最新18光的干涉习题思考题汇总
第一章光的干涉习题【最新资料】
光的干涉一、填空题1.可见光在谱中只占很小的一部分,其波长范围约是nm。
2.光的相干条件为、和。
3.振幅分别为A1和A2的两相干光同时传播到P点,两振动的相位差为Δφ。
则P点的光强I=__________________。
4.强度分别为I1和I2的两相干光波迭加后的最大光强I max=_____________。
5.强度分别为I1和I2的两相干光波迭加后的最小光强I max=_____________。
6.振幅分别为A1和A2的两相干光波迭加后的最大光强I max=_____________。
7.振幅分别为A1和A2的两相干光波迭加后的最小光强I max=_____________。
8.两束相干光迭加时,光程差为λ时,相位差Δφ=__________。
9.两相干光波在考察点产生相消干涉的条件是光程差为半波长的_______倍,相位差为π的_________倍。
10.两相干光波在考察点产生相长干涉的条件是光程差为半波长的_______倍,相位差为π的_________倍。
11.两相干光的振幅分别为A1和A2,则干涉条纹的可见度V=____________。
12.两相干光的振幅分别为I1和I2,则干涉条纹的可见度V=____________。
13.两相干光的振幅分别为A1和A2,当它们的振幅都增大一倍时,干涉条纹的可见度为_____________。
14.两相干光的强度分别为I1和I2,当它们的强度都增大一倍时,干涉条纹的可见度_____________。
15.振幅比为1/2的相干光波,它们所产生的干涉条纹的可见度V=______________。
16.光强比为1/2的相干光波,它们所产生的干涉条纹的可见度V=______________。
17.在杨氏双缝干涉实验中,缝距为d,缝屏距为D,屏上任意一点P到屏中心P0点的距离为y,则从双缝所发光波到达P点的光程差为___________。
18.在杨氏双缝干涉实验中,缝距为d,缝屏距为D,波长为λ,屏上任意一点P到屏中心P0点的距离为y,则从双缝所发光波到达p点的相位差为_______________。
18光的衍射习题解答汇总(可编辑修改word版)
) ,第十八章 光的衍射一 选择题1.平行单色光垂直入射到单缝上,观察夫朗和费衍射。
若屏上 P 点处为第 2 级暗纹,则单缝处波面相应地可划分为几个半波带 ()A. 一个B. 两个C. 三个D. 四个解:暗纹条件: a sin = ±故本题答案为 D 。
(2k), k 2= 1,2,3..... ,k =2,所以 2k =4。
2.波长为的单色光垂直入射到狭缝上,若第 1 级暗纹的位置对应的衍射角为 =±π/6,则缝宽的大小为 ( ) A./2B.C. 2D. 3解: a sin = ± (2k ), k = 1,2,3.... k = 1,= ± ,所以 a sin(± = ±2 ⨯ ∴ a = 2。
2 故本题答案为 C 。
6 6 2 3.一宇航员在 160km 高空,恰好能分辨地面上两个发射波长为 550nm 的点光源,假定宇航员的瞳孔直径为 5.0mm ,如此两点光源的间距为 ()A. 21.5mB. 10.5mC. 31.0mD. 42.0m解: = 1.22 = ∆x,∴∆x = 1.22 h = 21.5m 。
1 D h D本题答案为 A 。
4.波长=550nm 的单色光垂直入射于光栅常数 d =2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为 ()A. 2B. 3C. 4D. 5解: d sin = k ,k = d sin= 3.64。
k 的可能最大值对应sin = 1 ,所以[k ]= 3 。
故本题答案为 B 。
5.一束单色光垂直入射在平面光栅上,衍射光谱中共出现了 5 条明纹。
若已知此光栅缝宽度与不透明宽度相等,那么在中央明纹一侧的第二条明纹是第几级?()A. 1 级B. 2 级C. 3 级D. 4 级解: d sin = ±k , a + b= 2, 因此±2,±4,±6... 等级缺级。
光的干涉 衍射试题(含答案)
