提高导电高分子电导率文献综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
玉林师范学院
本科课程论文
课程名称:文献检索
任课教师:易施光
课程论文题目:提高导电高分子电导率文献综述
学生姓名:黄宇
学号:201207401261
二级学院:物理科学与工程技术学院
专业班级:物本122
完成时间:二零一四年十二月二十二日
提高导电高分子电导率文献综述
黄宇易施光
物本122 物理学 201207401261
摘要:主要介绍了导电高分子材料的概念、导电高分子材料的分类情况,针对其分类简介了各类导电高分子材料的导电机理,并利用其导电机理集中综述了几种提高高分子电导率的方法,最后指出了导电高分子目前在电导率方面存在的问题及发展趋势。
关键词:导电高分子;电导率;聚合物;导电机理;掺杂
引言
导电高分子材料,也可称作导电聚合物,自从1977年科学家发现晶态聚乙炔具有明显的导电性以来,导电聚合物已不再是一个陌生的名词,作为一类新的材料也引起了化学家和物理学家的重视和兴趣。各国科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究,导电聚合物已使其成为一门相对独立的学科。人们在制得导电高分子的同时,对其导电机制探索的兴趣也是十分的浓厚。本文将对提高导电高分子的电导率的研究进行简单的综述。
正文
一、导电高分子
1、导电高分子材料的研究进展
高分子材料自问世至今,已经有一百多年的历史。1856年硝化纤维作为第一个塑料专利问世,20世纪60年代;许多性能优良的工程塑料相继投入工业化生产;20世纪80年代,材料科学已渗透各个领域,可以说已经进入高分子时代。
大多数高分子材料都是不导电的,因而高分子材料被广泛地作为绝缘材料使用。1862年,英国Letheby在硫酸中电解苯胺而得到少量导电性物质;1954年,米兰工学院G.Natta用Et3Al-Ti(OBu)4为催化剂制得聚乙炔;1970年,科学家发现类金属的无机聚合物聚硫氰(SN)x具有超导性,有机高分子与无机高分子导电聚合物的开发研究合在一起开始了探寻之旅。1974年日本筑波大学H.Shirakawa在合成聚乙炔的实验中,偶然地投入过量1000倍的催化剂,合成出令人兴奋的有铜色的顺式聚乙炔薄膜与银白色光泽的反式聚乙炔。1980年,
英国Durham大学的W.Feast得到更大密度的聚乙炔。1983年,加州理工学院的H.Grubbs以烷基钛配合物为催化剂将环辛四烯转换了聚乙炔,其导电率达到35000S/m,但是难以加工且不稳定。1987年,德国康采思巴斯夫公司BASF科学家 N.Theophiou对聚乙炔合成方法进行了改良,得到的聚乙炔电导率与铜在同一数量级,达到107S/m。导电高分子材料的研究和发展开始逐渐走向成熟,并且亟待着可以走向应用领域。
2、导电高分子的定义
导电高分子又称为导电聚合物,是由具有共轭π键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体的一类高分子材料。导电高分子材料是一类兼具高分子特性及导电体特征的高分子材料。
3、导电高分子材料的分类
按照材料的结构与组成,高分子导电材料通常分为结构型和复合型两大类。(1)结构型高分子导电材料
是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。根据电导率的大小又可分为高分子半导体、高分子金属和高分子超导体。按照导电机理可分为电子导电高分子材料和离子导电高分子材料。电子导电高分子材料的电导率一般在半导体的范围。采用掺杂技术可使这类材料的导电性能大大提高。如在聚乙炔中掺杂少量碘,电导率可提高12个数量级,成为“高分子金属”。经掺杂后的聚氮化硫,在超低温下可转变成高分子超导体。结构型高分子导电材料用于试制轻质塑料蓄电池、太阳能电池、传感器件、微波吸收材料以及试制半导体元器件等。但目前这类材料由于还存在稳定性差(特别是掺杂后的材料在空气中的氧化稳定性差)以及加工成型性、机械性能方面的问题,尚未进入实用阶段。(2)复合型高分子导电材料
由通用的高分子材料与各种导电性物质通过填充复合、表面复合或层积复合等方式而制得。主要品种有导电塑料、导电橡胶、导电纤维织物、导电涂料、导电胶粘剂以及透明导电薄膜等。其性能与导电填料的种类、用量、粒度和状态以及它们在高分子材料中的分散状态有很大的关系。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势,用量最大最为普及的是炭黑填
充型和金属填充型。目前,复合型导电高分子所采用的复合方法主要有两种,一种是用结构型导电聚合物粉末或颗粒与基体树脂共混,它们是抗静电材料和电磁屏蔽材料的主要用料, 其用途十分广泛,是目前最有实用价值的导电塑料。另一种则是将各种导电填料填充到基体高分子中的导电树脂基复合材料。
二、导电高分子的导电机理
1、结构型导电高分子的导电机理
结构型导电高分子一般为共轭型高聚物,在共轭高聚物中由于价带电子对电导没有贡献,另一方面由于受链规整度的影响,常常使聚合度n不大,使得电子在常温下从P轨道跃迁到P*较难,因而电导率较低。对其导电机理具体分析如下:(1)共轭高分子导电应具备的条件
根据能带理论可知,高分子要具有导电性必须满足下列两个条件,才能冲破分子中原子最外层电子的定域,形成具有整个大分子性的能带体系: ①大分子的分子轨道能强烈地离域; ②大分子链上的分子轨道间能相互重叠。而能满足上述两个条件的聚合物有:①共轭聚合物,共轭键上π电子可以在整个分子链上离域,从而产生载流子(电子或空穴)和输送载流子;②非共轭聚合物中分子间π电子轨道互相重叠;③具有电子给予体和接受体的体系。
(2)共轭高分子导电的特性
共轭导电聚合物一般都有一共同结构特征,即分子内都有一个长程,由碳原子等的p z轨道相互重叠形成的线性共轭π电子主链,给自由电子提供了离域迁移的条件。由于共轭聚合物具有π电子分子轨道,故分子内的长距离相互之间作用使之形成能带。但由于价带中的电子是定域的,对电导没有贡献。是否有导电性,取决于禁带宽度(Eg)。随着共轭体系长度(n聚体)的增加,Eg减少。而室温下热激发产生载流子必须满足Eg≤KT=0.025ev(K为玻尔兹曼常数,T为温度),但是要合成这样n聚体是极其困难的。如对线型聚炔(CR=CR’)n, Eg = 4.75* (2n+1) /n2(ev), 当Eg=0.025ev时,n=370,要合成这样完整的共轭体系是极为困难的。另外,分子间的势垒很高,链上的链长并不均等,侧链的立体障碍等都使电导率降低,因此,共轭聚合物一般电导率很低。
2、复合型导电高分子的导电机理