2021高考物理一轮复习课练15动能和动能定理含解析

合集下载

一课一练29:动能、动能定理的理解(答案含解析)—2021届高中物理一轮基础复习一课一练

一课一练29:动能、动能定理的理解(答案含解析)—2021届高中物理一轮基础复习一课一练

一课一练29:动能、动能定理的理解分析:准确理解动能和动能定理,会利用动能定理处理变力做功、E k -x 、a -x 图像等问题是考查的一个重要方向。

往往是以选择题的方式呈现的。

1.高铁列车在启动阶段的运动可看作初速度为零的匀加速直线运动.在启动阶段,列车的动能( )A .与它所经历的时间成正比B .与它的位移成正比C .与它的速度成正比D .与它的动量成正比2.如图所示,有一条长为L =2 m 的均匀金属链条,有一半长度在光滑的足够高的斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂在空中,当链条从静止开始释放后链条滑动,则链条刚好全部滑出斜面时的速度为(g 取10 m/s 2)( )A .2.5 m/sB .522 m/sC . 5 m/sD .352 m/s 3.(多选)如图甲所示,长为l 、倾角为α的斜面固定在水平地面上,一质量为m 的小物块从斜面顶端由静止释放并沿斜面向下滑动,已知小物块与斜面间的动摩擦因数μ与下滑距离x 的变化图像如图乙所示,则( )A .μ0>tan αB .小物块下滑的加速度逐渐增大C .小物块下滑到斜面底端的过程中克服摩擦力做的功为12μ0mgl cos α D .小物块下滑到底端时的速度大小为2gl sin α-2μ0gl cos α4.如图所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上.。

斜面和地面平滑连接,且物块与斜面、物块与地面间的动摩擦因数均为常数.。

该过程中,物块的动能k E 与水平位移x 关系的图象是( )A B CD5.从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h在3 m以内时,物体上升、下落过程中动能E k随h的变化如图所示.重力加速度取10 m/s2.该物体的质量为()A.2 kg B.1.5 kgC.1 kg D.0.5 kg6.(多选)如图所示,质量为m的小球(可视为质点)用长为L的细线悬挂于O点,自由静止在A位置.现用水平力F缓慢地将小球从A拉到B位置后静止,此时细线与竖直方向的夹角为θ=60°,细线的拉力为F1,然后放手让小球从静止返回,到A点时细线的拉力为F2,则()A.F1=F2=2mgB.从A到B,拉力F做功为F1LC.从B到A的过程中,小球受到的合外力大小不变D.从B到A的过程中,小球重力的瞬时功率先增大后减小7.(多选)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示.在另一星球N上用完全相同的弹簧,改用物体Q完成同样的过程,其a–x关系如图中虚线所示,假设两星球均为质量均匀分布的球体.已知星球M的半径是星球N的3倍,则()A.M与N的密度相等B.Q的质量是P的3倍C.Q下落过程中的最大动能是P的4倍D.Q下落过程中弹簧的最大压缩量是P的4倍8.如图所示,木块B上表面是水平的,木块A置于B上,并与B保持相对静止,一起沿固定的光滑斜面由静止开始下滑,在下滑过程中()A.A所受的合外力对A不做功B.B对A的弹力做正功C.B对A的摩擦力做正功D.A对B做正功9.(多选)如图所示,在倾角为θ的足够长斜面上,轻质弹簧一端与斜面底端的挡板固定,另一端与质量为M 的平板A 连接,一质量为m 的物体B 靠在平板的右侧,A 、B 与斜面的动摩擦因数均为μ.开始时用手按住B 使弹簧处于压缩状态,现释放,使A 和B 一起沿斜面向上运动,当A 和B 运动距离L 时达到最大速度v .则下列说法正确的是( )A .A 和B 达到最大速度v 时,弹簧恢复原长B .若运动过程中A 和B 能够分离,则A 和B 恰好分离时,二者加速度大小均为g (sin θ+μcos θ)C .从释放到A 和B 达到最大速度v 的过程中,弹簧对A 所做的功等于12Mv 2+MgL sin θ+μMgL cos θD .从释放到A 和B 达到最大速度v 的过程中,B 受到的合力对它做的功等于12mv 2 10.小明将如图所示的装置放在水平地面上,该装置由弧形轨道、竖直圆轨道、水平直轨道AB 和倾角37θ=︒的斜轨道BC 平滑连接而成.质量0.1kg m =的小滑块从弧形轨道离地高 1.0m H =处静止释放.已知0.2m R =,AB BC 1.0m L L ==,滑块与轨道AB 和BC 间的动摩擦因数均为0.25μ=,弧形轨道和圆轨道均可视为光滑,忽略空气阻力.(1)求滑块运动到与圆心O 等高的D 点时对轨道的压力;(2)通过计算判断滑块能否冲出斜轨道的末端C 点;(3)若滑下的滑块与静止在水平直轨道上距A 点x 处的质量为2m 的小滑块相碰,碰后一起运动,动摩擦因数仍为0.25,求它们在轨道BC 上到达的高度h 与x 之间的关系.(碰撞时间不计,sin370.6︒=,cos370.8︒=)11.如图所示,足够长的斜面与水平面夹角为37°,斜面上有一质量为M =3 kg 的长木板,斜面底端挡板高度与木板厚度相同.m =1 kg 的小物块从空中某点以v 0=3 m/s 水平抛出,抛出同时木板由静止释放,小物块下降h =0.8 m 掉在木板前端,碰撞时间极短可忽略不计,碰后瞬间物块垂直斜面分速度立即变为零.碰后两者向下运动,小物块恰好在木板与挡板碰撞时在挡板处离开木板.已知木板与斜面间动摩擦因数μ=0.5,木板上表面光滑,木板与挡板每次碰撞均无能量损失,g取10 m/s2,求:(1)碰前瞬间小物块速度大小和方向.(2)木板至少多长小物块才没有从后端离开木板.(3)木板从开始运动到最后停在斜面底端的整个过程中通过路程多大.一课一练29:动能、动能定理的理解答案1.【答案】B【解析】动能E k =12mv 2,与速度的平方成正比,故C 错误.速度v =at ,可得E k =12ma 2t 2,与经历的时间的平方成正比,故A 错误.根据v 2=2ax ,可得E k =max ,与位移成正比,故B 正确。

2021高考物理一轮基础复习讲义专题8动能动能定理及其应用(含

2021高考物理一轮基础复习讲义专题8动能动能定理及其应用(含

2021高考物理一轮基础复习讲义专题8动能、动能定理及其应用(含小初高教案、学案、试题、试卷精选资料2021高考物理一轮基础复习讲义专题8动能、动能定理及其应用(含解析)考纲原文 1.动能的概念(Ⅰ) 2.动能定理及其应用(Ⅱ) 6年考题 2021 2021 2021 2021 2021 2021 考情分析本专题考点有两个,一个是动能的概念,注意动能的定义式,而且动能是标量,能对题目数据进行计算,要求能判别出一些运动物体的动能在不同条件下的变化情况.另外一个是动能定理的应用,此考点较难,要能很好地理解动能变化量这个概念,以及能识别出初末状态速度以及该过程中合外力做功或者各力做功代数和情况. T16 T10 T16(1) T5、T35、T36 T35(1)、T40(1) 考点1 动能的概念(Ⅰ)1.(2021年1月广东学业水平考试)赛道上的赛车做加速运动,速度为v和速度为2v 时赛车动能之比是( )A.1∶1 B.1∶2 C.1∶4 D.1∶32.(2021年6月广东学业水平考试)某同学将质量为3 kg的铅球,以8 m/s的速度投出,铅球在出手时的动能是( )A.12 J B.24 J C.96 J D.192 J3.(2021年6月广东学业水平考试)某同学投掷铅球.每次出手时,铅球速度的大小相等,但方向与水平面的夹角不同.关于出手时铅球的动能,下列判断正确的是( )A.夹角越大,动能越大 B.夹角越大,动能越小He often told his friends about his goldfish and they often went to see them. Mr. Brown was very happy.1 / 14小初高教案、学案、试题、试卷精选资料C.夹角为45° 时,动能最大 D.动能的大小与夹角无关4.(2021年6月广东学业水平考试)质量不同的两个物体从同一高度静止释放后落到地面,不计空气阻力,下列说法中正确的是( )A.落地的时间不同 B.落地时的速度不同 C.落地时的动能相同D.下落过程中物体的加速度相同1.动能定义:物体由于运动而具有的能量叫做动能. 2.动能计算公式:Ek=mv2.国际单位:焦(J).(1)动能只有大小,没有方向,是个标量.计算公式中v是物体运动速度的大小.动能恒为正值.(2)动能具有相对性,计算公式中v一般取地面为参考系.考点2 动能定理及其应用(Ⅱ)1.(2021年1月广东学业水平考试)一质量为2 kg的物体在外力作用下,由静止开始做直线运动,到达某点时速度为2 m/s,在此过程中外力对物体做的功是( )A.2 J B.4 J C.8 J D.16 J2.(2021年6月广东学业水平考试)距地面高为h处,以水平速度v0抛出一个质量为m的小球,若不计空气阻力,则物体落地时的动能为( )He often told his friends about his goldfish and they often went to see them. Mr. Brown was very happy.2 / 14感谢您的阅读,祝您生活愉快。

高考物理一轮复习课时作业十五动能定理及其应用含解析新人教版

高考物理一轮复习课时作业十五动能定理及其应用含解析新人教版

动能定理及其应用(建议用时40分钟)1.(2021·丰台区模拟)某同学将篮球从距离地面高为h 处由静止释放,与地面碰撞后上升的最大高度为h4 。

若篮球与地面碰撞无能量损失,空气阻力大小恒定,则空气阻力与重力大小之比为( )A .1∶5B .2∶5C .3∶5D .4∶5【解析】选C 。

设篮球质量为m,空气阻力大小为F,对篮球从h 处释放到反弹上升到h4 的整个过程,由动能定理得: mg(h -h 4 )-F(h +h 4 )=0,解得:F mg =35 ,故A 、B 、D 错误,C 正确。

2.如图所示,一辆汽车以v 1=6 m/s 的速度沿水平路面行驶时,急刹车后能滑行s 1=3.6 m,如果改以v 2=8 m/s 的速度行驶,同样的情况下急刹车后滑行的距离s 2为( )A.6.4 m B .5.6 m C .7.2 m D .10.8 m【解析】选A 。

汽车在同样的路面上急刹车,所受的阻力大小相同,设为F,汽车的末速度都为零,根据动能定理有-Fs 1=0-12 mv 21 ,-Fs 2=0-12 mv 22 ,所以s 2s 1 =v 22 v 21 ,解得s 2=(v 2v 1 )2×s 1=(86)2×3.6 m =6.4 m,选项A 正确。

3.如图所示,用同种材料制成的一个轨道,AB 段为14 圆弧,半径为R,水平放置的BC 段长度为R 。

一小物块质量为m,与轨道间的动摩擦因数为μ,当它从轨道顶端A 由静止下滑时,恰好运动到C 点静止,那么物块在AB 段克服摩擦力做的功为( )A .μmgRB .mgR(1-μ)C .12 πμmgRD .12mgR 【解析】选B 。

设在AB 段物块克服摩擦力做的功为W,则物块由A 到B 运用动能定理可得mgR -W =12 mv 2B ,物块由B 到C 运用动能定理可得-μmgR=0-12 mv 2B ,联立解得W =mgR(1-μ),选项B 正确,A 、C 、D 错误。

