条直线 上)且相等,对应角相等; (2)对应点所连线段平行(或在一条直线上) 且①_相__等__; (3)平移前、后的图形全等.
2.一般地,在直角坐标系中,点(x,y)关于x轴对称的点的坐标为 (_x_,_-_y_)__,关于y轴对称的点的坐标为_______.
(-x,y) 3.一般地,在直角坐标系中,两个点关于原点对称时,它们的坐 标符号相反,即点P(x,y)关于原点的对称点为P′__(_-_x_,_-_y_).
考点2 图形的对称(高频考点) 1. 轴对称图形与轴对称:
3. 旋转作图:
(1)确定旋转中心及旋转方向、旋转角; (2)找关键点; (3)旋转关键点与旋转中心的连线,得到其对 应点; (4)连接对应点
常考类型剖析
类型一 图形的对称
例1 (’15青岛)下列四个图形中,既是轴对
称图形又是中心对称图形的是
(B)
【思路点拨】根据轴对称图形和中心对称图形 的概念进行判断.
【温馨提示】轴对称与轴对称图形两个概念的要区 别是:轴对称是对两个图形而言;轴对称图形是对一 个图形而言.
2. 中心对称图形与中心对称
中心对称图形
图 示
中心对称图形
定 把一个图形绕着某个点旋 把一个图形绕着某一点旋转
义 转⑧_1_8_0_°_,如果旋转后 ⑨_1_8_0_°_,它能够与另一个图
的图形能与原来的图形完 形重合,那么就说这两个图
相关文档
最新文档