《微积分模型》PPT课件

合集下载

微积分ppt课件

微积分ppt课件

和趋势。
02
微积分在机器学习中的应用
利用微积分优化算法,提高机器学习的效率和准确性。
03
微积分在金融工程中的应用
研究微积分在金融衍生品定价、风险管理等领域的应用,推动金融工程
的发展。
THANKS
感谢观看
用微积分解决经济学问题
总结词
微积分在经济学中用于研究经济现象的变化规律和优 化资源配置。
详细描述
在经济学中,微积分被用于分析边际成本、边际收益、 边际效用等问题,以及研究经济增长、通货膨胀、供需 关系等经济现象的变化规律。此外,微积分还可以用于 优化生产和分配资源,提高经济效率。
06
微积分的未来发展与展望
微积分与其他学科的交叉研究
微积分与物理学的交叉
01
研究微积分在解决物理问题中的应用,如流体力学、电磁学等
领域的数学模型。
微积分与经济学的交叉
02
探讨微积分在经济学理论和应用方面的作用,如最优控制理论
、动态规划等。
微积分与计算机科学的交叉
03
研究微积分在算法设计、数据科学、人工智能等领域的应用。
微积分的未来发展方向
上的整体性质,如求面积、体积等。
微积分提供了研究函数和解决实际问题的有效工具, 是高等数学的重要基础。
微积分的发展历史
17世纪,牛顿和莱布尼茨分别独立地创立了微 积分学,为微积分的发展奠定了基础。
19世纪,柯西、黎曼等数学家对微积分的概念和基 础进行了深入的研究和探讨,进一步完善了微积分理
论。
微积分的发展经历了漫长的过程,最早可以追 溯到古代数学家对面积、体积等问题的研究。
1 2
微积分的理论深化
进一步探索微积分的数学原理,发展新的理论和 方法。

大学微积分课件(PPT幻灯片版)pptx

大学微积分课件(PPT幻灯片版)pptx

高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关

连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。

高等数学(微积分)ppt课件

高等数学(微积分)ppt课件
,且f'(x0)=0,则可通过二阶导数 f''(x0)的符号来判断f(x)在x0处取得极大值还是极小值。
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性

级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。

微积分讲解ppt课件

微积分讲解ppt课件

多元函数的表示 方法
多元函数可用记号 f(x1,x2,…,xn)或z=f(x,y) 表示。
多元函数的定义 域
使多元函数有意义的自 变量组合(x1,x2,…,xn) 的集合。
多元函数的值域
多元函数所有值的集合 。
偏导数与全微分
偏导数的定义
设函数z=f(x,y)在点(x0,y0)的某一邻域内有定义,当y固定在y0而x在x0处有增量Δx时,相应地函数有增量 f(x0+Δx,y0)-f(x0,y0)。如果Δz与Δx之比当Δx→0时的极限存在,那么此极限值称为函数z=f(x,y)在点(x0,y0)处对 x的偏导数。
齐次方程法
通过变量替换,将齐次方程转化为可分离变 量的形式
一阶线性微分方程法
利用积分因子,将方程转化为可积分的形式
二阶常微分方程解法
可降阶的二阶微分方程
通过变量替换或分组,将方程降为一阶微分方 程求解
二阶线性微分方程法
利用特征根的性质,求解二阶线性常系数齐次 和非齐次微分方程
常系数线性微分方程组法
在经济学中的应用
边际分析
通过求导计算边际成本、边际收益等,为企业的决策 提供依据。
弹性分析
研究价格、需求等经济变量之间的相对变化关系,微 积分可用于计算弹性系数。
最优化问题
在资源有限的情况下,通过微积分求解最大化或最小 化某一经济指标的问题。
在工程学中的应用
结构力学
分析建筑、桥梁等结构的受力情况和稳定性,微积分可用 于求解复杂的力学方程。
通过消元法或特征根法,求解常系数线性微分方程组
05
多元函数微积分
多元函数的基本概念
多元函数的定义
设D为一个非空的n元有 序数组的集合,f为某一 确定的对应规则。若对 于每一个有序数组 (x1,x2,…,xn)∈D,通过 对应规则f,都有唯一确 定的实数y与之对应, 则称对应规则f为定义在 D上的n元函数。