高考核动力2021届高考物理一轮复习课时作业15动能动能定理

高考核动力2021届高考物理一轮复习课时作业15动能动能定理

高考核动力2021届高考物理一轮复习课时作业15动能动能定理(时刻:45分钟 满分:100分)一、选择题(本题共10小题,每小题7分,共70分,每小题至少有一个选项正确,把正确选项前的字母填在题后括号内)1.两辆汽车在同一水平路面上行驶,它们的质量之比为1∶2,速度之比为2∶1.设两车与地面的动摩擦因数相等,则当两车紧急刹车后,滑行的最大距离之比为( )A .1∶2B .1∶1C .2∶1D .4∶1【解析】 对汽车用动能定理得-μmgl =0-12mv 2,因此滑行的距离与v 2成正比,故汽车滑行的最大距离之比l 1∶l 2=4∶1,故正确答案为D.【答案】 D2.子弹的速度为v ,打穿一块固定的木块后速度刚好变为零.若木块对子弹的阻力为恒力,那么当子弹射入木块的深度为其厚度的一半时,子弹的速度是( )v 【解析】 设子弹的质量为m ,木块的厚度为d ,木块对子弹的阻力为F f .依照动能定理,子弹刚好打穿木块的过程满足-F f d =0-12mv 2.设子弹射入木块厚度一半时的速度为v ′则-F f ·d 2=12mv ′2-12mv 2,得v ′=22v ,故选B.【答案】 B3.半径为R 的光滑半球固定在水平面上,现用一个方向与球面始终相切的拉力F 把质量为m 的小物体(可看作质点)沿球面从A 点缓慢地移动到最高点B ,在此过程中,拉力做的功为( )A .πFRB .πmgR mgR D .mgR【解析】 拉动物体的力为变力,故A 错;缓慢运动可认为速度为0,由动能定理得W F-mgR =0,因此W F =mgR ,故D 对.【答案】 D4.(2020·合肥二中高三月考)质量为1 kg 的物体以某一初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的图线如图所示,g 取10 m/s 2,则以下说法中正确的是( )A .物体与水平面间的动摩擦因数为B .物体与水平面间的动摩擦因数为C .物体滑行的总时刻为4 sD .物体滑行的总时刻为 s【解析】 由动能定理得-F f x =0-E k ,F f =E k x= N ,而F f =μmg ,μ=F f mg=,选项A 、B 错误;依照牛顿第二定律可得a =F f m=2.5 m/s 2,由运动学公式得物体滑行的总时刻t =2xa=4 s ,选项C 正确、D 错误.【答案】 C5.如图所示,劲度系数为k 的弹簧下端悬挂一个质量为m 的重物,处于静止状态.手托重物使之缓慢上移,直到弹簧复原原长,手对重物做的功为W 1.然后放手使重物从静止开始下落,重物下落过程中的最大速度为v ,不计空气阻力.重物从静止开始下落到速度最大的过程中,弹簧对重物做的功为W 2,则( )A .W 1>m 2g 2kB .W 1<m 2g 2kC .W 2=12mv 2D .W 2=m 2g 2k -12mv 2【解析】 设x 为弹簧伸长的长度,由胡克定律得:mg =kx .手托重物使之缓慢上移,直到弹簧复原原长,重物的重力势能增加了mgx =m 2g 2/k ,弹簧的弹力对重物做了功,因此手对重物做的功W 1<m 2g 2/k ,选项B 正确;由动能定理知W 2+m 2g 2k =12mv 2,则C 、D 错.【答案】 B 6.如图所示,BC 是竖直面内的四分之一圆弧形光滑轨道,下端C 与水平直轨道相切.一个小物块从B 点正上方R 处的A 点处由静止开释,从B 点刚好进入圆弧形光滑轨道下滑,已知圆弧形轨道半径为R =0.2 m ,小物块的质量为m =0.1 kg ,小物块与水平面间的动摩擦因数μ=,取g =10 m/s 2.小物块在水平面上滑动的最大距离是( )A .0.1 mB .0.2 mC .0.6 mD .0.8 m 【解析】 本题考查了多过程中动能定理的应用.设小物块在水平面上滑动的最大距离为x ,由动能定理得:mg ·2R -μmgx =0,x =2Rμ=0.8 m ,选项D 正确.【答案】 D7.如图所示,一倾角为45°的粗糙斜面与粗糙水平轨道平滑对接,有一质量为m 的物体由斜面的A 点静止滑下,物体与斜面和地面间的动摩擦因数相同.已知A 距离地面的高度为4 m ,当物体滑至水平地面的C 点时速度恰好为零,且BC 距离为4 m .若将BC 水平轨道抬起,与水平面间夹角为30°,其他条件不变,则物体能沿BD 斜面上升的最大高度为( )A .(8-43)mB .(8-23)mm D .8 m【解析】 由A 点到C 点,利用动能定理可得mgh -WF f =0,解得μ=,设沿BD 斜面上升的最大高度为h ′,则由动能定理可得mg (h -h ′)-μmg cos 45°×2h -μmg cos 30°×2h ′=0,解得h ′=(8-43) m.【答案】 A8.如图所示,一个粗糙的水平转台以角速度ω匀速转动,转台上有一个质量为m 的物体,物体与转轴间用长L 的绳连接着,现在物体与转台处于相对静止,设物体与转台间的动摩擦因数为μ,现突然制动转台,则( )A .由于惯性和摩擦力,物体将以O 为圆心、L 为半径做变速圆周运动,直到停止B .若物体在转台上运动一周,物体克服摩擦力做的功为μmg 2πLC .若物体在转台上运动一周,摩擦力对物体不做功D .物体在转台上运动Lω24μg π圈后,停止运动【解析】 制动转台后,物体在绳子约束作用下做圆周运动,速率在减小,运动一周滑动摩擦力做功为W f =-μmg 2πL ,绳子的拉力对物体不做功,由动能定理可知:-Nμmg 2πL =0-12mv 2,又v =ωL ,联立得物体在转台上转动的圈数为N =Lω24μg π,A 、B 、D 正确.【答案】 ABD9.如图所示,MPQ 为竖直面内一固定轨道,MP 是半径为R 的1/4光滑圆弧轨道,它与水平轨道PQ 相切于P 点,Q 端固定一竖直挡板,PQ 长为x .一小物块在M 端由静止开始沿轨道下滑,与挡板发生一次碰撞后以碰前速率反向弹回,最后停在距Q 点为l 的地点,重力加速度为g .则( )A .物块由静止滑至圆弧轨道P 点时速度大小为2gRB .物块由静止滑至圆弧轨道P 点时对轨道压力的大小为mgC .物块与PQ 段的动摩擦因数μ值可能是R x -lD .物块与PQ 段的动摩擦因数μ值可能是R3x -l【解析】 设物块滑至P 点时的速度为v ,依照动能定理有mgR =12mv 2-0,解得v =2gR ,选项A 正确;设物块到达P 点时,轨道对它的支持力大小为F N ,依照牛顿第二定律有F N -mg=m v 2R,解得F N =3mg ,依照牛顿第三定律,物块对轨道压力的大小F ′N =F N =3mg ,选项B错误;若物块与Q 处的竖直挡板相撞后,向左运动一段距离,停在距Q 为l 的地点.设该点为O ,物块从M 运动到O 的过程,依照动能定理有mgR -μmg (x +l )=0-0,解得μ=Rx +l,选项C 错误;若物块与Q 处的竖直挡板相撞后,向左运动冲上圆弧轨道,后又返回水平轨道,停在距Q 为l 的O 点,全程应用动能定理有mgR -μmg (2x +x -l )=0-0,解得μ=R3x -l,选项D 正确.【答案】 AD10.(2020·南宁月考)在有大风的情形下,一小球自A 点竖直上抛,其运动轨迹如图所示(小球的运动可看作竖直方向的竖直上抛运动和水平方向的初速度为零的匀加速直线运动的合运动),小球运动轨迹上的A 、B 两点在同一水平直线上,M 点为轨迹的最高点.若风力的大小恒定,方向水平向右,小球在A 点抛出时的动能为4 J ,在M 点时它的动能为2 J ,落回到B 点时动能记为E k B ,小球上升时刻记为t 1,下落时刻记为t 2,不计其他阻力,则( )A .x 1∶x 2=1∶3B .t 1<t 2C .E k B =6 JD .E k B =12 J【解析】 由小球上升与下落时刻相等即t 1=t 2得, x 1∶(x 1+x 2)=1∶22=1∶4,即x 1∶x 2=1∶正确,B 错误,A →M 应用动能定理得-mgh +W 1=12mv 2M -12mv 2,①竖直方向有v 2=2gh ②①②式联立得W 1=2 JA →B 风力做功W 2=4W 1=8 J , A →B 由动能定理W 2=E k B -E k A , 可求得E k B =12 J ,A 、D 正确. 【答案】 AD二、综合应用(本题共2小题,共30分,解答时应写出必要的文字说明,方程式和演算步骤,有数值运算的要注明单位)11.(15分)如图所示,在粗糙水平面上有一质量为M 、高为h 的斜面体,斜面体的左侧有一固定障碍物Q ,斜面体的左端与障碍物的距离为d .将一质量为m 的小物块置于斜面体的顶端,小物块恰好能在斜面体上与斜面体一起保持静止;现给斜面体施加一个水平向左的推力,使斜面体和小物块一起向左匀加速运动,当斜面体到达障碍物与其碰撞后,斜面体赶忙停止,小物块水平抛出,最后落在障碍物的左侧p 处(图中未画出).已知斜面体与地面间的动摩擦因数为μ1,斜面倾角为θ,重力加速度为g ,滑动摩擦力等于最大静摩擦力,求:(1)小物块与斜面间的动摩擦因数μ2;(2)要使物块在地面上的落点p 距障碍物Q 最远,水平推力F 为多大; (3)小物块在地面上的落点p 距障碍物Q 的最远距离. 【解析】 (1)对m 由牛顿第二定律得mg sin θ=μ2mg cos θ,解得μ2=tan θ (2)对m :设其最大加速度为a m . F N cos θ=mg +μ2F N sin θ F N sin θ+μ2F N cos θ=ma m . 解得:a m =2g sin θcos θ-tan θsin θ对M 、m 整体:F -μ1(M +m )g =(M +m )a m .解得:F =μ1(M +m )g +(M +m )2g sin θcos θ-tan θsin θ(3)对M 、m 整体由动能定理:Fd -μ1(M +m )gd =12(M +m )v 2解得:v =2gd sin θcos θ-tan θsin θ对m :h =12gt 2,x p =vt -htan θ解得:x p =22hd sin θcos θ-tan θsin θ-htan θ.【答案】 见解析12.(15分)光滑水平面上,一个长木板与半径R 未知的半圆组成如图所示的装置,装置质量M =5 kg.在装置的右端放一质量为m =1 kg 的小滑块(可视为质点),小滑块与长木板间的动摩擦因数μ=,装置与小滑块一起以v 0=10 m/s 的速度向左运动.现给装置加一个F =55 N 向右的水平推力,小滑块与长木板发生相对滑动,当小滑块滑至长木板左端A 时,装置速度恰好减速为0,现在撤去外力F 并将装置锁定.小滑块连续沿半圆形轨道运动,且恰好能通过轨道最高点B .滑块脱离半圆形轨道后又落回长木板.已知小滑块在通过半圆形轨道时克服摩擦力做功W f = J .g 取10 m/s 2.求:(1)装置运动的时刻和位移; (2)长木板的长度l ;(3)小滑块最后落回长木板上的落点离A 的距离. 【解析】 (1)对M :F -μmg =Ma 1解得:a 1=10 m/s 2设装置运动的时刻为t 1,由v 0-a 1t 1=0 解得:t 1=1 s装置向左运动的距离:x 1=v 0t 1-12a 1t 21=5 m(2)对m :μmg =ma 2,解得a 2=5 m/s 2设滑块到A 点的速度为v 1, 则v 1=v 0-a 2t 1 解得:v 1=5 m/s小滑块向左运动的距离:x 2=v 0t 1-12a 2t 21=7.5 m则木板长为l =x 2-x 1=2.5 m(3)设滑块在B 点的速度为v 2,从A 至B : -mg ×2R -W f =12mv 22-12mv 21在B 点:mg =m v 22R联立解得:R =0.4 m ,v 2=2 m/s 小滑块平抛运动时:2R =12gt 22落点离A 的距离:x =v 2t 2, 解得:x =0.8 m【答案】 (1)1 s 5 m (2)2.5 m (3)0.8 m。

21高考物理一轮复习课时规范练动能定理及其应用 含解析

21高考物理一轮复习课时规范练动能定理及其应用 含解析

课时规范练16动能定理及其应用基础对点练1.(单物体动能定理)物体静止在光滑水平面上,先对物体施加一水平向右的恒力F1,经时间t撤去F1,立即再对它施加一水平向左的恒力F2,又经时间3t物体回到出发点,在这一过程中,F1、F2分别对物体做的功W1、W2之间的关系是()A.W1∶W2=1∶1B.W1∶W2=2∶3C.W1∶W2=9∶5D.W1∶W2=9∶72.(多选)(单物体动能定理向心力)(2016·全国卷Ⅲ,20)如图,一固定容器的内壁是半径为R的半球面;在半球面水平直径的一端有一质量为m的质点P。

它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W。

重力加速度大小为g。

设质点P在最低点时,向心加速度的大小为a,容器对它的支持力大小为F N,则()A.a=2(mgR-W)mR B.a=2mgR-WmRC.F N=3mgR-2WR D.F N=2(mgR-W)R3.(多选)(单物体动能定理图象理解)在某一粗糙的水平面上,一质量为2 kg的物体在水平恒定拉力的作用下做匀速直线运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图中给出了拉力随位移变化的关系图象。

已知重力加速度g取10 m/s2。

根据以上信息能精确得出或估算得出的物理量有()A.物体与水平面间的动摩擦因数B.合外力对物体所做的功C.物体做匀速运动时的速度D.物体运动的时间4.(多过程单物体动能定理)有两条滑道平行建造,左侧相同而右侧有差异,一个滑道的右侧水平,另一个的右侧是斜坡。

某滑雪者保持一定姿势坐在雪橇上不动,从h1高处的A点由静止开始沿倾角为θ的雪道下滑,最后停在与A点水平距离为s的水平雪道上。

接着改用另一个滑道,还从与A点等高的位置由静止开始下滑,结果能冲上另一个倾角为α的雪道上h2高处的E点停下。

若动摩擦因数处处相同,且不考虑雪橇在路径转折处的能量损失,则()A.动摩擦因数为tan θB.动摩擦因数为ℎ1sC.倾角α一定大于θD.倾角α可以大于θ5.(2019·黑龙江大庆一中高考模拟)汽车在水平路面上从静止开始做匀加速直线运动,t1秒末关闭发动机做匀减速直线运动,到t2秒末静止,所受摩擦力不变。

浙江专版2021年高考物理一轮复习课时提升作业十五动能定理及其应用含解析

浙江专版2021年高考物理一轮复习课时提升作业十五动能定理及其应用含解析

动能定理及其应用(建议用时60分钟)1。

下列关于运动物体所受合外力做功和动能变化的关系正确的是 ()A。

如果物体所受合外力为零,则合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C。

物体在合外力作用下做变速运动,动能一定发生变化D.物体的动能不变,所受合外力一定为零【解析】选A。

物体所受合外力为零,则根据W=Fs可知合外力对物体做的功一定为零,选项A正确;合外力对物体所做的功为零,但合外力不一定为零,例如做匀速圆周运动物体的向心力,选项B错误;物体在合外力作用下做变速运动,动能不一定发生变化,例如做匀速圆周运动的物体,选项C、D错误。

2。

世界男子网坛名将瑞士选手费德勒,在上海大师杯网球赛上发出一记S球,声呐测速仪测得其落地速度为v1,费德勒击球时球离地面的高度为h,击球瞬间球有竖直向下的速度为v0,已知网球质量为m,不计空气阻力,则费德勒击球时对球做的功W为()A。

mgh+m B.m-m+mghC.m-m D。

m-m—mgh【解析】选D。

从发球直至球落地的整个过程中,由动能定理有W+mgh=m-m,解得W=m—m—mgh,故选项D正确.3.(2019·丽水模拟)甲、乙、丙三辆汽车的质量之比是2∶3∶4,如果它们的动能相等,且在同一个水平路面上行驶,轮胎与地面之间的动摩擦因数都相等,则它们关闭发动机后滑行距离之比是()A.2∶3∶4B.4∶3∶2C.6∶4∶3D.6∶3∶2【解析】选C。

由动能定理得:-μmgx=0—E k,解得汽车滑行距离为:x=,由于E k、μ、g都相等,则汽车的滑行距离与质量成反比:x1∶x2∶x3=∶∶=∶∶=6∶4∶3,故C正确,A、B、D错误.4.如图所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,BC水平,其长度为d=0。

50 m,盆边缘的高度为h=0.30 m。

在A处放一个质量为m的小物块并让其从静止开始下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0。

高考物理高考必备物理动能与动能定理技巧全解及练习题(含答案)

高考物理高考必备物理动能与动能定理技巧全解及练习题(含答案)

高考物理高考必备物理动能与动能定理技巧全解及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2.(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥【解析】 【分析】 【详解】(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律由B 到最高点2211222B mv mgR mv =+ 由A 到B :解得A 点的速度为(2)若小滑块刚好停在C 处,则:解得A 点的速度为若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212h gt =c s v t =解得所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥2.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块第一次通过C 点时的速度大小v C .(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】(1)BC 长度tan 530.4m l R ==o ,由动能定理可得21()sin 372B mg L l mv -=o代入数据的32m/s B v =物块在BC 部分所受的摩擦力大小为cos370.60N f mg μ==o所受合力为sin 370F mg f =-=o故32m/s C B v v ==(2)设物块第一次通过D 点的速度为D v ,由动能定理得2211(1cos37)22D C mgR mv mv -=-o有牛顿第二定律得2D D v F mg m R-= 联立解得7.4N D F =(3)物块每次通过BC 所损失的机械能为0.24J E fl ∆==物块在B 点的动能为212kB B E mv =解得0.9J kB E = 物块经过BC 次数0.9J=3.750.24Jn =设物块最终停在距离C 点x 处,可得()sin 37(3+)0mg L x f l x --=o代入数据可得0.35m x =3.某小型设备工厂采用如图所示的传送带传送工件。

2021高考物理一轮复习第5章机械能第2讲动能动能定理课时作业含解析

2021高考物理一轮复习第5章机械能第2讲动能动能定理课时作业含解析

第2讲 动能 动能定理1.在篮球比赛中,某位同学获得罚球机会,如图,他站在罚球线处用力将篮球投出,篮球以约为1 m/s 的速度撞击篮筐。

已知篮球质量约为0.6 kg ,篮筐离地高度约为3 m ,忽略篮球受到的空气阻力,则该同学罚球时对篮球做的功大约为( )A .1 JB.10 J C .50 J D.100 JB [该同学将篮球投出时的高度约为h 1=1.8 m ,根据动能定理有W -mg (h -h 1)=12mv 2,解得W =7.5 J ,故选项B 正确。

]2.(多选)如图所示,甲、乙两个质量相同的物体,用大小相等的力F 分别拉它们在水平面上从静止开始运动相同的距离x 。

甲在光滑水平面上,乙在粗糙水平面上,则下列关于力F 对甲、乙做的功和甲、乙两物体获得的动能的说法中正确的是( )A .力F 对甲做功多B .力F 对甲、乙两个物体做的功一样多C .甲物体获得的动能比乙大D .甲、乙两个物体获得的动能相同BC [由功的公式W =Fx cos α可知,两种情况下力F 对甲、乙两个物体做的功一样多,A 错误,B 正确;根据动能定理,对甲有Fx =E k1-0,对乙有Fx -F f x =E k2-0,可知E k1>E k2,即甲物体获得的动能比乙大,C 正确,D 错误。

]3.如图所示,AB 为14圆弧轨道,BC 为水平直轨道,BC 恰好在B 点与AB 相切,圆弧的半径为R ,BC 的长度也是R 。

一质量为m 的物体与两个轨道间的动摩擦因数都为μ,它由轨道顶端A从静止开始下落,恰好运动到C 处停止,重力加速度为g ,那么物体在AB 段克服摩擦力所做的功为( ) A.μmgR 2 B.mgR2C .mgR D.(1-μ)mgRD [设物体在AB 段克服摩擦力所做的功为W AB ,物体从A 到C 的全过程,根据动能定理有mgR -W AB -μmgR =0,所以W AB =mgR -μmgR =(1-μ)mgR ,故D 正确。

高考物理一轮复习 专项训练 物理动能与动能定理及解析

高考物理一轮复习 专项训练 物理动能与动能定理及解析

高考物理一轮复习专项训练物理动能与动能定理及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB是在竖直平面内的14圆周,B点离地面的高度h=0.8m,该处切线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:(1)圆弧轨道的半径(2)小球滑到B点时对轨道的压力.【答案】(1)圆弧轨道的半径是5m.(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.【解析】(1)小球由B到D做平抛运动,有:h=12gt2x=v B t解得:10410/220.8Bgv x m sh==⨯=⨯A到B过程,由动能定理得:mgR=12mv B2-0解得轨道半径R=5m(2)在B点,由向心力公式得:2Bv N mg mR -=解得:N=6N根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A点,自然状态时其右端位于B 点。

水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=1.0m的圆环剪去了左上角120°的圆弧,MN为其竖直直径,P点到桌面的竖直距离是h=2.4m。

用质量为m=0.2kg的物块将弹簧由B点缓慢压缩至C点后由静止释放,弹簧在C点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。

已知物块与桌面间的动摩擦因数μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶(1)物块通过P 点的速度大小;(2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离;【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】(1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则22y v gh =osin 60y v v=整理可得,物块通过P 点的速度8m/s v =(2)从P 到M 点的过程中,机械能守恒2211=(1cos60)+22o M mv mgR mv + 在最高点时根据牛顿第二定律2MN mv F mg R+= 整理得4.8N N F =根据牛顿第三定律可知,物块对轨道的压力大小为4.8N (3)从D 到P 物块做平抛运动,因此o cos 604m/s D v v ==从C 到D 的过程中,根据能量守恒定律212p D E mgx mv μ=+C 、D 两点间的距离2m x =3.某游乐场拟推出一个新型滑草娱乐项目,简化模型如图所示。