光的干涉衍射试题(含答案)一、光的干涉衍射选择题1.增透膜的应用)关于光学镜头增透膜,以卞说法中正确的是()A. 增透膜是为了减少光的反射损失,增加透射光的强度B增透膜的厚度等于入射光在真空中波长町c.增透膜的厚度等于入射光在薄膜中波长的;4D. 因为增透膜的厚度一般适合绿光反射时相互抵消,红光、紫光的反射不能完全抵消,所以涂有增透膜的镜头呈淡紫色E. 涂有增透膜的镜头,进入的光线全部相互抵消,因此这种镜头的成像效果较好2.关于下列光学现象,正确的说法是()A. 水中蓝光的传播速度比红光快B. 光从空气射入玻璃时可能发生全反射C. 在卅边观察前方水中的一条鱼,鱼的实际深度比看到的要深D. 分别用蓝光和红光在同一装置上做双缝干涉实验,用红光时得到的条纹间距较窄。
3.在双缝干涉实验中,以白光为光源,在屏幕上观察到了彩色干涉条纹,若在双缝中的一缝前放一红色滤光片(只能透过红光),另一缝前放一绿色滤光片(只能透过绿光),已知红光与绿光的频率、波长均不相等,这时().A. 只有红色和绿色的双缝干涉条纹,其他颜色的双缝干涉条纹消失B. 红色和绿色的双缝干涉条纹消失,其他颜色的双缝干涉条纹仍然存在C. 任何颜色的双缝干涉条纹都不存在,但屏上仍有光亮D. 屏上无任何光亮4."牛顿坏"又称“牛顿圈”,如图甲所示。
牛顿坏的上表面是半径很大的玻璃球冠的平面,下表面是球冠的凸面,其工作原理为"薄膜干涉"。
可以用来判断透镜表面曲率半径和液体折射率等。
把牛顿坏与玻璃面接触,在口光下或用白光照射时,可以看到明暗相间的彩色圆环;若用单色光照射,则会出现一些明暗相间的单色圆环,如图乙所示。
它们是由球面和被检测面上反射的光相互干涉而形成的条纹,这些圆环的分布情况与球冠半径及被测物品的表面情况有关。
以下分析正确的是甲乙A. 圆坏的间距大小与球冠半径大小无关B. 球冠的半径越人,圆环的间距越小C. 若观察到的是规则圆环,则被检测的面是均匀、对称的D. 被检测的面必须是平的5. 下列说法中正确的是oA. 光从一种介质进入另一种介质时,其频率不变B. 对同一种光学材料,不同颜色的光在该材料中的传播速度相同C. 雨后路面上的油膜呈现彩色,是光的干涉现彖D. 光学镜头上的增透膜是利用光的衍射现象E. 光纤通信及医用纤维式内窥镜都是利用了光的全反射原理6. 把一个曲率半径很人的凸透镜的弯曲表面压在另一个玻璃平画上,让单色光从上方射入如图(甲),这时可以看到亮暗相间的同心圆如图(乙).这个现象是牛顿首先发现的,这些同心圆叫做牛顿坏,为了使同一级圆环的半径变大(例如从中心数起的第二道圆坏),则应()人射光MHIH(甲)(乙、A. 将凸透镜的曲率半径变人B. 将凸透镜的曲率半径变小C. 改用波长更长的单色光照射D. 改用波长更短的单色光照射7. 图甲是用光的干涉法来检查物体平面平整程度的装置,其中A为标准平板,B为被检查其平面的物体,C为入射光,图乙和图丙分别为两次观察到的干涉条纹,卞列说法正确的是一。
大学物理光的干涉测试题附答案及知识点总结
第12章习题精选试题中相关常数:1gm = 10-6m , 1nm =10-9m ,可见光范围(400nm~760nm)1、在真空中波长为人的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3n ,则此路径AB 的光程为:(A )1.5九.(B ) 1.5九/n . (C ) 1.5n 九.(D ) 3 .[] 2、在相同的时间内,一束波长为九的单色光在空气中与在玻璃中:(A )传播路程相等,走过光程相等.(B )传播路程相等,走过光程不相等. (C )传播路程不相等,走过光程相等.(D )传播路程不相等,走过光程不相等. 3、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方 的透明介质的折射率分别为n 1和n 3,已知n 1 < n 2 < n /若用波长为人的单 色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②(B ) 2ne +九/2. (D ) 2n e 一九 /(2n ). 22[]4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是:(A )使屏靠近双缝. (B )使两缝的间距变小. (C )把两个缝的宽度稍微调窄. (D )改用波长较小的单色光源. 