微积分 精品课件PPT

微积分 精品课件PPT

About
{ 上课听讲}
{ 预习 }
{ 复习 }
{ 作业}
出席每一堂课, 认真听讲,跟 随老师的思路 和分析吸取知 识
课前浏览式预习,不必太细。 把难点,不懂之处勾画出来, 以便上课时重点听老师如何 讲解,这样加深对知识的理 解和掌握。 如果时间紧,至少要粗造地
课堂上没听 懂的,课后 及时搞懂, 不要拖后。
{ 极限 } lim是一个数学现象,这个现象既有过程又有 结果,没有谁更重要的说法。当你觉得过程有 趣的时候过程就重要,觉得结果有趣的时候结 果就重要。后面会遇到更多的逼近,在有些例 子里过程更重要,有些例子里结果更重要。例 如,在证明极限的存在性时显然过程更重要, 收敛到哪是无所谓的,但是在实际计算中收敛 到哪个值就很重要了。
浏览一遍。做到对要听的内
容心中有数。
当天作业 当天完成
About
{记笔记}
重点放在听懂
{ 极限 }
要学好微积分,首先必须学好极限理论包括数
列极限与函数极限 。因为后续的很多知识,可
以说几乎全部微积分的内容都是建立在极限理论的 基础上的。大家熟知的函数连续性概念,函数的导 数,函数的定积分 ,无穷级数,无穷积分以及多元 函数的对应内容都是以各种形式的极限建立起来的。 没有学好极限理论这一章的学生,要尽快补上。
calculus 刘玥
6学分
Recall
每天六点半就坐在教室里 预习…做作业前复习一遍… 如果遇到不会做的题就再复习 一遍… ⊙﹏⊙b (=@__@=) (⊙o⊙)…
怎样学好微积分
学渣
VS 学霸× 学渣√
学霸
1.课前预习

×

2. 课堂听讲
?√
3.课后复习 ×

经济数学——微积分PPT课件

经济数学——微积分PPT课件
隐函数求导法则: 直接对方程两边求导; 对数求导法: 对方程两边取对数,按隐函数的求导 法则求导; ※参数方程求导: 实质上是利用复合函数求导法则;
第15页/共27页
思考题
一工厂有x名技术工人和 y 名非技术工人每天 可生产的产品产量为
f ( x, y) x2 y (件)
现有16名技术工人和32名非技术工人, 而厂长计划 再雇用一名技术工人. 试求厂长如何调整非技术工 人的人数, 可保持产品产量不变?
第16页/共27页
解 现在产品产量为f (16,32)=8192件, 保持
这种产量的函数曲线为
f ( x, y)= x 2 y =8192 (1)
对于任一给定值 x 每增加一名技术工人时 y 的变化量即为这函数曲线切线的斜率dy .
dx
(1)式两端对x求导,整理得:
2 xy x 2 y 0;
dy 2 y .
3. x y 0;
2
2
4.sin t cos t ,2 cos t sin t
3;
5. e x y y . x e x y
二、1. e 2 y (3 y); (2 y)3
2.-2csc2 ( x y)c tan3 ( x y);
3. y(ln y 1)2 x(ln x 1)2 . xy(ln y 1)3
d dx
( dy dx
)
d dt
( (t )) (t )
dt dx
(t)(t) (t)(t) 1
2(t)
(t )

d2y dx 2
(t )
(t) (t) (t) 3(t)
.
第11页/共27页
例6
求摆线
x y
a(t a(1

高等数学模型—微积分模型(数学建模课件)