高考物理一轮复习 专项训练 物理动能与动能定理含解析

高考物理一轮复习 专项训练 物理动能与动能定理含解析

高考物理一轮复习专项训练物理动能与动能定理含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量为m=1kg的滑块,在水平力F作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v0=3m/s,长为L=1.4m,今将水平力撤去,当滑块滑到传送带右端C时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s2.求(1)水平作用力F的大小;(2)滑块开始下滑的高度h;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s,求滑块在传送带上滑行的整个过程中产生的热量Q.【答案】(1)(2)0.1 m或0.8 m (3)0.5 J【解析】【分析】【详解】解:(1)滑块受到水平推力F、重力mg和支持力F N处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移:s =v 0t 由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩ 相对滑动生成的热量⑪⑫2.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。

质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。

已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求:(1)剪断细绳前弹簧的弹性势能E p(2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E(3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。

动能和动能定理(解析版)--高一物理专题练习(内容+练习)

动能和动能定理(解析版)--高一物理专题练习(内容+练习)

动能和动能定理--高一物理专题练习(内容+练习)一、动能的表达式1.表达式:E k=12m v2.2.单位:与功的单位相同,国际单位为焦耳,符号为J.3.标矢性:动能是标量,只有大小,没有方向.二、动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.2.表达式:W=12m v22-12m v12.如果物体受到几个力的共同作用,W即为合力做的功,它等于各个力做功的代数和.3.动能定理既适用于恒力做功的情况,也适用于变力做功的情况;既适用于直线运动,也适用于曲线运动.三.对动能定理的理解(1)在一个过程中合外力对物体做的功或者外力对物体做的总功等于物体在这个过程中动能的变化.(2)W与ΔE k的关系:合外力做功是物体动能变化的原因.①合外力对物体做正功,即W>0,ΔE k>0,表明物体的动能增大;②合外力对物体做负功,即W<0,ΔE k<0,表明物体的动能减小;如果合外力对物体做功,物体动能发生变化,速度一定发生变化;而速度变化动能不一定变化,比如做匀速圆周运动的物体所受合外力不做功.③如果合外力对物体不做功,则动能不变.(3)物体动能的改变可由合外力做功来度量.一、单选题1.如图所示,在光滑水平面上小物块在水平向右恒力1F作用下从静止开始向右运动,经时间t撤去1F,同时在小物块上施加水平向左的恒力2F,再经2t物块回到出发点,此时小物块的动能为k E,则以下说法正确的是()A .2145F F =B .12F F =C .1F 做的功为k49E D .2F 做功的为kE 【答案】C【解析】AB .设第一阶段的加速度为1a ,第二阶段的加速度为2a ,从静止出发到回到出发点对两个阶段列方程22112112422a t a t t a t ⎛⎫=-⋅- ⎪⎝⎭解得1254a a =根据牛顿第二定律得2154F F =故AB 错误;CD .由于12:4:5F F =所以二者做功之比为12:4:5W W =二者做功之和等于k E ,所以1F 做的功为k 49E ,2F 做的功为k 59E ,故C 正确,D 错误。

2021高考物理一轮复习第五章机械能第2讲动能定理及应用学案作业(含解析)新人教版

2021高考物理一轮复习第五章机械能第2讲动能定理及应用学案作业(含解析)新人教版

第2讲 动能定理及应用一、动能1.定义:物体由于运动而具有的能. 2.公式:E k =12mv 2.3.单位:焦耳,1J =1N·m=1kg·m 2/s 2. 4.标矢性:动能是标量,动能与速度方向无关.5.动能的变化:物体末动能与初动能之差,即ΔE k =12mv 22-12mv 12.二、动能定理1.内容:在一个过程中合力对物体所做的功,等于物体在这个过程中动能的变化. 2.表达式:W =ΔE k =E k2-E k1=12mv 22-12mv 12.3.物理意义:合力的功是物体动能变化的量度.自测1 关于运动物体所受的合外力、合外力做的功及动能变化的关系,下列说法正确的是( )A .合外力为零,则合外力做功一定为零B .合外力做功为零,则合外力一定为零C .合外力做功越多,则动能一定越大D .动能不变,则物体所受合外力一定为零 答案 A 4.适用条件:(1)动能定理既适用于直线运动,也适用于曲线运动. (2)动能定理既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.如图1所示,物块沿粗糙斜面下滑至水平面;小球由内壁粗糙的圆弧轨道底端运动至顶端(轨道半径为R ).图1对物块有W G +W f1+W f2=12mv 2-12mv 02对小球有-2mgR +W f =12mv 2-12mv 02自测2 如图2所示,AB 为14圆弧轨道,BC 为水平直轨道,BC 恰好在B 点与AB 相切,圆弧的半径为R ,BC 的长度也是R .一质量为m 的物体与两个轨道间的动摩擦因数都为μ,它由轨道顶端A 从静止开始下落,恰好运动到C 处停止,重力加速度为g ,那么物体在AB 段克服摩擦力所做的功为( )图2A.μmgR2B.mgR2C .mgRD .(1-μ)mgR答案 D解析 设物体在AB 段克服摩擦力所做的功为W AB ,物体从A 到C 的全过程,根据动能定理有mgR -W AB -μmgR =0,所以W AB =mgR -μmgR =(1-μ)mgR ,故D 正确.1.动能定理表明了“三个关系”(1)数量关系:合外力做的功与物体动能的变化具有等量代换关系,但并不是说动能变化就是合外力做的功.(2)因果关系:合外力做功是引起物体动能变化的原因. (3)量纲关系:单位相同,国际单位都是焦耳. 2.标量性动能是标量,功也是标量,所以动能定理是一个标量式,不存在方向的选取问题.当然动能定理也就不存在分量的表达式.例1(多选)如图3所示,一块长木板B放在光滑的水平面上,在B上放一物体A,现以恒定的外力拉B,由于A、B间摩擦力的作用,A将在B上滑动,以地面为参考系,A、B都向前移动了一段距离.在此过程中( )图3A.外力F做的功等于A和B动能的增量B.B对A的摩擦力所做的功等于A的动能的增量C.A对B的摩擦力所做的功等于B对A的摩擦力所做的功D.外力F对B做的功等于B的动能的增量与B克服摩擦力所做的功之和答案BD解析A物体所受的合外力等于B对A的摩擦力,对A物体运用动能定理,则有B对A的摩擦力所做的功等于A的动能的增量,B正确;A对B的摩擦力与B对A的摩擦力是一对作用力与反作用力,大小相等,方向相反,但是由于A在B上滑动,A、B相对地面的位移不相等,故二者做功不相等,C错误;对B应用动能定理W F-W f=ΔE k B,则W F=ΔE k B+W f,即外力F对B做的功等于B的动能的增量与B克服摩擦力所做的功之和,D正确;根据功能关系可知,外力F做的功等于A和B动能的增量与产生的内能之和,故A错误.变式1(多选)用力F拉着一个物体从空中的a点运动到b点的过程中,重力做功-3J,拉力F做功8J,空气阻力做功-0.5J,则下列判断正确的是( )A.物体的重力势能增加了3JB.物体的重力势能减少了3JC.物体的动能增加了4.5JD.物体的动能增加了8J答案AC变式2(2018·全国卷Ⅱ·14)如图4,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定( )图4A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功答案 A解析 由题意知,W 拉-W 克摩=ΔE k ,则W 拉>ΔE k ,A 项正确,B 项错误;W 克摩与ΔE k 的大小关系不确定,C 、D 项错误.1.应用流程2.注意事项(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)应用动能定理的关键在于准确分析研究对象的受力情况及运动情况,可以画出运动过程的草图,借助草图理解物理过程之间的关系.(3)当物体的运动包含多个不同过程时,可分段应用动能定理求解;也可以全过程应用动能定理.(4)列动能定理方程时,必须明确各力做功的正、负,确实难以判断的先假定为正功,最后根据结果加以检验.例2 (多选)(2019·宁夏银川市质检)如图5所示为一滑草场.某条滑道由上下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,载人滑草车与草地之间的动摩擦因数为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计载人滑草车在两段滑道交接处的能量损失,重力加速度为g ,sin37°=0.6,cos37°=0.8).则( )图5A .动摩擦因数μ=67B .载人滑草车最大速度为2gh 7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为35g答案 AB解析 对载人滑草车从坡顶由静止开始滑到底端的全过程分析,由动能定理可知:mg ·2h -μmg cos45°·hsin45°-μmg cos37°·h sin37°=0,解得μ=67,选项A 正确;对经过上段滑道的过程分析,根据动能定理有mgh -μmg cos45°·hsin45°=12mv m 2,解得:v m =2gh7,选项B 正确;载人滑草车克服摩擦力做功为2mgh ,选项C 错误;载人滑草车在下段滑道上的加速度为a =mg sin37°-μmg cos37°m =-335g ,故大小为335g ,选项D 错误.变式3 (2019·河南平顶山市一轮复习质检)如图6所示,半径为r 的半圆弧轨道ABC 固定在竖直平面内,直径AC 水平,一个质量为m 的物块从圆弧轨道A 端正上方P 点由静止释放,物块刚好从A 点无碰撞地进入圆弧轨道并做匀速圆周运动,到B 点时对轨道的压力大小等于物块重力的2倍,重力加速度为g ,不计空气阻力,不计物块的大小,则:图6(1)物块到达A 点时的速度大小和PA 间的高度差分别为多少? (2)物块从A 运动到B 所用时间和克服摩擦力做的功分别为多少?答案 (1)gr r 2 (2)π2rgmgr 解析 (1)设物块在B 点时的速度为v ,由牛顿第二定律得:F N -mg =m v 2r,因为F N =2mg ,所以v =gr ,因为物块从A 点进入圆弧轨道并做匀速圆周运动,所以物块到达A 点时速度大小为gr ; 设PA 间的高度差为h ,从P 到A 的过程由动能定理得:mgh =12mv 2,所以h =r2.(2)因为物块从A 点进入圆弧轨道并做匀速圆周运动,所以物块从A 运动到B 所用时间t =πr2v=π2r g; 从A 运动到B 由动能定理有:mgr -W 克f =0,解得:W 克f =mgr .1.解决图象问题的基本步骤(1)观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义. (2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点、图线下的面积所对应的物理意义,分析解答问题,或者利用函数图线上的特定值代入函数关系式求物理量. 2.图象所围“面积”的意义(1)v -t 图象:由公式x =vt 可知,v -t 图线与t 坐标轴围成的面积表示物体的位移. (2)a -t 图象:由公式Δv =at 可知,a -t 图线与t 坐标轴围成的面积表示物体速度的变化量.(3)F -x 图象:由公式W =Fx 可知,F -x 图线与x 坐标轴围成的面积表示力所做的功. (4)P -t 图象:由公式W =Pt 可知,P -t 图线与t 坐标轴围成的面积表示力所做的功. 例3 (多选)(2019·东北师大附中3月模拟)在未知方向的恒力F 作用下,一质量为1.0kg 的物体以一定的初速度在光滑水平面上做直线运动,物体的动能E k 随位移x 变化的关系如图7所示.(g 取10m/s 2)由上述已知条件,可知( )图7A .力F 的最小值为2.5NB .力F 不可能大于10NC .物体运动过程中的加速度大小无法求出D .物体在运动过程中在任意位置力F 的功率是可以求出的 答案 AD解析 根据动能定理得Fx cos θ=E k -E k0,则E k =E k0+Fx cos θ,结合题图有E k =50-2.5x (J),得F cos θ=-2.5N ,故F 有最小值2.5N ,A 正确,B 错误;加速度a =F cos θm=-2.5m/s 2,可以求出,C 错误;力F 的功率P F =Fv cos θ=-2.5v (W),由题图可知任意位置的动能,从而可知速度,故任意位置力F 的功率可求,D 正确.变式4 如图8甲所示,在倾角为30°的足够长的光滑斜面AB 的A 处连接一粗糙水平面OA ,OA 长为4m .有一质量为m 的滑块,从O 处由静止开始受一水平向右的力F 作用.F 只在水平面上按图乙所示的规律变化.滑块与OA 间的动摩擦因数μ=0.25,g 取10m/s 2,试求:图8(1)滑块运动到A 处的速度大小;(2)不计滑块在A 处的速率变化,滑块冲上斜面AB 的长度是多少? 答案 (1)52m/s (2)5m解析 (1)由题图乙知,在前2m 内,F 1=2mg ,做正功,在第3m 内,F 2=-0.5mg ,做负功,在第4m 内,F 3=0.滑动摩擦力F f =-μmg =-0.25mg ,始终做负功,对于滑块在OA 上运动的全过程,由动能定理得F 1x 1+F 2x 2+F f x =12mv A 2-0代入数据解得v A =52m/s.(2)对于滑块冲上斜面的过程,由动能定理得 -mgL sin30°=0-12mv A 2解得L =5m所以滑块冲上斜面AB 的长度L =5m.例4 如图9所示,轻质弹簧一端固定在墙壁上的O 点,另一端自由伸长到A 点,OA 之间的水平面光滑,固定曲面在B 处与水平面平滑连接.AB 之间的距离s =1m .质量m =0.2kg 的小物块开始时静置于水平面上的B 点,物块与水平面间的动摩擦因数μ=0.4.现给物块一个水平向左的初速度v 0=5m/s ,g 取10 m/s 2.图9(1)求弹簧被压缩到最短时所具有的弹性势能E p ; (2)求物块返回B 点时的速度大小;(3)若物块能冲上曲面的最大高度h =0.2m ,求物块沿曲面上滑过程所产生的热量. 答案 (1)1.7J (2)3m/s (3)0.5J解析 (1)对小物块从B 点至压缩弹簧最短的过程,由动能定理得,-μmgs -W 克弹=0-12mv 02W 克弹=E p代入数据解得E p =1.7J(2)对小物块从B 点开始运动至返回B 点的过程,由动能定理得, -μmg ·2s =12mv B 2-12mv 02代入数据解得v B =3m/s(3)对小物块沿曲面上滑的过程, 由动能定理得-W 克f -mgh =0-12mv B 2产生的热量Q =W 克f =0.5J.变式5 (2019·河南名校联盟高三下学期联考)如图10所示,AB 是一段位于竖直平面内的光滑轨道,高度为h ,末端B 处的切线方向水平.一个质量为m 的小物体P 从轨道顶端A 处由静止释放,滑到B 端后飞出,落到地面上的C 点,轨迹如图中虚线BC 所示.已知它落地时相对于B 点的水平位移OC =l .现在轨道下方紧贴B 点安装一水平木板,木板的右端与B 的距离为l2,让P 再次从A 点由静止释放,它离开轨道并在木板上滑行后从右端水平飞出,仍然落在地面的C 点.求:(不计空气阻力,重力加速度为g )图10(1)P 滑至B 点时的速度大小; (2)P 与木板之间的动摩擦因数μ. 答案 (1)2gh (2)3h2l解析 (1)物体P 在AB 轨道上滑动时,根据动能定理mgh =12mv 02得物体P 滑到B 点时的速度大小为v 0=2gh(2)当没有木板时,物体离开B 点后做平抛运动,设运动时间为t ,有:t =l v 0=l 2gh当在轨道下方紧贴B 点安装木板时,物体从木板右端水平抛出,在空中运动的时间也为t ,水平位移为l 2,因此物体从木板右端抛出的速度v 1=v 02=2gh2根据动能定理,物体在木板上滑动时,有-μmg l 2=12mv 12-12mv 02解得物体P 与木板之间的动摩擦因数μ=3h 2l .1.在篮球比赛中,某位同学获得罚球机会,如图1,他站在罚球线处用力将篮球投出,篮球以约为1m/s 的速度撞击篮筐.已知篮球质量约为0.6kg ,篮筐离地高度约为3m ,忽略篮球受到的空气阻力,则该同学罚球时对篮球做的功大约为( )图1A .1JB .10JC .50JD .100J 答案 B解析 该同学将篮球投出时的高度约为h 1=1.8m ,根据动能定理有W -mg (h -h 1)=12mv 2,解得W =7.5J ,故选项B 正确.2.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,它落到地面时的速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于( ) A .mgh -12mv 2-12mv 02B .-12mv 2-12mv 02-mghC .mgh +12mv 02-12mv 2D .mgh +12mv 2-12mv 02答案 C解析 对物块从h 高处竖直上抛到落地的过程,根据动能定理可得mgh -W f =12mv 2-12mv 02,解得W f =mgh +12mv 02-12mv 2,选项C 正确.3.(2018·天津理综·2)滑雪运动深受人民群众喜爱.如图2所示,某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB ,从滑道的A 点滑行到最低点B 的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB 下滑过程中( )图2A .所受合外力始终为零B .所受摩擦力大小不变C .合外力做功一定为零D .机械能始终保持不变 答案 C解析 运动员从A 点滑到B 点的过程中速率不变,则运动员做匀速圆周运动,其所受合外力指向圆心,A 错误;如图所示,运动员受到的沿圆弧切线方向的合力为零,即F f =mg sin α,下滑过程中α减小,sin α变小,故摩擦力F f 变小,B 错误;由动能定理知,运动员匀速下滑动能不变,合外力做功为零,C 正确;运动员下滑过程中动能不变,重力势能减小,机械能减小,D 错误.4.(多选)(2020·山西运城市质检)质量为m 的物体放在水平面上,它与水平面间的动摩擦因数为μ,重力加速度为g .用水平力拉物体,运动一段时间后撤去此力,最终物体停止运动.物体运动的v -t 图象如图3所示.下列说法正确的是( )图3A .水平拉力大小为F =m v 0t 0B .物体在0~3t 0时间内的位移大小为32v 0t 0C .在0~3t 0时间内水平拉力做的功为12mv 02D .在0~3t 0时间内物体克服摩擦力做功的平均功率为12μmgv 0答案 BD解析 根据v -t 图象和牛顿第二定律可知F -μmg =m v 0t 0,故选项A 错误;由v -t 图象与t 坐标轴所围面积表示位移可知,在0~3t 0时间内的位移大小为x =12·3t 0·v 0=32v 0t 0,所以选项B 正确;在0~3t 0时间内由动能定理可知W -μmgx =0,故水平拉力做的功W =32μmgv 0t 0,又F f =μmg =mv 02t 0,则W =34mv 02,选项C 错误;在0~3t 0时间内物体克服摩擦力做功的平均功率为P =W f 3t 0=μmgx 3t 0=12μmgv 0,所以选项D 正确. 5.从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k 与时间t 的关系图象是( )答案 A解析 小球做竖直上抛运动,设初速度为v 0,则v =v 0-gt小球的动能E k =12mv 2,把速度v 代入得E k =12mg 2t 2-mgv 0t +12mv 02E k 与t 为二次函数关系,故A 正确.6.(多选)质量为m 的物体从地面上方H 高处无初速度释放,落在地面后撞出一个深度为h 的坑,如图4所示,重力加速度为g ,在此过程中( )图4A .重力对物体做功为mgHB .物体的重力势能减少了mg (H +h )C .合力对物体做的总功为零D .地面对物体的平均阻力为mg H +hh答案 BCD解析 重力做功:W G =mg (H +h ),故A 错误;又ΔE p =-W G ,故B 正确;对整个过程运用动能定理得:W 合=ΔE k =0,故C 正确;又W 合=W G +(-F f h )=ΔE k =0,则F f =mg H +hh,故D 正确.7.(2019·天津卷·10)完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并取得成功.航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图5甲所示.为了便于研究舰载机的起飞过程,假设上翘甲板BC 是与水平甲板AB 相切的一段圆弧,示意如图乙,AB 长L 1=150m ,BC 水平投影L 2=63m ,图中C 点切线方向与水平方向的夹角θ=12°(sin12°≈0.21).若舰载机从A 点由静止开始做匀加速直线运动,经t =6s 到达B 点进入BC .已知飞行员的质量m =60kg ,g =10m/s 2,求:图5(1)舰载机水平运动的过程中,飞行员受到的水平力所做功W ; (2)舰载机刚进入BC 时,飞行员受到竖直向上的压力F N 多大. 答案 (1)7.5×104J (2)1.1×103N解析 (1)舰载机由静止开始做匀加速直线运动,设其刚进入上翘甲板时的速度为v ,则有v2=L 1t① 根据动能定理,有W =12mv 2-0②联立①②式,代入数据,得W =7.5×104J③(2)设上翘甲板所对应的圆弧半径为R ,根据几何关系,有L 2=R sin θ④由牛顿第二定律有F N -mg =m v 2R⑤联立①④⑤式,代入数据,得F N =1.1×103N.8.(2019·山东日照市一模)冰壶比赛是在水平冰面上进行的体育项目,比赛场地示意图如图6所示.比赛时,运动员脚蹬起蹬器,身体成跪式,手推冰壶从本垒圆心O向前滑行,至前卫线时放开冰壶使其沿直线OO′滑向营垒圆心O′,为使冰壶能在冰面上滑的更远,运动员可用毛刷刷冰面以减小冰壶与冰面间的动摩擦因数.已知O点到前卫线的距离d=4m,O、O′之间的距离L=30.0m,冰壶的质量为m=20kg,冰壶与冰面间的动摩擦因数μ1=0.008,用毛刷刷过冰面后动摩擦因数减小到μ2=0.004,营垒的半径R=1m,g取10m/s2.图6(1)若不刷冰面,要使冰壶恰好滑到O′点,运动员对冰壶的推力多大?(2)若运动员对冰壶的推力为10N,要使冰壶滑到营垒内,用毛刷刷冰面的距离是多少?答案(1)12N (2)见解析解析(1)设运动员对冰壶的推力大小为F,由动能定理得:Fd-μ1mgL=0代入数据,解得F=12N(2)设冰壶运动到营垒的最左边时,用毛刷刷冰面的距离是x1,冰壶运动到营垒的最右边时,用毛刷刷冰面的距离是x2,则由动能定理得:F′d-μ1mg(L-R-x1)-μ2mgx1=0代入数据,解得x1=8m由动能定理得:F′d-μ1mg(L+R-x2)-μ2mgx2=0代入数据,解得x2=12m所以用毛刷刷冰面的距离为8m≤x≤12m.9.(2019·山东济宁市第二次摸底)某中学生对刚买来的一辆小型遥控车的性能进行研究.他让这辆小车在水平地面上由静止开始沿直线轨道运动,并将小车运动的全过程通过传感器记录下来,通过数据处理得到如图7所示的v-t图象.已知小车在0~2s内做匀加速直线运动,2~11s内小车牵引力的功率保持不变,9~11s内小车做匀速直线运动,11s末开始小车失去动力而自由滑行.已知小车质量m=1kg,整个过程中小车受到的阻力大小不变,试求:图7(1)在2~11s内小车牵引力的功率P的大小;(2)小车在2s末的速度v x的大小;(3)小车在2~9s 内通过的距离x . 答案 (1)16W (2)4m/s (3)44m解析 (1)根据题意,在11s 末撤去牵引力后,小车只在阻力F f 作用下做匀减速直线运动,设其加速度大小为a ,根据题图可知:a =|0-815-11|m/s 2=2 m/s 2;根据牛顿第二定律有:F f =ma 解得:F f =2N ;设小车在匀速直线运动阶段的牵引力为F ,则:F =F f ,v m =8m/s 根据P =Fv m 解得:P =16W(2)0~2s 的匀加速直线运动过程中,小车的加速度为:a x =v x2设小车的牵引力为F x ,根据牛顿第二定律有:F x -F f =ma x根据题意有:P =F x v x 联立解得:v x =4m/s(3)在2~9s 内的变加速过程,Δt =7s ,由动能定理可得:P Δt -F f x =12mv m 2-12mv x 2解得x =44m.。