5、在双缝干涉实验中,入射光的波长为九,用玻璃纸遮住双缝中的一个缝,若玻璃纸中 光程比相同厚度的空气的光程大2.5九,则屏上原来的明纹处:(A )仍为明条纹. (B )变为暗条纹.(C )既非明纹也非暗纹.(D )无法确定是明纹,还是暗纹.[]6、如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜 । [单色光 …垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹:J,空气(A )向右平移. (B )向中心收缩. j 一(C )向外扩张.(D )向左平移.[]7、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃板在中心恰好接触,它们之 间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为人,则反射光形成的干涉条纹中暗环半径q 的表达式为:的光程差是:(A ) 2ne .(C ) 2n 2e 十 九.(A) r = k k 九R . k ____________(C ) r =、k )R .k(B) r =、;'k 九R /n . k _ (D ) r k = kk 1 /(nR ). n 38、用波长为人的单色光垂直照射置于空气中的厚度为e折射率为1.5的透明薄膜,两束反射光的光程差3=.9、单色平行光垂直入射到双缝上.观察屏上P点到两缝的距离分别为〃和厂.设双缝和屏之间充满折射率为n的介质,则P点处光线的光程差为10、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1).(2).11、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距 ______ 若使单色光波长减小,则干涉条纹间距.12、在双缝干涉实验中,若两缝的间距为所用光波波长的N倍,观察屏到双缝的距离为D,则屏上相邻明纹的间距为.九13、用波长为人的单色光垂直照射如图所示的牛顿环装置,观察从空气膜上下表面反射的光形成的牛顿环.若使平凸透镜慢慢地垂直向上移动,从透镜顶点与平面玻璃接触至移动到两者距离为d的过程中,移过视场中某固定观察点的条纹数目等于 ____________ .14、图。
迈克尔逊干涉实验思考题
迈克尔逊干涉实验思考题1、什么是干涉?什么是光的干涉?光的干涉有哪些必要与先决条件?什么是想干光?2、光的干涉实验现象是什么?本实验光的干涉现象是什么?3、在物理光学中有两类光的干涉现象,一种是等厚干涉,一种是等倾干涉,什么是等倾干涉?“等倾”是什么概念?指的是谁和谁的夹角?4、等倾干涉是哪两束光在什么条件下出现的什么光学现象?此现象与等厚干涉的牛顿环有什么区别?5、激光经扩束镜后的光线是平行光吗?为什么?激光经扩束镜后的光线与等倾干涉现象有何关系?如果激光经扩束镜后的光线是平行光又会出现什么干涉现象?为什么?6、迈克尔逊干涉仪是一种分振幅双光束干涉仪,在实验中,激光光束是如何分解的?分解后的两束光经定反射镜和动反射镜回到观察屏出现等倾干涉的实验条件是什么?7、补偿板的作用是什么(请详细说明)?取消补偿板还能实现光的等倾干涉现象吗?为什么?8、在实验中,为了说明问题的方便把哪一个反射镜虚拟化?虚拟化的前提是什么?9、在实验中,正确的操作是我们看到:观测屏会出现明暗相间的等倾干涉同心圆环。
这说明形成干涉的两束光是平行光汇聚同一圆环,为什么?这两束光与各自的反射镜法线反射角是什么状态?如果不平行会出现什么实验现象?为什么?10、形成等倾干涉的两束光的光程差公式,讲义上直接给出了,请予以详细说明。
11、本实验的实验条件是什么?用什么实验方法能达到实验条件?具体如何操作?每一步骤的目标是什么?具体如何操作?12、在本实验中,观测屏出现什么实验现象才可记录实验数据?为什么?等倾干涉中心圆斑干涉现象与牛顿环干涉圆斑有何区别?13、什么是实验计数的条件?有些什么要求?在实验计数中,干涉圆环中心发生漂移是什么光学现象?为什么必须克服才能继续实验?如何操作?请具体说明。
