KLD―2型烘丝机加热薄板泄漏的解决方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【摘要】针对烘丝机加热薄板泄漏的现象,从材料热力学原理、蒸汽系统工作原理、加热薄板结构设计、烘丝机工作原理等角度,分析烘丝机加热薄板泄漏的原因,通过对加热薄板与蒸汽分配器之间进回汽硬管连接方式改用金属软管的软连接方式,来消除加热薄板的热应力及应变。经过改进,加热薄板泄漏的现象得到有效解决,从而保证了烘后烟丝的质量。
【关键词】烘丝机加热薄板泄漏金属软管
烘丝机是卷烟制丝生产线的关键设备,其主要用途是对切丝后的烟丝进行烘干处理,使其水分达到工艺要求;同时提高烟丝的填充力,降低卷烟消耗。
薄板烘丝机是烘丝机中的一种主要设备,在许多烟厂被广泛使用。薄板烘丝机的关键部件为加热薄板,加热薄板由不锈钢薄板冲压成型、并经焊接而成。在生产中,蒸汽在加热薄板冲压成型的管道中流动,提高加热薄板的温度(筒壁温度);通过改变蒸汽压力,改变筒壁温度,从而控制烘丝水分。其优点是加热效率高、温度响应快、易于控制。
然而,薄板烘丝机在生产过程中,经常出现加热薄板焊缝开裂,导致蒸汽泄漏的现象,造成烘丝水分波动较大,烟丝结块现象,严重影响烟丝质量。
1 烘丝机的基本工作原理简介
kld-2型顺流式薄板烘丝机是hauni公司生产的。
烘丝机与前面的ht加温加湿机相配合实现对叶丝的膨胀干燥处理。通过烘丝机滚筒内加热薄板的高温迅速将高温高湿的来料烟丝中的水分烘干,并用高温的热风将烘出的水分带走,去除烟丝中的杂味,使烟丝达到工艺要求。
水份的控制主要是由两个方面:一是筒壁温度,二是热风和排潮风量。
其中筒壁温度是控制水份的主要因素。
筒壁温度的控制原理:生产中烘丝机的plc根据进口水分、进口物料流量、出口水份波动的情况进行计算,将反馈信号传给烘丝机蒸汽薄膜阀上的e/p转换器,通过信号的大小来控制薄膜阀的开度,以控制进入烘丝机加热薄板的蒸汽量,最终达到控制筒壁温度的目的。筒壁温度是否稳定对于烘丝机的出口水份有很大的关系,所以要想生产出合格的烟丝,筒温的稳定是至关重要的。控制热风和排潮风量的风门需人工调节。
2 烘丝机加热薄板存在的问题
kld-2型薄板式烘丝机一共有12组加热薄板组成,每组加热薄板由弧形板和辐射板组成,弧形板与辐射板之间的夹角约为60°。每组加热板薄板上安装两进一回共3个法兰(即两路进汽、一路回汽),蒸汽分配器上安装有六路进汽管路和六路回汽管,每路管道与两组加热板薄板以法兰的形式连接(见图1)。
图1
烘丝机在投产运行一年多时间后,就出现了加热薄板泄漏的现象。在2011年6月之前,所有12组加热薄板的进汽法兰均出现过泄漏,并进行过烧焊(见图2);5#、3#加热薄板的弧形板和辐射板60°夹角内侧处出现泄漏,其中3#加热薄板内侧夹角处出现多次泄漏(见图3)。
图2
图3
为此, 2011年6月下旬,厂部组织制丝车间、设备部门与昆船公司,对泄漏点较多的3#加热薄板进行更换。
但更换新加热薄板后,烘丝机的泄漏现象未得到明显改善。(见表1)
表1 更换新板后的烧焊统计(2011年6月22日-8月30日)
时间泄漏点备注
7月15日中班 2#加热薄板进汽法兰1处紧固3#加热薄板(新板)压条螺钉
8月6日中班进汽分配硬管1处
3#加热薄板(新板)进汽法兰1处进汽分配硬管是第一次泄漏