2021届高考物理一轮复习考点训练 动能 动能定理

2021届高考物理一轮复习考点训练  动能 动能定理

2021年高考物理一轮复习考点优化训练动能动能定理一、单选题1.“歼-20”飞机在航母甲板上降落后,在勾住阻拦索减速滑行的过程中,阻拦索对“歼-20”做功和“歼-20”动能变化的情况分别是()A. 做负动,动能减少B. 做负功,动能增加C. 做正功,动能减少D. 做正功,动能增加2.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,当它落到地面时速度为v,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于()A. B.C. D.3.如图所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上。

斜面和地面平滑连接,且物块与斜面、物块与地面间的动摩擦因数均为常数。

该过程中,物块的动能与水平位移x关系的图象是()A. B. C. D.4.如图所示,倾角为的传送带以速度v1=2m/s顺时针匀速转动。

将一物块以v2=8m/s的速度从传送带的底端滑上传送带。

已知小物块与传送带间的动摩擦因数,传送带足够长,取,g=10m/s2,下列说法正确的是A. 小物块向上运动过程中的加速度大小为10m/s2B. 小物块向上运动的时间为1. 6sC. 小物块向上滑行的最远距离为3mD. 小物块最终将随传送带一起向上匀速运动5.如图所示,三个相同的小球A、B、C位于同一高度h处,A做自由落体运动,B沿光滑斜面由静止滑下,C做平抛运动,在每个小球落地的瞬间,其重力的功率分别为P A、P B、P C。

下列关系式正确的是()A. P A=P C>P BB. P A=P B>P CC. P A=P B=P CD. P A>P C>P B6.如图甲所示,一可视为质点的小球,沿光滑足够长的斜面由静止开始下滑,其动能与运动位移之间的关系如图乙所示。

则对该图象斜率的物理意义,下列说法中正确的是()A. 表示小球所受合力的大小B. 表示小球的质量C. 表示小球沿斜面下滑的加速度大小D. 表示小球沿斜面下滑的速度大小7.如图所示,用同种材料制成的一个轨道,AB段为圆弧,半径为R,水平放置的BC段长度为R.一小物块质量为m,与轨道间的动摩擦因数为μ,当它从轨道顶端A由静止下滑时,恰好运动到C点静止,那么物块在AB段克服的摩擦力做的功为()A. μmgRB. mgR(1-μ)C. πμmgRD. mgR8.如图所示,一物体分别沿aO、bO轨道由静止滑下至底端,物体与轨道间的动摩擦因数相同。

【新高考】2021高考物理人教版一轮复习:课练 15 动能和动能定理 (含解析)

【新高考】2021高考物理人教版一轮复习:课练 15 动能和动能定理 (含解析)