14、当动反射镜与定反射镜的虚像之间发生多大位移,会使两束光的光程差增加或减少一个波长?为什么?请详细说明。
动反射镜与定反射镜的虚像之间的最大位移应小于40mm,为什么?15、在实验操作中,要求在记录数据的过程中(即观察干涉圆环的璇入和涌出),旋转微调齿轮时是不能反转的,否则实验失败,为什么?微调齿轮的读书空程差有多大?16、为什么等倾干涉形成同一圆心圆环?扩束镜的作用是什么?如果改用平行光作为做干涉光源会出现什么光学现象?以上都请详细说明。
大学物理,光的干涉思考题
光的干涉思考题:19.1、用白色线光源做双缝干涉实验时,若在缝S 1后面放一红色滤光片,S 2后面放一绿色滤光片,问能否观察到干涉条纹?为什么?参考解答:若在两个缝上分别放置红色和绿色滤光片,则叠加的两束光不满足频率相同的相干条件,所以不能看到干涉条纹。
19.2、用图19.17所示装置做双缝干涉实验,是否都能观察到干涉条纹?为什么? 参考解答:用图19.17(a )所示装置做双缝干涉实验肯定不能观察到干涉条纹,因为采用普通光源钠光源要取得相干光,必须是同一原子的同一次发光。
用面光源直接照到双缝上,在缝后必是两个不同原子发光在P 点相遇,是非相干叠加。
正确的装置是在钠光源后放置一个与双缝平行的单缝,然后再在适当位置放置双缝,这样即满足了取得相干光的原则,才可观察到干涉条纹。
用图19.17(b )所示装置做双缝干涉实验,有可能观察到干涉条纹。
从激光器中获得相干光取决于激光器的横模模式。
如果激光器的发光模式是基横模,则发出的光全是相干光;如果是其它模式,则必须是相干面积上的点源才是想光光源(即在同一面积上的全相干)。
19.3、在水波干涉图样(图19.5)中,平静水面形成的曲线是双曲线,为什么? 参考解答:因双点源干涉亮纹满足的光程差是: ,3,2,1,012=±=-k k r r λ暗纹满足的光程差是: ,3,2,1,02)12(12=+±=-k k r r λ相同的光程差 C r r =-12 在同一干涉级上。
由解析几何知识知,满足上述关系的点在空间的轨迹是一组双曲面,在水平面上的截线是一组双曲线。
4、把一对顶角很小的玻璃棱镜底边粘贴在一起(图19。
18)做成“双棱镜”,就可以利用一个普通缝光源S 来做双缝干涉实验(菲涅耳双棱镜实验)。
试在图中画出两相干光源的位置和它们发出的波的叠加干涉区域。
参考解答:(略)5、如果两束光是相干的,在两束光重叠处总光强如何计算?如果两束光是不相干的,又怎样计算?(分别以I 1和I 2表示两束光的光强)参考解答:如果两束光是相干的,则在两束光重叠处为相干叠加,总光强为ϕ∆++=cos 22121I I I I I )(2)(112212r n r n ---=∆λπϕϕϕ式中,12ϕϕ-——两相干光的初相差;1122r n r n -——两相干光的光程差;λ为真空波长。
光的干涉习题(附答案)
π
S1
S2
3λ 4
4. 用波长为 λ 的单色光垂直照射牛顿环装置,观察牛顿环,如图所示。若使凸 透镜慢慢向上垂直移动距离 d, 移过视场中某固定观察点的条纹数等于 2d/λ 。
5. 空气中两块玻璃形成的空气劈形膜, 一端厚度为零, 另一端厚度为 0.005 cm, 玻璃折射率为 1.5,空气折射率近似为 1。如图所示,现用波长为 600 nm 的 单色平行光, 沿入射角为 30°角的方向射到玻璃板的上表面, 则在劈形膜上形 成的干涉条纹数目为 144 。
6. 维纳光驻波实验装置示意如图。MM 为金属反射镜,NN 为涂有极薄感光层 的玻璃板。MM 与 NN 之间夹角 φ=3.0×10-4 rad,波长为 λ 的平面单色光通过 NN 板垂直入射到 MM 金属反射镜上,则反射光与入射光在相遇区域形成光 驻波, NN 板的感光层上形成对应于波腹波节的条纹。 实验测得两个相邻的驻 波波腹感光垫 A、B 的间距 1.0 mm,则入射光的波长为 6.0×10-4 mm 。
8. 如图所示,折射率为 n2,厚度为 e 的透明介质薄膜的上、下方透明介质的折 射率分别为 n1 和 n3,且 n1<n2<n3,若用波长为 λ 的单色平行光垂直入射到该 薄膜上,则从薄膜上下两表面反射的光束之间的光程差为 2长为 λ 的单色平行光垂直照射两个劈尖上,两劈尖角分别为 θ1 和 θ2,折射 率分别为 n1 和 n2, 若两者分别形成的干涉条纹的明条纹间距相等, 则 θ1, θ2, n1,n2 之间的关系为 n1θ1= n2θ2 。