高等数学模型—微积分模型(数学建模课件)
度等)
2、假设易拉罐是一个正圆柱体,什么是它的最优设计?其结果是
否可以合理地说明你们所测量地易拉罐地形状和尺寸。
二、数据测量
罐直径、罐高、罐壁厚、顶盖厚、圆台高、
顶盖直径、圆柱体高、罐底厚、罐内体积等。
该如何测量?
二、数据测量
1、直接测量
①用软皮尺环绕易拉罐相关部位一圈
(罐桶直径、罐
测得周长。
高、圆台高、顶
速度、出手角度和出手高度)
作定性和定量研究并得到明
确结论。
森林救火问题
微积分模型
知识点
一、问题的提出
二、模型分析与假设
三、模型建立与求解
四、模型应用
一、问题的提出
一、问题的提出
森林失火了!消防站接到火警后,立即决定派消防队员前去救火。队
员多,火被扑灭的快,森林损失小,但救援费用大;队员少,救援费用小,
118.0 123.5 136.5 142.0 146.0 150.0 157.0 158.0];
y1=[44 45 47 50 50 38 30 30 34 36 34 41 45 46 43 37 33 28 32 65 55 54 52 50 66 66 68];
y2=[44 59 70 72 93 100 110 110 110 117 118 116 118 118 121 124 121 121 121 122 116 83 81 82 86
四、模型建立与求解
一、问题的提出
运动员单手托住铅球,在投掷圆内将铅球掷出并使铅
球落入有效区内,以铅球投掷的远度评定运动员的成绩。
问题:
建模分析如何使铅球投掷的最远?
二、问题分析
• 铅球投掷中,影响投掷距离的因素有哪些?

大学微积分课件(PPT版)

大学微积分课件(PPT版)
微分方程是包含未知函数及其导数的等式。
微分方程的解
满足微分方程的函数称为微分方程的解。
一阶微分方程
一阶线性微分方程
形如y'=f(x)y' = f(x)y'=f(x)y=f(x)的一阶微 分方程,可以通过分离变量法求解。
一阶非线性微分方程
形如y'=f(y/x)y' = f(y/x)y'=f(y/x)的一阶微 分方程,可以通过变量代换法求解。
定积分的计算
计算方法与技巧
定积分的计算是微积分中的重要技能。常用的计算方法包括换元法、分部积分法、牛顿-莱布尼兹公 式等。通过这些方法,可以将复杂的定积分转化为易于计算的形式。
反常积分
概念与计算方法
VS
反常积分分为无穷积分和瑕积分两种 类型。对于无穷积分,需要讨论其在 有限的区间上收敛的情况;对于瑕积 分,需要讨论其在某一点附近的收敛 情况。反常积分的计算方法与定积分 的计算方法类似,但需要注意收敛的 条件。
极限与连续性
极限的定义与性质
极限的定义
极限是描述函数在某点附近的变化趋势 的一种数学工具。对于函数$f(x)$,如果 当$x$趋近于$a$时,$f(x)$的值趋近于 某个确定的常数$L$,则称$L$为函数 $f(x)$在点$a$处的极限。
极限的性质
极限具有唯一性、有界性、保序性和 局部有界性等性质。这些性质有助于 我们更好地理解极限的概念和应用。
连续函数的图像
连续函数的图像是连续不断的曲线。在微积分中,我们经常需要研究连续函数的性质和 变化规律,以便更好地解决实际问题。
03
导数与微分
导数的定义与性质
要点一
导数的定义
导数是函数在某一点的变化率,表示函数在该点的切线斜 率。

大学微积分课件PPT幻灯片版

大学微积分课件PPT幻灯片版

n 0 i 1
实例2 (求变速直线运动的路程)
设某物体作直线运动,已知速度v v(t )是 时间间隔 [T1 ,T2 ] 上 t 的一个连续函数,且 v(t ) 0,求物体在这段时间内所经过的路程
思路:把整段时间分割成若干小段,每小段上 速度看作不变,求出各小段的路 程再相加,便 得到路程的近似值,最后通过对时间的无限细 分过程求得路程的 精确值.
(1)
d
x e
t 2 dt
dx d 1
(2)
1 e t 2 dt
dx d x
(3)
cosx t 2et 2 dt
dx 1
补充
如果 f (t ) 连续,a( x) 、b( x) 可导,
则F ( x)
b( x ) f (t )dt 的导数F ( x) 为 a ( x )
F ( x)
d b( x ) a( x ) f (t )dt dx
使
b a
f ( x)dx
积分中值公式
f ( )(b a).
(a b)
m(b a) 证
b f ( x)dx M (b a) a
m
1 b a
b f ( x)dx M
a
由闭区间上连续函数的介值定理知
在区间[a, b]上至少存在一个点 ,
f ()
1
b f ( x)dx,
使
b a
x
以[ xi1 , xi ]为底,f (i ) 为高的小矩形面积为
Ai
f (i )xi
曲边梯形面积的近似值为 n
A f (i )xi i1
当分割无限加细, 记小区间的最大长度 或者( x ) x max{x1 , x2 ,xn } 趋近于零 ( x 0或者 0) 时,