课练15 动能和动能定理———[狂刷小题 夯基础]———练基础小题1.(多选)如图所示,某人将质量为m 的石块从距地面高h 处斜向上方抛出,石块抛出时的速度大小为v 0,由于空气阻力作用石块落地时的速度大小为v ,方向竖直向下,已知重力加速度为g ,下列说法正确的是( )A .石块刚抛出时重力的瞬时功率为mg v 0B .石块落地时重力的瞬时功率为mg vC .石块在空中飞行过程中合外力做的功为12m v 20-12m v 2D .石块在空中飞行过程中阻力做的功为12m v 2-12m v 20-mgh2.如图所示,半径为R 的水平转盘上叠放有两个小物块P 和Q ,P 的上表面水平,P 到转轴的距离为r .转盘的角速度从0开始缓缓增大,直至P 恰好能与转盘发生相对滑动,此时Q 受到P 的摩擦力设为f ,在此过程中P 和Q 相对静止,转盘对P 做的功为W .已知P 和Q 的质量均为m ,P 与转盘间的动摩擦因数为μ1,P 与Q 间的动摩擦因数为μ2,已知最大静摩擦力等于滑动摩擦力,下列判断正确的是( )A .f =μ2mgB .W =0C .W =μ1mgrD .条件不足,W 无法求出3.(多选)如图所示,一小朋友做蹦床运动由高处自由落下.从该小朋友双脚接触蹦床开始至双脚到最低点的过程中,不考虑空气阻力,该小朋友( )A .机械能守恒B .速度先增大后减小C .加速度先增大后减小D .所受重力做的功小于其克服蹦床弹力做的功4.(多选)如图所示,半径为r 的半圆弧轨道ABC 固定在竖直平面内,直径AC 水平,一个质量为m 的物块(可视为质点)从圆弧轨道A 端正上方P 点由静止释放,物块刚好从A 点无碰撞地进入圆弧轨道并在A 、B 之间做匀速圆周运动,到B 点时对轨道的压力大小等于物块重力的2倍,重力加速度为g ,不计空气阻力,则( )A .物块到达A 点时速度大小为2grB .P 、A 间的高度差为r 2C .物块从A 运动到B 所用时间为12πr mD .物块从A 运动到B 克服摩擦力做功为mgr5.(多选)今年2月,太原市首批纯电动公交车开始运营.在运营前的测试中,电动公交车在平直路面上行驶,某段时间内的v -t 图象如图所示.在0~10 s 内发动机和车内制动装置对车辆所做的总功为零,车辆与路面间的摩擦阻力恒定,空气阻力不计.已知公交车质量为13.5 t ,g =10 m/s 2,则( )A .汽车在0~10 s 内发生的位移为54 mB .汽车与路面的摩擦阻力为2 000 NC .发动机在第1 s 内的平均功率是第7 s 内的30031倍D .第6 s 内汽车克服车内制动装置做的功是第10 s 内的5313倍6.(多选)如图所示,质量为M 的电梯底板上放置一质量为m 的物体,钢索拉着电梯由静止开始向上做加速运动,当上升高度为H 时,速度达到v ,不计空气阻力,重力加速度为g ,则在这一过程中( )A .物体所受合力做的功等于12m v 2+mgHB .底板对物体的支持力做的功等于mgH +12m v 2C .钢索的拉力做的功等于12M v 2+MgHD .钢索的拉力、电梯的重力及物体对底板的压力对电梯做的总功等于12M v 2练高考小题7.[2019·全国卷Ⅱ,18](多选)从地面竖直向上抛出一物体,其机械能E 总等于动能E k 与重力势能E p 之和.取地面为重力势能零点,该物体的E 总和E p 随它离开地面的高度h 的变化如图所示.重力加速度取10 m/s 2.由图中数据可得( )A .物体的质量为2 kgB .h =0时,物体的速率为20 m/sC .h =2 m 时,物体的动能E k =40 JD .从地面至h =4 m ,物体的动能减少100 J8.[2018·全国卷Ⅱ,14]如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定()A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功9.[2018·全国卷Ⅰ,18]如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R;bc是半径为R的四分之一圆弧,与ab相切于b 点.一质量为m的小球,始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动.重力加速度大小为g.小球从a点开始运动到其轨迹最高点,机械能的增量为()A.2mgR B.4mgRC.5mgR D.6mgR10.[2017·江苏卷,3]一小物块沿斜面向上滑动,然后滑回到原处.物块初动能为E k0,与斜面间的动摩擦因数不变,则该过程中,物块的动能E k与位移x关系的图线是()ABCD练模拟小题11.[2019·山东省潍坊模拟](多选) 如图所示,一根细绳的上端系在O 点,下端系一重球B ,放在粗糙的斜面体A 上.现用水平推力F 向右推斜面体使之在光滑水平面上向右匀速运动一段距离(细绳尚未到达平行于斜面的位置).在此过程中( )A .B 做匀速圆周运动B .摩擦力对重球B 做正功C .水平推力F 和重球B 对A 做的功的大小相等D .A 对重球B 所做的功与重球B 对A 所做的功大小相等12.[2019·河南省商丘九校联考](多选)已知一足够长的传送带与水平面间的夹角为θ,以一定的速度匀速运动,某时刻在传送带适当的位置放上具有一定初速度的物块(如图a 所示),以此时为t =0时刻记录了小物块在传送带上运动的速度随时间的变化关系,如图b 所示(图中取沿传送带向上的运动方向为正方向,其中|v 1|>|v 2|),已知传送带的速度保持不变,则下列判断正确的是( )A .0~t 1内,物块对传送带一直做负功B .物块与传送带间的动摩擦因数μ>tan θC .0~t 2内,传送带对物块做的功为12m v 22-12m v 21D .系统产生的热量一定比物块动能的减少量大 13.[2019·福建省福州市八县(市)联考](多选)如图所示,在距水平地面高为0.4 m 处,水平固定一根长直光滑杆,在杆上P 点固定一光滑定滑轮,滑轮可绕水平轴无摩擦转动,在P 点的右侧,杆上套有一质量m =2 kg 的滑块A .半径R =0.3 m 的光滑半圆形细轨道竖直固定在地面上,其圆心O 在P 点的正下方,在轨道上套有一质量也为m =2 kg的小球B.用一条不可伸长的柔软轻细绳,通过定滑轮将A、B连接起来.杆和半圆形轨道在同一竖直面内,A、B均可看成质点,且不计滑轮大小的影响.现给滑块A一个水平向右的恒力F=50 N(取g=10 m/s2).则()A.把小球B从地面拉到P点的正下方C处时力F做的功为20 J B.小球B运动到P点正下方C处时的速度为0C.小球B被拉到与滑块A速度大小相等时,离地面高度为0.225 mD.把小球B从地面拉到P的正下方C处时,小球B的机械能增加了20 J14.[2019·安徽省四校模拟]一质点在0~15 s内竖直向上运动,其加速度-时间图象如图所示,若取竖直向下为正,g取10 m/s2,则下列说法正确的是()A.质点的机械能不断增加B.在0~5 s内质点的动能增加C.在10~15 s内质点的机械能一直增加D.在t=15 s时质点的机械能大于t=5 s时质点的机械能15.[2019·江西省南昌调研](多选)如图所示,一小球(可视为质点)从H=12 m高处,由静止开始沿光滑弯曲轨道AB进入半径R=4 m的竖直圆环内侧,且与圆环的动摩擦因数处处相等,当到达圆环顶点C 时,刚好对轨道压力为零;然后沿CB圆弧滑下,进入光滑弧形轨道BD,到达高度为h的D点时速度为零,则h的值可能为()A .10 mB .9.5 mC .8.5 mD .8 m16.[2019·四川五校联考]如图所示,轻质弹簧一端固定,另一端与一质量为m 、套在粗糙竖直固定杆A 处的圆环相连,弹簧水平且处于原长.圆环从A 处由静止开始下滑,经过B 处的速度最大,到达C 处的速度为零,AC =h ,此为过程Ⅰ;若圆环在C 处获得一竖直向上的速度v ,则恰好能回到A 处,此为过程Ⅱ.已知弹簧始终在弹性范围内,重力加速度为g ,则圆环( )A .在过程Ⅰ中,加速度一直减小B .在过程Ⅱ中,克服摩擦力做的功为12m v 2C .在C 处,弹簧的弹性势能为14m v 2-mghD .在过程Ⅰ、过程Ⅱ中克服摩擦力做功相同———[综合测评 提能力]———一、单项选择题(本题共8小题,每小题3分,共24分)1.[2019·浙江模拟]如图所示,足球从草皮上的①位置被踢出后落在草皮上③位置,空中到达的最高点为②位置,则( )A .②位置足球动能等于0B .①位置到③位置过程只有重力做功C .①位置到②位置的过程足球的动能全部转化为重力势能D .②位置到③位置过程足球动能的变化量等于合力做的功2.[2020·河北省定州中学模拟]一个人站在高为H 的平台上,以一定的初速度将一质量为m的小球抛出.测出落地时小球的速度大小为v,不计空气阻力,重力加速度大小为g,人对小球做的功W及小球被抛出时的初速度大小v0分别为()A.W=12m v2-mgH,v0=v2-2gHB.W=12m v2,v0=2gHC.W=mgH,v0=v2+2gHD.W=12m v2+mgH,v0=2gH3.[2019·全国卷Ⅲ]从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用,距地面高度h在3 m以内时,物体上升、下落过程中动能E k 随h的变化如图所示.重力加速度取10 m/s2.该物体的质量为() A.2 kg B.1.5 kgC.1 kg D.0.5 kg4.如图所示,第一次将质量为m的物块放在水平面上的P点,给其一定的初速度使其滑向Q点;第二次将质量为2m的物块B放在P 点,并给其施加向右的水平拉力,使物块B从静止开始向Q点运动,结果物块A运动到Q点的动能与物块B运动到PQ中点时的动能相同,物块B从P点运动到PQ中点时,拉力做功为W,两物块与水平面间的动摩擦因数相同,则物块A的初速度大小为()A.Wm B.2WmC. 3Wm D.2Wm5.[预测新题]如图所示,竖直平面内放一直角杆MON,OM水平,ON竖直且光滑,用不可伸长的轻绳相连的两小球A和B分别套在OM 和ON杆上,B球的质量为2 kg,在作用于A球上的水平力F的作用下,A、B两球均处于静止状态,此时A球距O点的距离为x A=0.3 m,B球距O点的距离x B=0.4 m,改变水平力F的大小,使A球向右加速运动,已知A球向右运动0.1 m时的速度大小为3 m/s,则在此过程中绳的拉力对B球所做的功为(取g=10 m/s2)()A.11 J B.16 JC.18 J D.9 J6.[名师原创]如图所示,A、B是两个等高的固定点,间距为L,一根长为2L的非弹性轻绳两端分别系在A、B两点,绳上套了一个质量为m的小球.现使小球在竖直平面内以AB为中心轴做圆周运动,若小球在最低点的速率为v,则小球运动到最高点时,两段绳的拉力恰好均为零,若小球在最低点的速率为2v,则小球运动到最高点时每段绳上的拉力大小为(重力加速度大小为g,不计一切摩擦)()A.3mg B.53mgC.15mg D.52mg7.[2020·江西五校联考]如图所示,光滑水平面OB与足够长的粗糙斜面BC交于B点.轻弹簧左端固定于竖直墙面,现用质量为m1的滑块压缩弹簧至D点,然后由静止释放,滑块脱离弹簧后经B点滑上斜面,上升到最大高度,并静止在斜面上,不计滑块在B点的机械能损失.换用材料相同、质量为m2的滑块(m2>m1)压缩弹簧至同一点后,重复上述过程,下列说法正确的是()A.两滑块到达B点时的速度相同B.两滑块沿斜面上升的最大高度相同C.两滑块上升到最高点的过程中克服重力做的功不相同D.两滑块上升到最高点的过程中机械能损失相同8.[2019·广东佛山一中段考]如图,一半径为R、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平.一质量为m的质点自P点上方高为R处由静止开始下落,恰好从P点进入轨道.质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小.用W表示质点从P点运动到N点的过程中克服摩擦力所做的功.则()A.W=12mgR,质点恰好可以到达Q点B.W>12mgR,质点不能到达Q点C.W=12mgR,质点到达Q点后,继续上升一段距离D.W<12mgR,质点到达Q点后,继续上升一段距离二、多项选择题(本题共2小题,每小题4分,共8分)9.如图甲所示,为测定物体冲上粗糙斜面能达到的最大位移x与斜面倾角θ的关系,将某一物体每次以不变的初速度沿足够长的斜面向上推出,调节斜面与水平方向的夹角θ,实验测得x与斜面倾角θ的关系如图乙所示,重力加速度大小g取10 m/s2,最大静摩擦力等于滑动摩擦力,根据图象可求出()A.物体的初速率为3 m/sB.物体与斜面间的动摩擦因数为0.75C.取不同的倾角θ,物体在斜面上能达到的位移x的最小值为1.44 mD.当θ=45°时,物体达到最大位移后将停在斜面上10.[2019·郑州质检]质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,如图所示.在圆心处连接有力传感器,用来测量绳子上的拉力,运动过程中小球受到空气阻力的作用,空气阻力随速度减小而减小.某一时刻小球通过轨道的最低点,力传感器的示数为7mg ,重力加速度为g ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,下列说法正确的是( )A .到最高点过程中小球克服空气阻力做的功为12mgRB .到最高点过程中小球克服空气阻力做的功为mgRC .再次经过最低点时力传感器的示数为5mgD .再次经过最低点时力传感器的示数大于5mg三、非选择题(本题共3小题,共34分)11.(11分)如图所示,粗糙的斜面AB 下端与光滑的圆弧轨道BCD 相切于B ,整个装置竖直放置,C 是最低点,圆心角θ=37°,D 与圆心O 等高,圆弧轨道半径R =1 m ,斜面长L =4 m ,现有一个质量m =0.1 kg 的小物体P 从斜面AB 上端A 点无初速度下滑,物体P 与斜面AB 之间的动摩擦因数μ=0.25.不计空气阻力,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,求:(1)物体P 第一次通过C 点时的速度大小v C ;(2)物体P 第一次通过C 点时对轨道的压力大小;(3)物体P 第一次离开D 点后在空中做竖直上抛运动到最高点E ,接着从空中又返回到圆弧轨道和斜面,在这样多次反复的整个运动过程中,物体P 对C 点处轨道的最小压力.12.(11分)[2019·江苏常州期末]如图所示,在距水平地面高为h =0.5 m 处,水平固定一根长直光滑杆,杆上P 处固定一小定滑轮,在P 点的右边杆上套一质量mA =1 kg 的滑块A .半径r =0.3 m 的光滑半圆形竖直轨道固定在地面上,其圆心O 在P 点的正下方,半圆形轨道上套有质量mB =2 kg 的小球B .滑块A 和小球B 用一条不可伸长的柔软细绳绕过小定滑轮相连,在滑块A 上施加一水平向右的力F .滑轮的质量和摩擦均可忽略不计,且小球可看做质点,g 取10 m/s2,0.34≈0.58.(1)若逐渐增大拉力F ,求小球B 刚要离地时拉力F 1的大小;(2)若拉力F 2 =57.9 N ,求小球B 运动到C 处时的速度大小;(结果保留整数)(3)在(2)情形中当小球B 运动到C 处时,拉力变为F 3 =16 N ,求小球B 在右侧轨道上运动的最小速度.(结果保留一位小数)13.(12分)[2020·湖南地质中学月考]如图所示,传送带以一定速度沿水平方向匀速转动,将质量为m =1.0 kg 的小物块轻轻放在传送带上的P 点,物块运动到A 点后被水平抛出,小物块恰好无碰撞地沿圆弧切线从B 点进入竖直光滑圆弧轨道.B 、C 为圆弧的两端点,其连线水平,轨道最低点为O ,已知圆弧对应圆心角θ=106°,圆弧半径R =1.0 m ,A 点距水平面的高度h =0.8 m ,小物块离开C 点后恰好能无碰撞地沿固定斜面向上滑动,经过0.8 s 小物块第二次经过D 点,已知小物块与斜面间的动摩擦因数μ=13,sin 53°=0.8,g =10 m/s 2.求:(1)小物块离开A 点时的水平速度大小;(2)小物块经过O 点时,轨道对它的支持力大小;(3)斜面上C 、D 间的距离.B的线速度大小是变化的,故不是匀速圆周运动,故A错误;如图,画出球B受到的支持力N,摩擦力f以及球在该位置时运动的切线的方向,由图可知,斜面对B的摩擦力沿斜面向下,与B的速度方向的夹角为锐角,所以摩擦力对重球B做正功,故B正确;A匀速运动,动能不变,根据动能定理知水平推力F和重球B对A做的功的大小相等,故C正确;斜面对B的弹力和B对斜面的弹力是一对作用力和反作用力,大小相等,斜面在弹力方向上的位移等于B在弹力方向上的位移,所以A对重球B的弹力所做的功与重球B对A弹力所做的功大小相等,一正一负,由于B与A间存在相对运动,A的位移与B的位移不相等,所以A对重球B的摩擦力所做的功与重球B对A的摩擦力所做的功大小不相等,所以A对重球B所做的总功与重球B对A所做的总功大小不相等,故D错误.12.ABD由题图b知,物块先向下运动后向上运动,则知传送带的运动方向应向上,0~t1时间内,物块对传送带的摩擦力方向沿传送带向下,则物块对传送带做负功,故A正确.在t1~t2时间内,物块向上运动,则有μmg cos θ>mg sin θ,得μ>tan θ,故B正确.0~t2时间内,由题图b中“面积”等于位移可知,物块的总位移沿斜面向下,高度下降,重力对物块做正功,设为W G,根据动能定理得:W+W G=12m v22-12m v21,则传送带对物块做的W=12m v22-12m v21-W G,故C错误.0~t2时间内,重力对物块做正功,物块的重力势能减小、动能也减小,且都转化为系统产生的内能,则由能量守恒定律知,系统产生的热量一定比物块动能的减少量大,故D正确.故选A、B、D.13.ACD把小球B从地面拉到P点正下方C处的过程中,力F 的位移为:x=0.42+0.32m-(0.4-0.3)m=0.4 m,则力F做的功W F =Fx=20 J,选项A正确;把小球B从地面拉到P点正下方C处时,B的速度方向与绳子方向垂直,A的速度为零,设B的速度为v,则由动能定理:W F-mgR=12m v2-0,解得v=14m/s,选项B错误;当细绳与半圆形轨道相切时,小球B的速度方向沿圆周的切线方向向上,此时和绳子方向重合,故与滑块A速度大小相等,由几何关系可得h =0.225 m,选项C正确;B的机械能增加量为F做的功20 J,D正确.14.D质点竖直向上运动,0~15 s内加速度方向向下,质点一直做减速运动,B错误.0~5 s内,a=10 m/s2,质点只受重力,机械能守恒;5~10 s 内,a =8 m/s 2,受重力和向上的力F 1,F 1做正功,机械能增加;10~15 s 内,a =12 m/s 2,质点受重力和向下的力F 2,F 2做负功,机械能减少,A 、C 错误.由F 合=ma 可推知F 1=F 2,由于做减速运动,5~10 s 内通过的位移大于10~15 s 内通过的位移,F 1做的功大于F 2做的功,5~15 s 内增加的机械能大于减少的机械能,所以D 正确.15.BC 设小球质量为m ,以B 点所在水平面为零势能面,由题给条件“当到达圆环顶点C 时,刚好对轨道压力为零”有mg =m v 2C R ,小球到达C 点时,有v 2C =gR ,在C 点的动能为12m v 2C =12mgR ,则小球在C 点的机械能为2mgR +12m v 2C =52mgR ,则小球从B 点到C 点克服摩擦力做的功为12mgR ,小球到达D 点时速度为零,设小球在D 点的机械能为E k D ,分析可知小球在从C 点到B 点过程中也有摩擦力,且摩擦力做的功小于小球从B 点到C 点克服摩擦力做的功12mgR ,故2mgR <E k D <52mgR ,即8 m <h <10 m ,选项B 、C 正确.16.D圆环刚开始下滑时,圆环受到的合力向下,设弹簧原长为L ,下滑过程中,对圆环受力分析,如图所示,弹簧弹力与竖直方向的夹角为θ,则弹簧弹力F =kL ⎝ ⎛⎭⎪⎫1sin θ-1,竖直方向根据牛顿第二定律可得mg -F cos θ-μF N =ma ,水平方向有F sin θ=F N ,联立三个方程可知,圆环下滑过程中受到的合力先减小后增大,圆环的加速度先减小后增大,选项A 错误;在过程Ⅰ和Ⅱ中,圆环在相同位置时受到的滑动摩擦力大小相等,所以在这两个过程中克服摩擦力做的功相等,选项D 正确;在过程Ⅰ中,根据动能定理可得W G -W f -W 弹=0,解得W f =W G -W 弹,在过程Ⅱ中,根据动能定理可得-W G +W 弹-W f =-12m v 2,联立解得W f =14m v 2,在C 处E p 弹=W 弹=mgh -14m v 2,选项B 、C 错误.。