2h c arcsin 0.1 5.7 o arcsin 2hf
11. 油船失事,把大量石油(n=1.2)泄漏在海面上,形成一个很大的油膜。试求: (1)如果你从飞机上竖直地向下看油膜厚度为 460nm 的区域,哪些波长的 可见光反射最强? (2 ) 如果你戴了水下呼吸器从水下竖直的向上看这油膜同 一区域,哪些波长的可见光透射最强?(水的折射率为 1.33) 答:因为在油膜上下表面反射光都有半波损失, (1)反射光干涉加强:2nd=k
光的干涉和干涉仪习题集
第三章 光的干涉和干涉仪3.1在杨氏干涉实验中,若两小孔距离为0.4mm,观察屏至小孔所在平面距离为100cm,在观察屏上测得干涉条纹的间距为1.5mm,试求所用光波的波长。
3.2波长为589.3的钠光照射在一双缝上,在距双缝100cm 的观察屏上测量20个条纹宽2.4cm,试计算双缝之间的距离。
3.3设双缝间距为1mm,双缝离观察屏为1m ,用钠光灯做光源,钠光灯发出波长为1λ=589nm 和2λ=589.6nm 两种单色光,问两种单色光各自的第10级条纹之间的距离是多少?3.4在杨氏实验中,两小孔距离为1mm ,观察屏离小孔的距离为50cm 。
当用一片折射率为1.58的透明薄片贴住其中一个小孔时,发现屏上的条纹移动了0.5cm ,试决定该薄片的厚度。
4题图3.5一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。
然后抽出气室中空气,注入其中气体,发现条纹系移动25个条纹。
已知照明光波波长λ=656.28nm ,空气折射率n=1.000276,试求注入气室内的气体的折射率。
3.6 菲涅耳双面镜实验中。
单色光波长500 nm ,光源和观察屏到双面镜交线的距离分别为0.5m 和1.5m ,双面镜的夹角为rad 310-,试求(1)观察屏上条纹的间距;(2)屏上最多可看到多少亮条纹?3.7菲涅耳双面镜实验中,光源和观察屏到双棱镜的距离分别为10 cm 和90 cm ,观察屏上条纹间距为2 mm .单色光波长589.3nm ,计算双棱镜的折射角(已知双棱镜的折射率为l.52)。
3.8比累对切透镜实验中,透镜焦距为20cm ,两半透镜横向间距为O.5 mm ,光源和观察屏到透镜的距离分别为40cm 和lm ,光源发出的单色光波长为500 nm ,求条纹间距。
3.9在图所示的洛埃透镜实验中,光源到观察屏的垂直距离为1.5m ,到洛埃镜面的垂直距离为2mm ,罗埃镜长40cm ,置于光源和屏之间的中央。
高中物理选择性必修一第四章光第三节光的干涉课后习题答案
高中物理选择性必修一第四章光第三节光的干涉课后习题答案1.光的干涉现象对认识光的本性有什么意义?解析:干涉现象是一切波所具有的特性,所以光的干涉现象说明了光是一种波.2.两列光干涉时光屏上的亮条纹和暗条纹到两个光源的距离与波长有什么关系?解析:光屏上的点到两个光源的距离差ΔX=(2n+1)λ2(n=0,1,2,3......)时,出现暗条纹;光屏上的点到两个光源的距离差ΔX=nλ(n=0,1,2,3......)时,出现亮条纹。
3.在杨氏双缝干涉实验中,光屏上某点p到双缝S1和S2 的路程差为7.5×10-7m,如果用频率6.0×1014Hz的黄光照射双缝,试通过计算分析P点出现的是亮条纹还是暗条纹。
解析:根据题中的信息可得:λ=vf =3×1086×1014=12×10-6m ,所以ΔX12λ=3,即路程差是半波长的整数倍,所以P点是暗条纹。
4.劈尖干涉是一种薄膜干涉,如图所示。
将一块平板玻璃放置在另一平板玻璃之上,在一端夹入两张纸片,从而在两玻璃表面之间形成一个劈形空气薄膜,当光从上方入射后,从上往下看到的干涉条纹有如下特点:(1)任意一条明条纹或暗条纹所在位置下面的薄膜厚度相等;(2)任意相邻明条纹或暗条纹所对应的薄膜厚度差恒定。
现若在如图所示装置中抽去一张纸片,则当光入射到劈形空气薄膜后,从上往下可以观察到干涉条纹发生了怎样的变化?解析:从空气膜的上下表面分别反射的两列光是相干光,其光程差为△x=2d即光程差为空气层厚度的2倍,当光程差△x=2d=nλ时λ,显然此处表现为亮条纹,故相邻亮条纹之间的空气层的厚度差12抽去一张纸片后空气层的倾角变小,故相邻亮条纹(或暗条纹)之间的距离变大,故干涉条纹变疏。