《微积分入门》课件

《微积分入门》课件
《微积分入门》ppt课件
目录
• 微积分简介 • 极限与连续性 • 导数与微分 • 积分 • 微分方程
01
微积分简介
微积分的起源
01
微积分的起源可以追溯到古 代数学,如希腊数学家阿基 米德对面积和体积的研究。
02
微积分的发展在17世纪取得 了突破,以牛顿和莱布尼茨
的工作为基础。
03
微积分在18世纪和19世纪得 到了进一步的发展和完善, 成为现代数学的重要分支。
反常积分
反常积分的定义
反常积分又称为瑕积分,它是在一个区间上定义的,但与常规的定积分有所不同。反常 积分分为两种:一种是无穷区间上的反常积分,另一种是有限区间上无界函数的反常积
分。
反常积分的性质
反常积分也具有一些重要的性质,如可加性、区间可加性等。这些性质在处理一些特殊 函数或解决一些实际问题时非常有用。
微积分的应用
01
微积分在物理学、工程学、经济学、生物学等领域 有着广泛的应用。
02
微积分可以用来解决速度、加速度、功率、电流、 压力、密度等问题。
03
微积分在金融领域中可以用来计算股票价格、投资 回报率等。
微积分的基本概念
01
极限
极限是微积分的基本概念之一 ,它描述了函数在某一点的变
化趋势。
02
05
微分方程
微分方程的建立与求解
总结词
理解微分方程的建立过程,掌握求解微 分方程的基本方法。
VS
详细描述
微分方程是描述数学模型中变量之间变化 关系的工具,通过理解问题背景和数学模 型,可以建立微分方程。求解微分方程的 方法包括分离变量法、常数变异法、参数 变异法等,这些方法能够求解各种类型的 微分方程。

微积分应用模型PPT课件

微积分应用模型PPT课件

经济数学模型
问 饲养场每天投入c元资金,用于饲料、人力、设备, 题 估计使当前w千克重的生猪体重增加r公斤。
市场价格目前为每千克p元,但是预测每天会降 低 g元,问生猪应何时出售。
如果估计和预测有误差,对结果有何影响。
分 投入资金使生猪体重随时间增加,出售单价随 析 时间减少,故存在最佳出售时机,使利润最大
经济数学模型
问题归结为求t≥0,使L(t)达到最大。这是求 二次函数最大值问题,用微分法容易得到
t* rp wg c (rp wg c 0) 2rg
例如当生猪目前体重 w为80公斤,每天投入费用 c为 4元,市场价格p为8元/公斤 ,估计生猪每天体重的增 加速度r为2公斤/天 ,销售价格的降低速度g为0.1元/天 , 则最优销售时间为
U
p2
q2
• 购买两种商品费用之比与二者价格无关。
• U(q1,q2)中参数 , 分别表示对甲乙的偏爱程度。
经济数学模型
推广:假设消费者在 n 种商品中作出选择,
则在 U1 U2 Un 成立时,
p1
p2
pn
U (q1, q2,...,qn ) max
4.4 生猪的最佳出售时机
(rp wg c 0)
设r为常数 ,t 对g的(相对)敏感度为
S
t*, g
dt* g c rp = dg t* = 2grt*
(rp wg c 0)
经济数学模型
当生猪目前体重w为80公斤,每天投入费用c= 4元,市 场价格为p=8元/公斤 ,估计生猪每天体重的增加速度为 r=2公斤/天 ,销售价格的降低速度g为0.1元/天
t*对参数r敏感程度为
S