高考物理一轮复习专项训练及答案解析—动能定理及其应用

高考物理一轮复习专项训练及答案解析—动能定理及其应用

高考物理一轮复习专项训练及答案解析—动能定理及其应用1.(多选)如图所示,电梯质量为M ,在它的水平地板上放置一质量为m 的物体.电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v 1增大到v 2时,上升高度为H ,重力加速度为g ,则在这个过程中,下列说法正确的是( )A .对物体,动能定理的表达式为W =12m v 22-12m v 12,其中W 为支持力做的功B .对物体,动能定理的表达式为W 合=0,其中W 合为合力做的功C .对物体,动能定理的表达式为W -mgH =12m v 22-12m v 12,其中W 为支持力做的功D .对电梯,其所受的合力做功为12M v 22-12M v 122.如图所示,一半圆弧形细杆ABC 竖直固定在水平地面上,AC 为其水平直径,圆弧半径BO =3.6 m .质量为m =4.0 kg 的小圆环(可视为质点,小环直径略大于杆的)套在细杆上,在大小为50 N 、方向始终沿圆的切线方向的拉力F 作用下,从A 点由静止开始运动,到达B 点时对细杆的压力恰好为0.已知π取3.14,重力加速度g 取10 m/s 2,在这一过程中摩擦力做功为( )A .66.6 JB .-66.6 JC .210.6 JD .-210.6 J3.(2023·湖南怀化市模拟)如图所示,DO 是水平面,AB 是斜面,初速度为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零,如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速度(已知物体与斜面及水平面之间的动摩擦因数处处相同且不为零,不计B 、C 处能量损失)( )A .等于v 0B .大于v 0C .小于v 0D .取决于斜面4.(多选)(2023·云南昆明市第一中学、宁夏银川一中模拟)如图,若小滑块以某一初速度v 0从斜面底端沿光滑斜面上滑,恰能运动到斜面顶端.现仅将光滑斜面改为粗糙斜面,仍让滑块以初速度v 0从斜面底端上滑时,滑块恰能运动到距离斜面底端长度的34处.则( )A .滑块滑上斜面后能再次滑回斜面底端B .滑块滑上斜面后不能再次滑回斜面底端C .滑块在斜面上运动的整个过程产生的热量为18m v 02D .滑块在斜面上运动的整个过程产生的热量为14m v 025.A 、B 两物体分别在水平恒力F 1和F 2的作用下沿水平面运动,先后撤去F 1、F 2后,两物体最终停下,它们的v -t 图像如图所示.已知两物体所受的滑动摩擦力大小相等,则下列说法正确的是( )A .F 1、F 2大小之比为1∶2B.F1对A、F2对B做功之比为1∶2C.A、B质量之比为2∶1D.全过程中A、B克服摩擦力做功之比为2∶16.电梯是一种以电动机为动力的垂直升降机,用于多层建筑载人或载运货物.某次电梯从地面由静止启动,加速度a与离地高度h的关系图像如图所示,则()A.2h0~3h0范围内电梯向上做匀减速直线运动B.电梯在0~h0和2h0~3h0范围内的速度变化量相等C.电梯在3h0处的速度大小为2a0h0D.电梯上升的最大高度可能为3h07.(2019·全国卷Ⅲ·17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h在3 m以内时,物体上升、下落过程中动能E k随h的变化如图所示.重力加速度取10 m/s2.该物体的质量为()A.2 kg B.1.5 kg C.1 kg D.0.5 kg8.(多选)如图所示为一滑草场.某条滑道由上下两段高均为h、与水平面夹角分别为45°和37°的滑道组成,载人滑草车与草地各处间的动摩擦因数均为μ.质量为m的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计载人滑草车在两段滑道交接处的能量损失,重力加速度大小为g,sin 37°=0.6,cos 37°=0.8).则()A .动摩擦因数μ=67B .载人滑草车最大速度为2gh 7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为35g9.如图所示,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的小球(可看成质点)从P 点上方高为R 处由静止开始下落,恰好从P 点进入轨道.小球滑到轨道最低点N 时,对轨道的压力大小为4mg ,g 为重力加速度.用W 表示小球从P 点运动到N 点的过程中克服摩擦力所做的功,则( )A .W =12mgR ,小球恰好可以到达Q 点B .W >12mgR ,小球不能到达Q 点C .W =12mgR ,小球到达Q 点后,继续上升一段距离D .W <12mgR ,小球到达Q 点后,继续上升一段距离10.(2023·云南昆明市第一中学模拟)如图甲所示,两个不同材料制成的滑块A 、B 静置于水平桌面上,滑块A 的右端与滑块B 的左端接触.某时刻开始,给滑块A 一个水平向右的力F ,使滑块A 、B 开始滑动,当滑块A 、B 滑动1.0 m 时撤去力F .整个运动过程中,滑块A 、B 的动能E k 随位移x 的变化规律如图乙所示.不计空气阻力,求:(1)滑块A 对B 做的功; (2)力F 的大小.11.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道P A 在A 点相切,BC 为圆弧轨道的直径,O 为圆心,OA 和OB 之间的夹角为α,sin α=35.一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达B 点时对圆弧轨道的压力大小.答案及解析1.CD 2.B 3.A 4.AD 5.C 6.C 7.C8.AB [对载人滑草车从坡顶由静止开始滑到底端的全过程分析,由动能定理可知:mg ·2h -μmg cos 45°·h sin 45°-μmg cos 37°·h sin 37°=0,解得μ=67,选项A 正确;滑草车在滑道上段加速,在滑道下段减速,故滑草车通过上段滑道末端时速度最大,根据动能定理有mgh -μmg cos 45°·h sin 45°=12m v m 2,解得:v m =2gh7,选项B 正确;全过程有W G -W 克f=0,则载人滑草车克服摩擦力做功为2mgh ,选项C 错误;载人滑草车在下段滑道上的加速度为a =mg sin 37°-μmg cos 37°m =-335g ,故加速度大小为335g ,选项D 错误.]9.C [在N 点,根据牛顿第二定律有F N -mg =m v N 2R ,由牛顿第三定律知F N =F N ′=4mg ,解得v N =3gR ,对小球从开始下落至到达N 点的过程,由动能定理得mg ·2R -W =12m v N 2-0,解得W =12mgR .由于小球在PN 段某点处的速度大于此点关于ON 在NQ 段对称点处的速度,所以小球在PN 段某点处受到的支持力大于此点关于ON 在NQ 段对称点处受到的支持力,则小球在NQ 段克服摩擦力做的功小于在PN 段克服摩擦力做的功,小球在NQ 段运动时,由动能定理得-mgR -W ′=12m v Q 2-12m v N 2,因为W ′<12mgR ,故v Q >0,所以小球到达Q 点后,继续上升一段距离,选项C 正确.] 10.(1)12 J (2)39 N解析 (1)B 在撤去F 后继续滑行x B =1.0 m ,撤去F 时B 的动能E k B =6 J , 由动能定理有-F f B x B =0-E k B 在撤去F 前,对B 由动能定律得 W AB -F f B x =E k B联立并代入数据解得W AB =12 J(2)撤去力F 后,滑块A 继续滑行的距离为x A =0.5 m ,撤去F 时A 的动能E k A =9 J , 由动能定理有-F f A x A =0-E k A力F 作用的过程中,分析滑块A 、B 整体,由动能定理有 (F -F f A -F f B )x =E k A +E k B 代入数据解得F =39 N. 11.(1)34mg5gR 2 (2)152mg 解析 (1)设水平恒力的大小为F 0,小球所受重力和水平恒力的合力的大小为F ,小球到达C 点时速度的大小为v C ,则F 0mg =tan α,F =mgcos α, 由牛顿第二定律得F =m v C 2R ,联立并代入数据解得F 0=34mg ,v C =5gR2. (2)设小球到达B 点时速度的大小为v B ,小球由B 到C 的过程中由动能定理可得-2FR =12m v C 2-12m v B 2, 代入数据解得v B =52gR小球在B 点时有F N -F =m v B 2R ,解得F N =152mg ,由牛顿第三定律可知,小球在B 点时对圆弧轨道的压力大小为F N ′=152mg .。

2021届高考物理一轮复习-专题五 第2讲 动能、动能定理 (共54张PPT)

2021届高考物理一轮复习-专题五 第2讲 动能、动能定理 (共54张PPT)
答案:C
6.(2019 年大连二模)如图 5-2-5 甲所示,固定斜面的倾角为 30°,一质量为 m 的小物块自斜面底端以初速度 v0 沿斜面向上 做匀减速运动,经过一段时间后又沿斜面下滑回到底端,整个
过程小物块的 v-t 图象如图乙所示.下列判断正确的是( )


图 5-2-5
A.物体与斜面间的动摩擦因数
解析:取初速度方向为正方向,则Δv =|( -6 -6) m/s| =
12 m/s,由于速度大小没变,动能不变,故动能变化量为 0,故
只有选项 B 正确.
答案:B
2.(多选)关于动能定理的表达式 W=Ek2-Ek1,下列说法正 确的是( )
A.公式中的 W 为不包含重力的其他力做的总功 B.公式中的 W 为包含重力在内的所有力做的功,也可通过 以下两种方式计算:先求每个力的功再求功的代数和或先求合 外力再求合外力的功
量为 m 的滑块距挡板 P 的距离为 x0,滑块以初速度 v0 沿斜面上 滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于重力 沿斜面向下的分力.若滑块每次与挡板相碰均无机械能损失,则
滑块经过的总路程是( )
A.1μ2gcvo20s
θ+x0tan
θ
C.2μ2gcv-2-7
冠的运动员. 他在一次自由式滑雪空中技巧比赛中沿 “助滑
区”保持同一姿态下滑了一段距离,重力对他做功 1900 J,他
克服阻力做功 100 J.韩晓鹏在此过程中( )
A.动能增加了 1900 J
B.动能增加了 2000 J
C.重力势能减小了 1900 J
D.重力势能减小了 2000 J
答案:C
2.(多选,2019 年太原模拟)如图 5-2-2 所示,DO 是水平面, AB 是斜面,初速度为 v0 的物体从 D 点出发沿 DBA 滑动到顶点 A 时速度刚好为零,如果斜面改为 AC,让该物体从 D 点出发沿 DCA 滑动到顶点 A 且速度刚好为零,若已知该物体与路面之间 的动摩擦因数处处相同且不为零,则由此可知( )

2021年高考物理一轮复习学与练5.2 动能和动能定理(精练)(解析版)

2021年高考物理一轮复习学与练5.2 动能和动能定理(精练)(解析版)

专题5.2 动能和动能定理【基础测试】1.(2020·山西省长治市六中模拟)质量不等,但有相同动能的两个物体,在动摩擦因数相同的水平地面上滑行,直至停止,则( )A .质量大的物体滑行的距离大B .质量小的物体滑行的距离大C .它们滑行的距离一样大D .它们克服摩擦力所做的功一样多【答案】BD 【解析】由动能定理得-μmgx =-E k ,所以x =E kμmg,知质量小的物体滑行距离大,选项A 、C 错误,B 正确;克服摩擦力做功W f =E k 相同,选项D 正确。

2.(2020·河北省承德一中模拟)如图所示,用细绳通过定滑轮拉物体,使物体在水平面上由静止开始从A 点运动到B 点,已知H =3 m ,m =25 kg ,F =50 N 恒定不变,到B 点时的速度v =2 m/s ,滑轮到物体间的细绳与水平方向的夹角在A 、B 两处分别为30°和45°。

此过程中物体克服阻力所做的功为( )A .50(5-32) JB .50(7-32) JC .50(33-4) JD .50(33-2) J【答案】A 【解析】设物体克服阻力做的功为W f ,由动能定理得F ⎝⎛⎭⎫H sin 30°-H sin 45°-W f =12mv 2,代入数据求得W f =50(5-32) J ,选项A 正确。

3.(2020·吉林省吉林市毓文中学模拟)一个质量为0.5 kg 的物体,从静止开始做直线运动,物体所受合外力F 随物体位移x 变化的图象如图所示,则物体位移x =8 m 时,物体的速度为( )A .2 m/sB .8 m/sC .4 2 m/sD .4 m/s【答案】C 【解析】F -x 图象中图线与横轴所围面积表示功,横轴上方为正功,下方为负功,x =8 m时,可求得W =8 J ;由动能定理有12mv 2=8 J ,解得v =4 2 m/s ,选项C 正确。

2021年高考物理一轮复习学与练5.2 动能和动能定理(精讲)(原卷版)

2021年高考物理一轮复习学与练5.2 动能和动能定理(精讲)(原卷版)

第 1 页 共 7 页专题5.2 动能和动能定理【考情分析】1.掌握动能和动能定理;2.能运用动能定理解答实际问题。

【重点知识梳理】知识点一 动能(1)定义:物体由于运动而具有的能。

(2)公式:E k =12mv 2,v 为瞬时速度,动能是状态量。

(3)单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2。

(4)标矢性:动能是标量,只有正值。

(5)动能的变化量:ΔE k =E k2-E k1=12mv 22-12mv 21。

知识点二 动能定理(1)内容:合外力对物体所做的功等于物体动能的变化。

(2)表达式:W =ΔE k =12mv 22-12mv 21。

(3)物理意义:合外力对物体做的功是物体动能变化的量度。

(4)适用条件①既适用于直线运动,也适用于曲线运动。

②既适用于恒力做功,也适用于变力做功。

③力可以是各种性质的力,既可以同时作用,也可以不同时作用。

【典型题分析】高频考点一 动能定理的理解及应用【例1】(2020·天津卷)复兴号动车在世界上首次实现速度350km/h 自动驾驶功能,成为我国高铁自主创新的又一重大标志性成果。

一列质量为m 的动车,初速度为0v ,以恒定功率P 在平直轨道上运动,经时间t 达到该功率下的最大速度m v ,设动车行驶过程所受到的阻力F 保持不变。

动车在时间t 内( )第 2 页 共 7 页A. 做匀加速直线运动B. 加速度逐渐减小C. 牵引力的功率m P Fv =D. 牵引力做功22m 01122W mvmv =- 【举一反三】(2018·全国卷Ⅰ·18)如图,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R ;bc 是半径为R 的四分之一圆弧,与ab 相切于b 点.一质量为m 的小球,始终受到与重力大小相等的水平外力的作用,自a 点处从静止开始向右运动.重力加速度大小为g .小球从a 点开始运动到其轨迹最高点,机械能的增量为( )A .2mgRB .4mgRC .5mgRD .6mgR【方法技巧】应用动能定理解题的基本思路(1)选取研究对象,明确它的运动过程.(2)分析研究对象的受力情况和各力的做功情况.受哪些力→各力是否做功→做正功还是负功→做多少功→各力做功的代数和(3)明确物体在过程始末状态的动能E k1和E k2.(4)列出动能定理的方程W 合=E k2-E k1及其他必要的解题方程进行求解.【变式探究】(2018·江苏卷·7)(多选)如图所示,轻质弹簧一端固定,另一端连接一小物块,O 点为弹簧在原长时物块的位置.物块由A 点静止释放,沿粗糙程度相同的水平面向右运动,最远到达B 点.在从A 到B 的过程中,物块( )A .加速度先减小后增大B.经过O点时的速度最大C.所受弹簧弹力始终做正功D.所受弹簧弹力做的功等于克服摩擦力做的功高频考点二动能定理在多过程综合问题中的应用【例2】(2018·全国卷Ⅲ)如图,在竖直平面内,一半径为R的光滑圆弧轨道ABC和水平轨道P A在A点相切,BC为圆弧轨道的直径,O为圆心,OA和OB之间的夹角为α,sin α=35.一质量为m的小球沿水平轨道向右运动,经A点沿圆弧轨道通过C点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用.已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g.求(1)水平恒力的大小和小球到达C点时速度的大小;(2)小球到达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间.【方法技巧】利用动能定理求解多过程问题的基本思路(1)弄清物体的运动由哪些过程组成.(2)分析每个过程中物体的受力情况.(3)各个力做功有何特点,对动能的变化有无影响.(4)从总体上把握全过程,表达出总功,找出初、末状态的动能.(5)对所研究的全过程运用动能定理列方程.【变式探究】(2017·上海卷·19)如图所示,与水平面夹角θ=37°的斜面和半径R=0.4 m的光滑圆轨道相切于B点,且固定于竖直平面内.滑块从斜面上的A点由静止释放,经B点后沿圆轨道运动,通过最高点C时轨道对滑块的弹力为零.已知滑块与斜面间动摩擦因数μ=0.25.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)求:第 3 页共7 页(1)滑块在C点的速度大小v C;(2)滑块在B点的速度大小v B;(3)A、B两点间的高度差h.高频考点三动能定理与图象结合【例3】(2020·江苏卷)如图所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上。