解析二:由薄膜干涉的原理和特点可知,干涉条纹是由膜的上、下表面反射的光叠加干涉而形成的,某一明条纹或暗条纹的位置就由上、下表面反射光的路程差决定,且相邻明条纹或暗条纹对应的该路程差是恒定的,而该路程差又决定于条纹下对应膜的厚度,即相邻明条纹或暗条纹下面对应的膜的厚度也是恒定的.当抽去一纸片后,劈形空气膜的劈尖角-上、下表面所夹的角变小,相同的厚度差对应的水平间距离变大,所以相邻的明条纹或暗条纹间距变大,即条纹变疏。
第一章 光的干涉 习题及答案
λdr y 0=∆第一章 光的干涉●1.波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离.解:由条纹间距公式λd r y y y j j 01=-=∆+ 得:cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ●2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为cm 50.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为mm 1.0,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.式: 解:(1)由公得λd r y 0=∆ =cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯(3) 由公式2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆= 得8536.042224cos 18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp●3. 把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m .解:未加玻璃片时,1S 、2S 到P 点的光程差,由公式2rϕπλ∆∆=可知为 Δr =215252r r λπλπ-=⨯⨯=现在1S 发出的光束途中插入玻璃片时,P 点的光程差为()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4. 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm122I I = 22122A A =12A A =()()122122/0.94270.941/A A V A A ∴===≈+5. 波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
第一章 光的干涉 习题
光的干涉一、填空题1.可见光在谱中只占很小的一部分,其波长范围约是nm。
2.光的相干条件为、和。
3.振幅分别为A1和A2的两相干光同时传播到P点,两振动的相位差为Δφ。
则P点的光强I=__________________。
4.强度分别为I1和I2的两相干光波迭加后的最大光强I max=_____________。
5.强度分别为I1和I2的两相干光波迭加后的最小光强I max=_____________。
6.振幅分别为A1和A2的两相干光波迭加后的最大光强I max=_____________。
7.振幅分别为A1和A2的两相干光波迭加后的最小光强I max=_____________。
8.两束相干光迭加时,光程差为λ时,相位差Δφ=__________。
9.两相干光波在考察点产生相消干涉的条件是光程差为半波长的_______倍,相位差为π的_________倍。
10.两相干光波在考察点产生相长干涉的条件是光程差为半波长的_______倍,相位差为π的_________倍。
11.两相干光的振幅分别为A1和A2,则干涉条纹的可见度V=____________。
12.两相干光的振幅分别为I1和I2,则干涉条纹的可见度V=____________。