《微积分》PPT课件

《微积分》PPT课件

x x0
f (x)
f
(x0 )
何时函数f(x)在 点 处间断?
(1)f(x)在点 x0 处无定义;
(2)f(x)在点
x0 处有定义,但
时,函数f(x)以常数A为极限,记作
lim f (x) A或f (x) A(x )
x
定 义 2 . 5 : 若 对 于 任 意 给 定 的 正 数 , 总 存
在一个正数M,使得当x>M(x<-M)时,
恒 有 f (x) A< 成 立 , 则 称 当 x (x )
时,函数f(x)以常数A为极限,记作
y=arcsinx x [1,1], y [ , ]
22
y=arccos x [-1,1], y [0, ]
y=arctanx X R, y ( , ) 22
y=arccotx X R,y (0,)
1.4 初等函数(三角函数)
正弦函数和余弦函数
正切函数和余切函数
正割函数与余割函数
三角函数的基本关系式:
xx0
ua
2.4
被迫性定理 若在某个变化过程中,
恒有y≤x≤z,且 limy=limz=A,则limx=A
两个重要极限(必考)
单调有界定理
单调有界的数列
必有极限
} 单 调 增 + 有 上 界
单调减+有下界
数列收敛
定理 2.12
定义 2.9
定理 2.13
若数列 {an}满足 an an1(或an an1)(n N) 则称数列 {an}为单调增 加(或单调减少)数列。
当x 0时,等价无穷小量:
sinx~x tanx~x
arcsinx~x 1-cosx~x2

微积分.ppt课件

微积分.ppt课件
在听课时常会遇到某些问题没听懂的情况,这时 千万不要在这些问题上持续徘徊而影响继续听课,应 承认它并在教材上或笔记上相应处作上记号,继续跟 上教师的讲授. 遗留的问题、疑点待课后复习时再思 考、钻研,或找同学讨论,或找教师答疑,或查看参 考书加以解决.
(3) 记笔记
记好课堂笔记是学好高等数学的一个重要的学 习环节. 但要注意的是,课堂学习的中心任务是听、 看、想,记笔记的目的是便于课后复习,便于消化 课上所讲的内容. 因此,记笔记不应占用过多的课 堂时间. 笔记不必工整,不必全面,不必连贯,但 应预留一定的空白以便课后补充、写心得、记疑问.
高等数学有四个显著特点:
(1)高度的抽象性
数学的抽象性在简单的计算中就已经表现出 来. 我们运用抽象的数字,却不是每次都把它们同 具体的对象联系起来. 在数学的抽象中只留下量的 关系和空间形式,而舍弃了其他一切. 它的抽象程 度大大超过了自然科学中任何一门学科.
(2)严谨的逻辑性
数学中的每一个定理,不论验证了多少实例, 只有当它在逻辑上被严格证明时,才能在数学中
(5)做作业
要把高等数学学到手,及时、认真地完成作 业是一个必不可少的学习环节. 每次的作业最好 在当天完成,但是应该在复习完当天的内容之后 进行. 做作业不仅是检验学习效果的手段,同时 也是培养、提高综合分析问题的能力、笔头表达 能力以及计算能力的重要手段.
特别强调,认真完成作业是培养同学们严谨 治学的一个环节.因此,要求作业“字迹工整、绘 图准确、条理清楚、论据充分”. 切忌抄袭,尽 量不先看书后的答案.
成立. 在数学中要证明一个定理,必须是从条件和 已有的数学公式出发,用严谨的逻辑推理方法导出 结论.
(3)广泛的应用性
高等数学具有广泛的应用性. 例如,掌握了导数 概念及其运算法则,就可以用它来刻画和计算曲线的 切线斜率、曲线的曲率等等几何量;就可以用它来刻 画和计算速度、加速度、密度等等物理量;就可以用 它来刻画和计算产品产量的增长率、成本的下降率等 等经济量;……

《高等数学微积分》课件

《高等数学微积分》课件

实际应用
极值问题在经济学、物理学等领域有广泛应 用,如成本最小化、利润最大化等。
曲线的长度
曲线长度公式
利用微积分计算曲线的长度。
参数方程
通过参数方程将曲线表示为参数的函数,便于计算长度。
实际应用
在工程、地理等领域,需要计算各种曲线的长度,如河流长度、 道路长度等。
面积和体积
面积和体积公式
利用微积分计算平面图形的面积和空间图形的体积。
结合律
微积分运算还具有结合律,即函数的微积分运算顺序不影响结果。
交换律
此外,微积分运算还满足交换律,即函数的微积分运算满足交换律 。
微积分运算的法则
分部积分法
分部积分法是微积分运算中的一 种重要方法,它将两个函数的乘 积的导数转化为两个函数的导数 的乘积,从而简化了计算过程。
换元法
换元法是微积分运算中的另一种 重要方法,它通过引入新的变量 来简化计算过程。
如何提高微积分的计算能力?
总结词:掌握计算方法 总结词:细心谨慎 总结词:多做练习题
详细描述:提高微积分的计算能力需要熟练掌握各种计 算方法,如极限的计算、导数的计算和积分的计算等。 掌握这些方法可以更快更准确地完成计算。
详细描述:在微积分的计算过程中,需要细心谨慎,避 免因粗心大意而导致的错误。仔细检查每一步的计算过 程,确保准确性。
微分
微分的定义与性质
微分是函数在某一点附近的小变化量,它描述了函数在该点附近的变化趋势。微分具有一些重要的性质,如线性性、 可加性和可乘性。
微分的计算方法
包括微分的四则运算法则、复合函数的微分法则、隐函数的微分法则等。这些方法可以帮助我们快速准确地计算函数 的微分。
微分的应用
微分在许多领域都有广泛的应用,如近似计算、误差估计、优化问题等。例如,在近似计算中,微分可 以用来估计函数在某一点的近似值;在优化问题中,微分可以用来寻找函数的极值点。