2021届高考物理一轮复习第5章机械能第2讲动能定理及其应用课时作业含解析20211024413

2021届高考物理一轮复习第5章机械能第2讲动能定理及其应用课时作业含解析20211024413

2021届高考物理一轮复习第5章机械能第2讲动能定理及其应用课时作业含解析20211024413[基础训练]1.关于运动物体所受的合外力、合外力做的功及动能变化的关系,下列说法正确的是( )A .合外力为零,则合外力做功一定为零B .合外力做功为零,则合外力一定为零C .合外力做功越多,则动能一定越大D .动能不变,则物体合外力一定为零答案:A 解析:由W =Fl cos α可知,物体所受合外力为零,合外力做功一定为零,但合外力做功为零,可能是α=90°,故A 正确,B 错误;由动能定理W =ΔE k 可知,合外力做功越多,动能变化量越大,但动能不一定越大,动能不变,合外力做功为零,但合外力不一定为零,C 、D 均错误.2.如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处差不多上一段与BC 相切的圆弧,B 、C 在水平线上,其距离d =0.5 m .盆边缘的高度为h =0.3 m .在A 处放一个质量为m 的小物块并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.1.小物块在盆内来回滑动,最后停下来,则停下的位置到B 的距离为( )A .0.5 mB .0.25 mC .0.1 mD .0答案:D 解析:由mgh =μmgx ,得x =3 m ,而x d =3 m0.5 m=6,即3个来回后,小物块恰停在B 点,选项D 正确.3.(2020·辽宁沈阳质检)一木块静止在光滑的水平面上,将一个大小恒为F 的水平拉力作用在该木块上,通过位移x 时,拉力的瞬时功率为P ;若将一个大小恒为2F 的水平拉力作用在该木块上,使该木块由静止开始运动,通过位移x 时,拉力的瞬时功率是( )A.2P B .2P C .22P D .4P答案:C 解析:对第一个过程,依照动能定理,有Fx =12mv 21,通过位移x 时的瞬时功率P =Fv 1=F ·2Fxm ;同理,对第二个过程有2Fx =12mv 22,通过位移x 时的瞬时功率P ′=2Fv 2=4F ·Fxm;因此P ′=22P ,C 项正确. 4.(2020·山东济南模拟)光滑斜面上有一个小球自高为h 的A 处由静止开始滚下,到达光滑的水平面上的B 点时速率为v 0.光滑水平面上每隔相等的距离设置了一个与小球运动方向垂直的阻挡条,如图所示,小球越过n 条阻挡条后停下来.若让小球从2h 高处以初速度v 0滚下,则小球能越过阻挡条的条数为(设小球每次越过阻挡条时缺失的动能相等)( )A .nB .2nC .3nD .4n答案:C 解析:设每条阻挡条对小球做的功为W ,小球自高为h 的A 处由静止开始滚下到B 处,由动能定理有mgh =12mv 20,当小球在水平面上滚动时,由动能定理有-nW =0-12mv 20;让小球从2h 高处以初速度v 0滚下到停止,由动能定理有mg ·2h -n ′W =0-12mv 20,三式联立解得n ′=3n ,因此选项C 正确.5.用水平力F 拉一物体,使物体在水平地面上由静止开始做匀加速直线运动,t 1时刻撤去拉力F ,物体做匀减速直线运动,到t 2时刻停止,其速度—时刻图象如图所示,且α>β,若拉力F 做的功为W 1,平均功率为P 1,物体克服摩擦阻力F 1做的功为W 2,平均功率为P 2,则下列选项正确的是( )A .W 1>W 2, F =2F fB .W 1=W 2,F >2F fC .P 1<P 2,F >2F fD .P 1=P 2,F =2F f答案:B 解析:整个运动过程中,依照动能定理有W 1-W 2=0,因此W 1=W 2,又P 1=W 1t 1,P 2=W 2t 2,t 2>t 1,因此P 1>P 2.依照牛顿第二定律,施加拉力F 时,加速度大小a 1=F -F fm,撤去拉力后加速度大小a 2=F fm,v ­t 图线斜率的绝对值表示加速度的大小,依照题图可知a 1>a 2,即F -F f m >F fm,可得F >2F f ,综上分析,B 正确. 6.(2020·吉林摸底)如图所示,将质量为m 的小球以速度v 0由地面竖直向上抛出.小球落回地面时,其速度大小为34v 0.设小球在运动过程中所受空气阻力的大小不变,则空气阻力的大小等于( )A.34mgB.316mgC.716mgD.725mg 答案:D 解析:对小球向上运动,由动能定理有,-(mg +f )H =0-12mv 20,对小球向下运动,由动能定理有,(mg -f )H =12m ⎝ ⎛⎭⎪⎫34v 02,联立解得f =725mg ,故D 正确.7.(2020·河北保定调研)(多选)如图所示,长为L 的轻质硬杆A 一端固定小球B ,另一端固定在水平转轴O 上.现使轻杆A 绕转轴O 在竖直平面内匀速转动,轻杆A 与竖直方向夹角α从0°增加到180°的过程中,下列说法正确的是( )A .小球B 受到的合力的方向始终沿着轻杆A 指向轴O B .当α=90°时,小球B 受到轻杆A 的作用力方向竖直向上C .轻杆A 对小球B 做负功D .小球B 重力做功的功率不断增大答案:AC 解析:小球做匀速圆周运动,受到的合外力总是指向圆心O ,选项A 对;转过90°时,轻杆对小球的弹力的水平分力提供小球做圆周运动的向心力,竖直分力平稳小球重力,小球受到杆的作用力指向左上方,选项B 错;在转动过程中小球的重力做正功,动能不变,应用动能定理可知轻杆对小球做负功,选项C 对;小球竖直方向的分速度先增大后减小,小球重力做功的功领先增大后减小,选项D 错.[能力提升]8.如图所示,一质量m =0.75 kg 的小球在距地面高h =10 m 处由静止开释,落到地面后反弹,碰撞时无能量缺失.若小球运动过程中受到的空气阻力f 大小恒为2.5 N ,取g =10 m/s 2.求:(1)小球与地面第一次碰撞后向上运动的最大高度;(2)小球从静止开始运动到与地面发生第五次碰撞时通过的总路程. 答案:(1)5 m (2)28.75 m解析:(1)设小球与地面第一次碰撞后向上运动的高度为h 2,从开始由静止开释到第一次碰撞后运动高度h 2的过程,由动能定理可得mg (h -h 2)-f (h +h 2)=0解得h 2=mg -fmg +fh =5 m. (2)设小球与地面第二次碰撞后向上运动的距离为h 3,从第一次碰撞后运动的高度h 2处静止下落到第二次碰撞后向上运动距离h 3的过程,由动能定理可得,mg (h 2-h 3)-f (h 2+h 3)=0解得h 3=mg -f mg +f h 2=⎝ ⎛⎭⎪⎫mg -f mg +f 2h同理得h n =⎝⎛⎭⎪⎫mg -f mg +f n -1h 小球从静止开始运动到与地面发生第五次碰撞时通过的总路程s =h +2(h 2+h 3+h 4+h 5)=28.75 m.9.(2020·陕西一测)如图所示,一个小球由A 静止开始沿粗糙的14圆周轨道顶端运动到底端B 时速度为v 1,克服摩擦力做功W 1;以速度v 2从底端B 动身,恰好能运动到顶端A ,克服摩擦力做功为W 2,则( )A .v 1>v 2,W 1>W 2B .v 1=v 2,W 1>W 2C .v 1=v 2,W 1=W 2D .v 1<v 2,W 1<W 2答案:D 解析:对小球由14圆周轨道的顶端A 静止开始的下滑过程,由动能定理,mgR-W 1=12mv 21;对小球由14圆周轨道的底端B 动身的运动过程,由动能定理,-mgR -W 2=0-12mv 22;明显v 1<v 2.把14圆周轨道分割成专门多微元,两个过程在对应微元上,第二个过程的速度较大,对轨道的压力较大,所受的滑动摩擦力较大,克服摩擦力做功较多,即W 1<W 2,选项D 正确.10.(2020·吉林三校联考)如图所示,竖直平面内放一直角杆MON ,OM 水平,ON 竖直且光滑,用不可伸长的轻绳相连的两小球A 和B 分别套在OM 和ON 杆上,B 球的质量为2 kg ,在作用于A 球的水平力F 的作用下,A 、B 均处于静止状态,现在OA =0.3 m ,OB =0.4 m ,改变水平力F 的大小,使A 球向右加速运动,已知A 球向右运动0.1 m 时速度大小为 3 m/s ,则在此过程中绳的拉力对B 球所做的功为(取g =10 m/s 2)( )A .11 JB .16 JC .18 JD .9 J答案:C 解析:A 球向右运动0.1 m 时,v A =3 m/s ,OA ′=0.4 m ,OB ′=0.3 m ,设现在∠BAO =α,则有tan α=34.v A cos α=v B sin α,解得v B =4 m/s.此过程中B 球上升高度h =0.1 m ,由动能定理,W -mgh =12mv 2B ,解得绳的拉力对B 球所做的功为W =mgh +12mv 2B=2×10×0.1 J+12×2×42J =18 J ,选项C 正确.11.(2020·广东清远三中质检)(多选)如图所示,长为L 的长木板水平放置,在木板的A 端放置一个质量为m 的小物块,现缓慢地抬高A 端,使木板以左端为轴转动,当木板转到与水平面的夹角为α时小物块开始滑动,现在停止转动木板,小物块滑到底端的速度为v ,则在整个过程中( )A .木板对小物块做功为12mv 2B .摩擦力对小物块做功为mgL sin αC .支持力对小物块做功为0D .滑动摩擦力对小物块做功为12mv 2-mgL sin α答案:AD 解析:设在整个过程中,木板对物块做功为W ,整个过程中重力做功为零,则依照动能定理得:W =12mv 2,故A 正确.在木板从水平位置开始转动到与水平面的夹角为α的过程中,摩擦力不做功,物块沿木板下滑过程中,摩擦力对物块做功.由于摩擦力小于重力沿斜面向下的分力,即f <mg sin α,则摩擦力对物块做功W f =-fL ≠-mgL sin α,故B 错误.在木板从水平位置开始转动到与水平面的夹角为α的过程中,支持力对物块做功,设为W N ,依照动能定理得:W N -mgL sin α=0,得W N =mgL sin α,故C 错误.在物块下滑的过程中,依照动能定理得:mgL sin α+W f =12mv 2-0,则W f =12mv 2-mgL sin α,故D正确.12.(2020·江西吉安期末)(多选)如图所示,质量为m 的小球(可视为质点)用长为L 的细线悬挂于O 点,自由静止在A 位置.现用水平力F 缓慢地将小球从A 拉到B 位置而静止,细线与竖直方向夹角为θ=60°,现在细线的拉力为T 1,然后撤去水平力F ,小球从B 返回到A 点时细线的拉力为T 2,则( )A .T 1=T 2=2mgB .从A 到B ,拉力F 做功为mgLC .从B 到A 的过程中,小球受到的合外力大小不变D .从B 到A 的过程中,小球重力的瞬时功领先增大后减小答案:AD 解析:分析小球在B 点受力可得T 1=2mg ,撤去拉力后,依照动能定理,mgL (1-cos θ)=12mv 2,在A 点,T 2-mg =m v 2L ,可得T 2=2mg ,W F -mgL (1-cos θ)=0,W F =12mgL ,选项A 正确,B 错误;从B 到A 过程中,在A 、B 两点重力的瞬时功率都等于零,D 正确;在B 点小球所受合外力为mg sin θ,在A 点的合外力为mg ,选项C 错误.13.泥石流是在雨季由于暴雨、洪水将含有沙石且松软的土质山体经饱和稀释后形成的洪流,它的面积、体积和流量都较大.泥石流流淌的全过程尽管只有专门短时刻,但由于其高速前进,具有强大的能量,因而破坏性极大.某课题小组对泥石流的威力进行了模拟研究,如图甲所示,在水平地面上放置一个质量为m =5 kg 的物体,让其在随位移平均减小的水平推力作用下运动,推力F 随位移变化如图乙所示,已知物体与地面间的动摩擦因数为μ=0.6,取g =10 m/s 2.求:甲乙(1)物体在运动过程中的最大加速度为多大? (2)在距动身点多远处,物体的速度达到最大? (3)物体在水平面上运动的最大位移是多大? 答案:(1)10 m/s 2(2)2.5 m (3)5.33 m 解析:(1)当推力F 最大时,加速度最大 由牛顿第二定律得F -μmg =ma得a =10 m/s 2.(2)由图象可知:F 随x 变化的函数方程为F =80-20x速度最大时,合外力为零 即F =μmg 因此x =2.5 m.(3)位移最大时,末速度一定为0 由动能定理可得W F -μmgs =0由图象可知,力F 做的功为W F =12Fx =160 J因此s =16030 m =5.33 m.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课练15 动能和动能定理1.(多选)如图所示,某人将质量为m 的石块从距地面高h 处斜向上方抛出,石块抛出时的速度大小为v 0,由于空气阻力作用石块落地时的速度大小为v ,方向竖直向下,已知重力加速度为g ,下列说法正确的是( )A .石块刚抛出时重力的瞬时功率为mgv 0B .石块落地时重力的瞬时功率为mgvC .石块在空中飞行过程中合外力做的功为12mv 20-12mv 2D .石块在空中飞行过程中阻力做的功为12mv 2-12mv 20-mgh2.如图所示,半径为R 的水平转盘上叠放有两个小物块P 和Q ,P 的上表面水平,P 到转轴的距离为r .转盘的角速度从0开始缓缓增大,直至P 恰好能与转盘发生相对滑动,此时Q 受到P 的摩擦力设为f ,在此过程中P 和Q 相对静止,转盘对P 做的功为W .已知P 和Q 的质量均为m ,P 与转盘间的动摩擦因数为μ1,P 与Q 间的动摩擦因数为μ2,已知最大静摩擦力等于滑动摩擦力,下列判断正确的是( )A .f =μ2mgB .W =0C .W =μ1mgrD .条件不足,W 无法求出3.(多选)如图所示,一小朋友做蹦床运动由高处自由落下.从该小朋友双脚接触蹦床开始至双脚到最低点的过程中,不考虑空气阻力,该小朋友( )A .机械能守恒B .速度先增大后减小C .加速度先增大后减小D .所受重力做的功小于其克服蹦床弹力做的功4.(多选)如图所示,半径为r 的半圆弧轨道ABC 固定在竖直平面内,直径AC 水平,一个质量为m 的物块(可视为质点)从圆弧轨道A 端正上方P 点由静止释放,物块刚好从A 点无碰撞地进入圆弧轨道并在A 、B 之间做匀速圆周运动,到B 点时对轨道的压力大小等于物块重力的2倍,重力加速度为g ,不计空气阻力,则( )A .物块到达A 点时速度大小为2grB .P 、A 间的高度差为r2C .物块从A 运动到B 所用时间为12πr mD .物块从A 运动到B 克服摩擦力做功为mgr5.(多选)今年2月,太原市首批纯电动公交车开始运营.在运营前的测试中,电动公交车在平直路面上行驶,某段时间内的v -t 图象如图所示.在0~10 s 内发动机和车内制动装置对车辆所做的总功为零,车辆与路面间的摩擦阻力恒定,空气阻力不计.已知公交车质量为13.5 t ,g =10 m/s 2,则( )A .汽车在0~10 s 内发生的位移为54 mB .汽车与路面的摩擦阻力为2 000 NC .发动机在第1 s 内的平均功率是第7 s 内的30031倍D .第6 s 内汽车克服车内制动装置做的功是第10 s 内的5313倍6.(多选)如图所示,质量为M 的电梯底板上放置一质量为m 的物体,钢索拉着电梯由静止开始向上做加速运动,当上升高度为H 时,速度达到v ,不计空气阻力,重力加速度为g ,则在这一过程中( )A .物体所受合力做的功等于12mv 2+mgHB .底板对物体的支持力做的功等于mgH +12mv 2C .钢索的拉力做的功等于12Mv 2+MgHD .钢索的拉力、电梯的重力及物体对底板的压力对电梯做的总功等于12Mv 2练高考小题7.[2019·全国卷Ⅱ,18](多选)从地面竖直向上抛出一物体,其机械能E 总等于动能E k 与重力势能E p 之和.取地面为重力势能零点,该物体的E 总和E p 随它离开地面的高度h 的变化如图所示.重力加速度取10 m/s 2.由图中数据可得( )A .物体的质量为2 kgB .h =0时,物体的速率为20 m/sC .h =2 m 时,物体的动能E k =40 JD .从地面至h =4 m ,物体的动能减少100 J8.[2018·全国卷Ⅱ,14]如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定( )A .小于拉力所做的功B .等于拉力所做的功C .等于克服摩擦力所做的功D .大于克服摩擦力所做的功9.[2018·全国卷Ⅰ,18]如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R;bc是半径为R的四分之一圆弧,与ab相切于b点.一质量为m的小球,始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动.重力加速度大小为g.小球从a点开始运动到其轨迹最高点,机械能的增量为( )A.2mgR B.4mgRC.5mgR D.6mgR10.[2017·江苏卷,3]一小物块沿斜面向上滑动,然后滑回到原处.物块初动能为E k0,与斜面间的动摩擦因数不变,则该过程中,物块的动能E k与位移x关系的图线是( )ABCD练模拟小题11.[2019·山东省潍坊模拟](多选) 如图所示,一根细绳的上端系在O 点,下端系一重球B ,放在粗糙的斜面体A 上.现用水平推力F 向右推斜面体使之在光滑水平面上向右匀速运动一段距离(细绳尚未到达平行于斜面的位置).在此过程中( )A .B 做匀速圆周运动 B .摩擦力对重球B 做正功C .水平推力F 和重球B 对A 做的功的大小相等D .A 对重球B 所做的功与重球B 对A 所做的功大小相等12.[2019·河南省商丘九校联考](多选)已知一足够长的传送带与水平面间的夹角为θ,以一定的速度匀速运动,某时刻在传送带适当的位置放上具有一定初速度的物块(如图a所示),以此时为t =0时刻记录了小物块在传送带上运动的速度随时间的变化关系,如图b 所示(图中取沿传送带向上的运动方向为正方向,其中|v 1|>|v 2|),已知传送带的速度保持不变,则下列判断正确的是( )A .0~t 1内,物块对传送带一直做负功B .物块与传送带间的动摩擦因数μ>tan θC .0~t 2内,传送带对物块做的功为12mv 22-12mv 21D .系统产生的热量一定比物块动能的减少量大13.