8月7日早班 3#加热薄板(新板)进汽法兰1处
8月15日中班 3#加热薄板(新板)进汽法兰1处 3#加热薄板(新板)上3处螺钉断裂,更换并紧固
8月30日中班 9#加热薄板进汽法兰1处
3 烘丝机加热薄板泄漏的主要原因及机理
(1)烘丝机加热薄板在预热过程中受到热应力的影响,受热变形不均,造成薄板焊缝开裂,引起泄漏。
烘丝机预热的时候,加热薄板受到急剧的加热。对烘丝机预热过程的中控曲线(见图4)进行分析,筒壁温度设定155℃,但是筒壁温度最高峰值达到166℃,而且是在2分钟左右从100℃升到166℃。发现在烘丝机预热阶段筒壁温度变化率较大,极易产生热冲击。在生产过程中,温度变化率较小,加热薄板热应力较小。故认为在烘丝机预热阶段,加热薄板受到急剧的加热,其内部将产生很大的温差,从而引起很大的冲击热应力,易造成加热薄板焊缝开裂泄漏。
图4
(2)烘丝机加热薄板在生产中受到蒸汽水锤的冲击,造成薄板焊缝开裂,引起泄漏。
引起水锤的基本原因是:1)当蒸汽管道的阀门突然关闭或开启时,因瞬时流速发生急剧变化,引起冷凝水流速迅速改变,而使压力显著变化。2)管道上止回阀失灵,也会发生水锤现象。3)在蒸汽管道中,若暖管不充分,疏水不彻底,导致送出的蒸汽部分凝结成水,体积突然缩小,造成局部真空,周围介质将高速向此处冲击,也会发出巨大的音响和振动。
在烘丝机冷机启动的过程,特别是在烘丝机预热阶段初期过程中,蒸汽压力迅速提高,引起冷凝水流速的急剧改变,从而造成瞬时压力迅速变化,产生水锤现象,造成烘丝机滚筒加热薄板发出剧烈“噼噼啪啪”的响声,同时滚筒出料端(进汽端)产生剧烈震动;有时由于操作人员操作不当,未对蒸汽管道进行充分的暖管,蒸汽在加热薄板内迅速凝结成大量冷凝水,造成疏水能力下降,出现冷凝水储罐内冷凝水溢出现象。水锤的产生,进一步造成加热薄板焊缝开裂的倾向,引起泄漏。
(3)烘丝机加热薄板与分汽支撑座之间采用钢管焊接的刚性连接,很难消除加热薄板由于热胀冷缩产生的应力及应变,造成薄板焊缝易开裂,引起泄漏。
直接用钢管的刚性连接很难消除加热薄板由于热胀冷缩时产生长度方向的应力及应变,造成在加热薄板与进出汽管的连接法兰根部易产生应力集中,反复的应变易导致该部位产生裂纹,出现该连接部位漏汽。 4 烘丝机加热薄板泄漏的解决方法
通过上面的论述分析,造成加热薄板泄漏的主要原因有三点,一是加热薄板在预热过程中受到热应力的影响,受热变形,造成薄板焊缝开裂;二是加热薄板在预热过程中受到蒸汽水锤的冲击,造成薄板焊缝开裂;三是加热薄板与分汽支撑座之间采用钢管焊接的刚性连接,造成薄板焊缝易开裂。在上述三个原因中前两个均与烘丝机预热阶段加热薄板受到急剧的加热有关,为此,应尽量保证此阶段蒸汽压力平稳变化,减少对加热薄板的热冲击。
4.1对烘丝机预热程序进行优化,减小热变形
烘丝机预热过程中控曲线进行分析,如果能够对预热程序进行相关优化,降低筒壁温度(压力)峰值就能减少了冲击热应力,有效的保护烘丝机加热薄板,延长其使用寿命。针对上述情况,与电器维修人员从主控程序中对预热温度控制进行跳转后分步调节,增加了132℃、142℃两级控制。完成优化后对生产进行了跟踪观察,效果不错,预热筒壁温度(压力)峰值、阀门开启度峰值都有了明显的下降,时间增加了一倍(见图5)。从而减少了冲击热应力。
图5