《微积分》课件

《微积分》课件
微分学主要研究函数在某一点附近的 局部行为,包括切线、函数的变化率 等;积分学则研究函数在某个区间上 的整体行为,包括面积、体积等。
微积分的历史背景
01
微积分的发展可以追溯到古代数 学,如希腊数学家阿基米德在求 面积和体积时已经有了积分学的 萌芽。
02
微积分的真正奠基人是牛顿和莱 布尼茨,他们分别独立地发展出 了微积分的基本理论,为后来的 数学发展奠定了基础。
《微积分》PPT课件
contents
目录
• 微积分的定义与历史 • 微积分的基本概念 • 微积分的应用 • 微积分的解题技巧 • 微积分的重点与难点解析 • 微积分的习题与答案解析
01
微积分的定义与历史
微积分的定义
微积分是研究函数、极限和连续性的 数学分支,通过微分和积分的方法来 研究函数的性质和变化规律。
极限的运算性质与法则
1 2
极限的运算性质
极限的四则运算法则、复合函数的极限运算法则 等。
极限的法则
极限的保号性、极限的局部有界性等。
3
注意事项
理解极限的运算法则和性质是解决极限问题的关 键,需要注意运算过程中的等价变换和放缩技巧 。
导数的几何意义与运算性质
导数的几何意义
切线的斜率、函数图像的变化率等。
习题一:极限的运算
$lim_{x to infty} frac{1}{x}$
判断下列叙述是否正 确,并说明理由
$lim_{x to 0} (1 + x)^{1/x}$
习题一:极限的运算
$lim_{x to 0} frac{sin x}{x} = 1$
$lim_{x to infty} frac{1}{x} = 0$
$lim_{x to 0} (1 + x)^{1/x} = e$
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