[2019·福建省福州市八县(市)联考](多选)如图所示,在距水平地面高为0.4 m 处,水平固定一根长直光滑杆,在杆上P 点固定一光滑定滑轮,滑轮可绕水平轴无摩擦转动,在P 点的右侧,杆上套有一质量m =2 kg 的滑块A .半径R =0.3 m 的光滑半圆形细轨道竖直固定在地面上,其圆心O 在P 点的正下方,在轨道上套有一质量也为m =2 kg 的小球B .用一条不可伸长的柔软轻细绳,通过定滑轮将A 、B 连接起来.杆和半圆形轨道在同一竖直面内,A 、B 均可看成质点,且不计滑轮大小的影响.现给滑块A 一个水平向右的恒力F =50 N(取g =10 m/s 2).则( )A.把小球B从地面拉到P点的正下方C处时力F做的功为20 JB.小球B运动到P点正下方C处时的速度为0C.小球B被拉到与滑块A速度大小相等时,离地面高度为0.225 mD.把小球B从地面拉到P的正下方C处时,小球B的机械能增加了20 J14.[2019·安徽省四校模拟]一质点在0~15 s内竖直向上运动,其加速度-时间图象如图所示,若取竖直向下为正,g取10 m/s2,则下列说法正确的是( )A.质点的机械能不断增加B.在0~5 s内质点的动能增加C.在10~15 s内质点的机械能一直增加D.在t=15 s时质点的机械能大于t=5 s时质点的机械能15.[2019·江西省南昌调研](多选)如图所示,一小球(可视为质点)从H=12 m高处,由静止开始沿光滑弯曲轨道AB进入半径R=4 m的竖直圆环内侧,且与圆环的动摩擦因数处处相等,当到达圆环顶点C时,刚好对轨道压力为零;然后沿CB圆弧滑下,进入光滑弧形轨道BD,到达高度为h的D点时速度为零,则h的值可能为( )A.10 m B.9.5 mC.8.5 m D.8 m16.[2019·四川五校联考]如图所示,轻质弹簧一端固定,另一端与一质量为m 、套在粗糙竖直固定杆A 处的圆环相连,弹簧水平且处于原长.圆环从A 处由静止开始下滑,经过B 处的速度最大,到达C 处的速度为零,AC =h ,此为过程Ⅰ;若圆环在C 处获得一竖直向上的速度v ,则恰好能回到A 处,此为过程Ⅱ.已知弹簧始终在弹性范围内,重力加速度为g ,则圆环( )A .在过程Ⅰ中,加速度一直减小B .在过程Ⅱ中,克服摩擦力做的功为12mv 2C .在C 处,弹簧的弹性势能为14mv 2-mghD .在过程Ⅰ、过程Ⅱ中克服摩擦力做功相同———[综合测评 提能力]———一、单项选择题(本题共8小题,每小题3分,共24分)1.[2019·浙江模拟]如图所示,足球从草皮上的①位置被踢出后落在草皮上③位置,空中到达的最高点为②位置,则( )A .②位置足球动能等于0B .①位置到③位置过程只有重力做功C .①位置到②位置的过程足球的动能全部转化为重力势能D .②位置到③位置过程足球动能的变化量等于合力做的功2.[2020·河北省定州中学模拟]一个人站在高为H 的平台上,以一定的初速度将一质量为m 的小球抛出.测出落地时小球的速度大小为v ,不计空气阻力,重力加速度大小为g ,人对小球做的功W 及小球被抛出时的初速度大小v 0分别为( )A .W =12mv 2-mgH ,v 0=v 2-2gHB .W =12mv 2,v 0=2gHC .W =mgH ,v 0=v 2+2gHD .W =12mv 2+mgH ,v 0=2gH3.[2019·全国卷Ⅲ]从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用,距地面高度h 在3 m 以内时,物体上升、下落过程中动能E k 随h 的变化如图所示.重力加速度取10 m/s 2.该物体的质量为( )A .2 kgB .1.5 kgC .1 kgD .0.5 kg4.如图所示,第一次将质量为m 的物块放在水平面上的P 点,给其一定的初速度使其滑向Q 点;第二次将质量为2m 的物块B 放在P 点,并给其施加向右的水平拉力,使物块B 从静止开始向Q 点运动,结果物块A 运动到Q 点的动能与物块B 运动到PQ 中点时的动能相同,物块B 从P 点运动到PQ 中点时,拉力做功为W ,两物块与水平面间的动摩擦因数相同,则物块A 的初速度大小为( )A.WmB. 2WmC. 3WmD .2W m5.[预测新题]如图所示,竖直平面内放一直角杆MON ,OM 水平,ON 竖直且光滑,用不可伸长的轻绳相连的两小球A 和B 分别套在OM 和ON 杆上,B 球的质量为2 kg ,在作用于A 球上的水平力F 的作用下,A 、B 两球均处于静止状态,此时A 球距O 点的距离为x A =0.3 m ,B 球距O 点的距离x B =0.4 m ,改变水平力F 的大小,使A 球向右加速运动,已知A 球向右运动0.1 m 时的速度大小为3 m/s ,则在此过程中绳的拉力对B 球所做的功为(取g =10 m/s 2)( )A.11 J B.16 JC.18 J D.9 J6.[名师原创]如图所示,A、B是两个等高的固定点,间距为L,一根长为2L的非弹性轻绳两端分别系在A、B两点,绳上套了一个质量为m的小球.现使小球在竖直平面内以AB为中心轴做圆周运动,若小球在最低点的速率为v,则小球运动到最高点时,两段绳的拉力恰好均为零,若小球在最低点的速率为2v,则小球运动到最高点时每段绳上的拉力大小为(重力加速度大小为g,不计一切摩擦)( )A.3mg B.53mgC.15mg D.52mg7.[2020·江西五校联考]如图所示,光滑水平面OB与足够长的粗糙斜面BC交于B点.轻弹簧左端固定于竖直墙面,现用质量为m1的滑块压缩弹簧至D点,然后由静止释放,滑块脱离弹簧后经B点滑上斜面,上升到最大高度,并静止在斜面上,不计滑块在B点的机械能损失.换用材料相同、质量为m2的滑块(m2>m1)压缩弹簧至同一点后,重复上述过程,下列说法正确的是( )A.两滑块到达B点时的速度相同B.两滑块沿斜面上升的最大高度相同C.两滑块上升到最高点的过程中克服重力做的功不相同D.两滑块上升到最高点的过程中机械能损失相同8.[2019·广东佛山一中段考]如图,一半径为R、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平.一质量为m的质点自P点上方高为R处由静止开始下落,恰好从P点进入轨道.质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小.用W表示质点从P点运动到N点的过程中克服摩擦力所做的功.则( )A .W =12mgR ,质点恰好可以到达Q 点B .W >12mgR ,质点不能到达Q 点C .W =12mgR ,质点到达Q 点后,继续上升一段距离D .W <12mgR ,质点到达Q 点后,继续上升一段距离二、多项选择题(本题共2小题,每小题4分,共8分)9.如图甲所示,为测定物体冲上粗糙斜面能达到的最大位移x 与斜面倾角θ的关系,将某一物体每次以不变的初速度沿足够长的斜面向上推出,调节斜面与水平方向的夹角θ,实验测得x 与斜面倾角θ的关系如图乙所示,重力加速度大小g 取10 m/s 2,最大静摩擦力等于滑动摩擦力,根据图象可求出( )A .物体的初速率为3 m/sB .物体与斜面间的动摩擦因数为0.75C .取不同的倾角θ,物体在斜面上能达到的位移x 的最小值为1.44 mD .当θ=45°时,物体达到最大位移后将停在斜面上10.[2019·郑州质检]质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,如图所示.在圆心处连接有力传感器,用来测量绳子上的拉力,运动过程中小球受到空气阻力的作用,空气阻力随速度减小而减小.某一时刻小球通过轨道的最低点,力传感器的示数为7mg ,重力加速度为g ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,下列说法正确的是( )A .到最高点过程中小球克服空气阻力做的功为12mgRB .到最高点过程中小球克服空气阻力做的功为mgRC .再次经过最低点时力传感器的示数为5mgD.再次经过最低点时力传感器的示数大于5mg三、非选择题(本题共3小题,共34分)11.(11分)如图所示,粗糙的斜面AB下端与光滑的圆弧轨道BCD相切于B,整个装置竖直放置,C是最低点,圆心角θ=37°,D与圆心O等高,圆弧轨道半径R=1 m,斜面长L =4 m,现有一个质量m=0.1 kg的小物体P从斜面AB上端A点无初速度下滑,物体P与斜面AB之间的动摩擦因数μ=0.25.不计空气阻力,g=10 m/s2,sin 37°=0.6,cos 37°=0.8,求:(1)物体P第一次通过C点时的速度大小v C;(2)物体P第一次通过C点时对轨道的压力大小;(3)物体P第一次离开D点后在空中做竖直上抛运动到最高点E,接着从空中又返回到圆弧轨道和斜面,在这样多次反复的整个运动过程中,物体P对C点处轨道的最小压力.12.(11分)[2019·江苏常州期末]如图所示,在距水平地面高为h=0.5 m处,水平固定一根长直光滑杆,杆上P处固定一小定滑轮,在P点的右边杆上套一质量mA=1 kg的滑块A.半径r=0.3 m的光滑半圆形竖直轨道固定在地面上,其圆心O在P点的正下方,半圆形轨道上套有质量mB=2 kg的小球B.滑块A和小球B用一条不可伸长的柔软细绳绕过小定滑轮相连,在滑块A上施加一水平向右的力F.滑轮的质量和摩擦均可忽略不计,且小球可看做质点,g取10 m/s2,0.34≈0.58.(1)若逐渐增大拉力F,求小球B刚要离地时拉力F1的大小;(2)若拉力F2 =57.9 N,求小球B运动到C处时的速度大小;(结果保留整数)(3)在(2)情形中当小球B运动到C处时,拉力变为F3 =16 N,求小球B在右侧轨道上运动的最小速度.(结果保留一位小数)13.(12分)[2020·湖南地质中学月考]如图所示,传送带以一定速度沿水平方向匀速转动,将质量为m =1.0 kg 的小物块轻轻放在传送带上的P 点,物块运动到A 点后被水平抛出,小物块恰好无碰撞地沿圆弧切线从B 点进入竖直光滑圆弧轨道.B 、C 为圆弧的两端点,其连线水平,轨道最低点为O ,已知圆弧对应圆心角θ=106°,圆弧半径R =1.0 m ,A 点距水平面的高度h =0.8 m ,小物块离开C 点后恰好能无碰撞地沿固定斜面向上滑动,经过0.8 s 小物块第二次经过D 点,已知小物块与斜面间的动摩擦因数μ=13,sin 53°=0.8,g =10 m/s 2.求:(1)小物块离开A 点时的水平速度大小; (2)小物块经过O 点时,轨道对它的支持力大小; (3)斜面上C 、D 间的距离.课练15 动能和动能定理[狂刷小题 夯基础]1.BD 设石块刚抛出时的速度方向与竖直方向的夹角为α ,则刚抛出时重力的瞬时功-(mg sin θ+f )x =E k -E k0,即E k =-(f +mg sin θ)x +E k0,所以E k 与x 的函数关系图像为直线,且斜率为负. 当小物块沿斜面下滑时根据动能定理有(mg sin θ-f )(x 0-x )=E k -0(x 0为小物块到达最高点时的位移),即E k =-(mg sin θ-f )x +(mg sin θ-f )x 0所以下滑时E k 随x 的减小而增大且为直线. 综上所述,选项C 正确. 11.BCB 的线速度大小是变化的,故不是匀速圆周运动,故A 错误;如图,画出球B 受到的支持力N ,摩擦力f 以及球在该位置时运动的切线的方向,由图可知,斜面对B 的摩擦力沿斜面向下,与B 的速度方向的夹角为锐角,所以摩擦力对重球B 做正功,故B 正确;A 匀速运动,动能不变,根据动能定理知水平推力F 和重球B 对A 做的功的大小相等,故C 正确;斜面对B 的弹力和B 对斜面的弹力是一对作用力和反作用力,大小相等,斜面在弹力方向上的位移等于B 在弹力方向上的位移,所以A 对重球B 的弹力所做的功与重球B 对A 弹力所做的功大小相等,一正一负,由于B 与A 间存在相对运动,A 的位移与B 的位移不相等,所以A 对重球B 的摩擦力所做的功与重球B 对A 的摩擦力所做的功大小不相等,所以A 对重球B 所做的总功与重球B 对A 所做的总功大小不相等,故D 错误.12.ABD 由题图b 知,物块先向下运动后向上运动,则知传送带的运动方向应向上,0~t 1时间内,物块对传送带的摩擦力方向沿传送带向下,则物块对传送带做负功,故A 正确.在t 1~ t 2时间内,物块向上运动,则有μmg cos θ>mg sin θ,得μ>tan θ,故B 正确.0~t 2时间内,由题图b 中“面积”等于位移可知,物块的总位移沿斜面向下,高度下降,重力对物块做正功,设为W G ,根据动能定理得:W +W G =12mv 22-12mv 21,则传送带对物块做的W =12mv 22-12mv 21-W G ,故C 错误.0~t 2时间内,重力对物块做正功,物块的重力势能减小、动能也减小,且都转化为系统产生的内能,则由能量守恒定律知,系统产生的热量一定比物块动能的减少量大,故D 正确.故选A 、B 、D.13.ACD 把小球B 从地面拉到P 点正下方C 处的过程中,力F 的位移为:x =0.42+0.32m -(0.4-0.3)m =0.4 m ,则力F 做的功W F =Fx =20 J ,选项A 正确;把小球B 从地面拉到P 点正下方C 处时,B 的速度方向与绳子方向垂直,A 的速度为零,设B 的速度为v ,则由动能定理:W F -mgR =12mv 2-0,解得v =14m/s ,选项B 错误;当细绳与半圆形轨道相切时,小球B 的速度方向沿圆周的切线方向向上,此时和绳子方向重合,故与滑块A 速度大小相等,由几何关系可得h =0.225 m ,选项C 正确;B 的机械能增加量为F 做的功20 J ,D 正确.14.D 质点竖直向上运动,0~15 s 内加速度方向向下,质点一直做减速运动,B 错误.0~5 s 内,a =10 m/s 2,质点只受重力,机械能守恒;5~10 s 内,a =8 m/s 2,受重力和向上的力F 1,F 1做正功,机械能增加;10~15 s 内,a =12 m/s 2,质点受重力和向下的力F 2,F 2做负功,机械能减少,A 、C 错误.由F 合=ma 可推知F 1=F 2,由于做减速运动,5~10 s 内通过的位移大于10~15 s 内通过的位移,F 1做的功大于F 2做的功,5~15 s 内增加的机械能大于减少的机械能,所以D 正确.15.BC 设小球质量为m ,以B 点所在水平面为零势能面,由题给条件“当到达圆环顶点C 时,刚好对轨道压力为零”有mg =mv 2C R ,小球到达C 点时,有v 2C =gR ,在C 点的动能为12mv 2C=12mgR ,则小球在C 点的机械能为2mgR +12mv 2C =52mgR ,则小球从B 点到C 点克服摩擦力做的功为12mgR ,小球到达D 点时速度为零,设小球在D 点的机械能为E k D ,分析可知小球在从C 点到B 点过程中也有摩擦力,且摩擦力做的功小于小球从B 点到C 点克服摩擦力做的功12mgR ,故2mgR <E k D <52mgR ,即8 m <h <10 m ,选项B 、C 正确.16.D圆环刚开始下滑时,圆环受到的合力向下,设弹簧原长为L ,下滑过程中,对圆环受力分析,如图所示,弹簧弹力与竖直方向的夹角为θ,则弹簧弹力F =kL ⎝⎛⎭⎪⎫1sin θ-1,竖直方向根据牛顿第二定律可得mg -F cos θ-μF N =ma ,水平方向有F sin θ=F N ,联立三个方程可知,圆环下滑过程中受到的合力先减小后增大,圆环的加速度先减小后增大,选项A 错误;在过程Ⅰ和Ⅱ中,圆环在相同位置时受到的滑动摩擦力大小相等,所以在这两个过程中克服摩擦力做的功相等,选项D 正确;在过程Ⅰ中,根据动能定理可得W G -W f -W 弹=0,解得W f =W G -W 弹,在过程Ⅱ中,根据动能定理可得-W G +W 弹-W f =-12mv 2,联立解得W f =14mv 2,在C 处+12mv ″2=12m (2v )2,得v ″=4gr ,设每段绳的拉力大小为F ,则2F cos θ+mg =m v ″2r ,联立解得F =53mg ,B 正确.7.D 由于初始时,弹簧的弹性势能相同,则两滑块到达B 点时的动能相同,但速度不同,故A 错误;两滑块在斜面上运动时的加速度相同,由于到达B 点时的速度不同,故上升高度不同,B 错误;滑块上升到最高点的过程中克服重力做的功为mgh ,由能量守恒定律有E p=mgh +μmg cos θ×h sin θ,解得mgh =E p tan θtan θ+μ,故两滑块上升到最高点的过程中克服重力做的功相同,C 错误;由能量守恒知损失的机械能E 损=μmghtan θ,结合C 的分析,可知D正确.8.C 在N 点,根据牛顿第二定律有N -mg =m v 2NR,解得v N =3gR ,对质点从开始下落至到达N 点的过程运用动能定理得mg ·2R -W =12mv 2N -0,解得W =12mgR .由于质点在PN 段的速度大于质点在NQ 段的速度,所以质点在NQ 段受到的支持力小于PN 段受到的支持力,则质点在NQ 段克服摩擦力做的功小于在PN 段克服摩擦力做的功,小球在NQ 段运动时由动能定理得-mgR -W ′=12mv 2Q -12mv 2N ,因为W ′<12mgR ,可知v Q >0,所以质点到达Q 点后,继续上升一段距离.故C 正确,A 、B 、D 错误.9.BC 由题图乙可知,当夹角θ=0°时,位移为2.40 m ,而当夹角为90°时,位移为1.80 m ,则由竖直上抛运动规律可知v 20=2gh ,解得v 0=2gh =6 m/s ,故A 错误;当夹角为0°时,由动能定理可得μmgx =12mv 20,解得μ=0.75,故B 正确;-mgx sin θ-μmgx cosθ=0-12mv 20,解得x =v 202gsin θ+μcos θ(m)=1810sin θ+34cos θ(m)=1810×54sin θ+α(m),当θ+α=90°时,sin(θ+α)=1,此时位移最小,x =1.44 m ,故C 正确;若θ=45°时,物体受到重力的分力为mg sin 45°=22mg ,最大静摩擦力f =μmg cos45°=328mg ,22mg >328mg ,故物体达到最大位移后会下滑,故D 错误. 10.AD 小球在最低点时有F 1=T -mg =m v 21R ,解得v 1=6gR ,而在最高点时,由于小球恰好能通过最高点,所以有mg =m v 22R,可得v 2=gR ,小球从最低点到最高点的过程,由动能。

相关文档
最新文档