h
15
问题2:请估计美国收入较低的50%的人口 拥有国民收入的比例。
分析:可以通过曲线拟合,确定p近似等于2, 求得G近似等于0.33,当p为0.5时,r为0.25。
结论:美国收入较低的50%的人口只拥有国 民总收入的25%。
备注:曲线r=f(p)为国际通用的洛伦茨曲线,
用来衡量社会收入分配;G为基尼系数。
问题:东风化工厂该不该接受这个优惠条件呢?
h
10
分析 1、东风化工厂原来使总费用最低的进货批量; 2、在新的优惠条件下,原来达到最低的总费用 能不能继续降低。
结论:应该接受。
理论依据 求最优批量,使总费用最低。
应用与推广 最优批量问题广泛应用于库存管理与生产决策。
h
11
4、该不该接受供货商的优惠条件
h
8
结论 平均分配每个轮次的用水量永远是最佳的选择。
理论依据 求条件极值的拉格朗日乘数法。
应用与推广 可以应用于洗衣机制造业和印染厂生产过程中 的水量控制。
h
9
4、该不该接受供货商的优惠条件
东风化工厂每年生产所需的12000吨化工原 料一直都由胜利集团以每吨500元的价格分批提 供的,每次去进货都要支付400元的手续费,而 且原料进厂以后还要按每吨每月5元的价格支付 库存费。最近胜利集团为了进一步拓展市场, 提出了“一次性订货600吨或以上者,价格可以 优惠5%”的优惠政策。
O
h
Y
r=f(p)
1
p
14
r
1
Y
G
A
1
2A 2 [ p f ( p)]dp
1/ 2
0
1
1 20 f ( p)dp
曲线r p ( 0)与r f ( p)最接近,则
r=f(p)
O
1
p
G 1 2 1 p dp 1 2
0
1
把曲线与直线之ቤተ መጻሕፍቲ ባይዱ的面积A所占三角形 OPY面积的比例作为衡量社会收入不平等程 度的一个指标,记为G。G的值越小,收入分 配就愈平均。
h
6
3、衣物怎样漂洗最干净
问 题:在漂洗的次数与总水量一定的情况下, 如何控制每次漂洗的用水量,才能使衣物洗的 最干净?
h
7
合理假设
1、经过洗涤,衣物上的污物全部溶解在水中; 2、每次漂洗后仍残存一个单位的少量污水;
3、漂洗前衣物残存的污水中污物含量为a; 4、漂洗共进行n次,每次漂洗的用水量为xi, i=1,2,…,n; 5、漂洗的总水量为A。
h
12
5、如何判定社会收入分配是否平均
问题1:随着社会的发展,收入分配的公平 性受到了越来越多的人的关注,请设计一种方案 来判定收入分配的均衡性。
分析:东如果把社会上的总人口按收入由低到
高划分为若干阶层,并以p(0《p《1)表示他们
占总人口的比例,已r(0《r《1)表示相应人口在
总收入中所占的份额的大小,则r=f(p)表示总人
口中收入最低的100p%所拥有的收入占总收入
的比例为100f(p)%。
h
13
如果分配是完全平等的,即20%的人口拥有 收入的20%,40%的人口拥有收入的40%,则 r=f(p) 为一条直线,称之为绝对平等线,如图。而反映 实际收入的曲线则是直线下方r的一条上凹的曲线。
该曲线与直线越 1
接近表明分配愈平等; 反之,与直线越远表 明收入分配愈不平等。
h
2

破解悖论


S=
S1
+S
2+
…+ 结总论路:程刘S:翔V只V要v从S 1起跑点跑过S+稍n…微超过S1 不多的一点距离就能很快追赶上乌龟。
h
3
理论依据
几何级数敛散性的判定与求和
h
4
2、空调销l售n(T量-的m预)=-测k问t+题c,
某家电商场经营两种品牌的空调,从销售
图显示,当A品牌空调定价x千元/台,B品牌 空调定价y千元/台时,A品牌空调的销售 量为 Q (x,y)12 2 0x 2 2 1y 6。
h
16
理论依据:用定积分计算曲边梯形的面积。
应用与推广:基尼系数是国际上通用的反映 国民收入差异程度的数量界限,可以比较客观、 直观地反映和监测国民之间的贫富差距,预报、 预警和防止国民之间出现贫富两极分化,因此 得到世界各国的广泛认同和普遍采用。
h
17
h
18
东风化工厂每年生产所需的12000吨化工原 料一直都由胜利集团以每吨500元的价格分批提 供的,每次去进货都要支付400元的手续费,而 且原料进厂以后还要按每吨每月5元的价格支付 库存费。最近胜利集团为了进一步拓展市场, 提出了“一次性订货600吨或以上者,价格可以 优惠5%”的优惠政策。
问题:东风化工厂该不该接受这个优惠条件呢?
假设现在时3月份,且在未来的几个月内
x1.80.00 t 5
着气温的逐渐升高两种空调的价格都呈上升
h
5
B品牌空调的销售价为 y1.750.1 t
问题:请帮商场预测一下8月份A品牌空调 的销售量相比7月份是增加还是减少。
结论:减少了
原因:B品牌空调价格上调幅度相对偏小 理论依据:二元复合函数全导数的求法 与边际函数的意义
h
1
1、谈谈刘翔与乌龟赛跑的问题
如果先让乌龟爬行一段路后,再让刘翔 去追,那么刘翔是永远也追不上乌龟的。
理由:刘翔追上乌龟之前,必须先到达 乌龟的出发点,而这段时间内,乌龟又向 前爬行了一段路,于是刘翔必须赶上这段 路,于是乌龟又向前爬行了一路。。。, 如此分析下去,刘翔离乌龟越来越近,但 却是永远也追不上乌龟。
相关文档
最新文档