13.两相干光的振幅分别为A1和A2,当它们的振幅都增大一倍时,干涉条纹的可见度为_____________。
14.两相干光的强度分别为I1和I2,当它们的强度都增大一倍时,干涉条纹的可见度_____________。
15.振幅比为1/2的相干光波,它们所产生的干涉条纹的可见度V=______________。
16.光强比为1/2的相干光波,它们所产生的干涉条纹的可见度V=______________。
17.在杨氏双缝干涉实验中,缝距为d,缝屏距为D,屏上任意一点P到屏中心P0点的距离为y,则从双缝所发光波到达P点的光程差为___________。
18.在杨氏双缝干涉实验中,缝距为d,缝屏距为D,波长为λ,屏上任意一点P到屏中心P0点的距离为y,则从双缝所发光波到达p点的相位差为_______________。
高三物理光的干涉试题答案及解析
高三物理光的干涉试题答案及解析1.氢原子从n=3的能级跃迁到n=2的能级辐射出a光,从n=4的能级跃迁到n=2的能级辐射出b光。
关于这两种光的下列说法正确的是A.a光的光子能量比b光的光子的能量大B.在同种介质中a光的传播速度比b光的传播速度小C.若a光不能使某金属发生光电效应,则b光一定不能使该金属发生光电效应D.在同一双缝干涉装置进行实验,所得到的相邻干涉条纹的间距,a光的比b的大一些【答案】D【解析】氢原子在不同能级之间发生跃迁,那么从高能级到低能级释放的光子能量等于能级差,因此有,,因此有a光的光子能量比b光的光子的能量小,选项A错。
同样可知,即a光的频率比b光的频率低,折射率,根据可知同种介质中a 光的传播速度比b光的传播速度大选项B错。
波长关系,那么双缝干涉条纹间距,波长越长则间距大即a光的间距大,选项D对。
若a光不能使某金属发生光电效应,但b光的能量比a光大,有可能大于金属逸出功而发生光电效应,选项C错。
【考点】氢原子能级结构光电效应双缝干涉2.如图所示,a和b都是厚度均匀的平玻璃板,它们之间的夹角为r,一细光束由红光和蓝光组成,以入射角从O点射入板,且射出b板后的两束单色光通过空气射在地面上M.N两点,由此可知( )A.若射到M.N,两点的光分别通过同一双缝发生干涉现象,则射到M点的光形成干涉条纹的间距小,这束光为蓝光,光子的能量大B.若射到M.N两点的光分别通过同一双缝发生干涉现象,则射到M点的光形成干涉条纹的间距大,这束光为红光,光子的能量小C.射到N点的光为蓝光,光子的能量小,较容易发生衍射现象D.射到N点的光为红光,光子的能量大,较难发生衍射现象【答案】A【解析】蓝光的频率大,相对玻璃的折射率大,故从b板射出后偏移程度大,结合题意,能判断射到M点的为蓝光,射到N点的为红光,发生双缝干涉,条纹间距与波长成正比,蓝光的波长小,频率大,故形成的干涉条纹间距小,光子的能量大,选项A项正确,B项错误.波长越长,越容易发生衍射,选项C.D两项错误.3.在《用双缝干涉测光的波长》实验中,将双缝干涉实验仪按要求安装在光具座上(如图所示),并选用缝间距d=0.20mm的双缝屏,从仪器注明的规格可知,像屏与双缝屏间的距离L=700mm,然后,接通电源使光源正常工作。
关于光的干涉的习题与答案
关于光的干涉的习题与答案
光的干涉习题与答案
光的干涉是光学中非常重要的一个现象,它揭示了光波的波动性质。
在干涉现象中,光波会相互叠加,形成明暗条纹,从而产生干涉图样。
下面我们来看一些关于光的干涉的习题与答案。
习题一:两束相干光波在空气中相遇,它们的波长分别为600nm和450nm,求它们的相位差。
解答:相位差可以用公式Δφ=2πΔx/λ来计算,其中Δx为两束光波的光程差,λ为光波的波长。
由于光程差Δx=0,所以相位差Δφ=0。
习题二:在双缝干涉实验中,两个狭缝间距为0.2mm,波长为500nm的光波垂直入射到狭缝上,求干涉条纹的间距。
解答:干涉条纹的间距可以用公式dλ/D来计算,其中d为狭缝间距,λ为光波的波长,D为观察屏到狭缝的距离。
代入数据可得,间距为0.1mm。
习题三:在双缝干涉实验中,两个狭缝间距为0.1mm,波长为600nm的光波垂直入射到狭缝上,观察屏到狭缝的距离为2m,求干涉条纹的间距。
解答:代入数据可得,间距为0.3mm。
通过以上习题与答案,我们可以看到光的干涉现象在实际问题中的应用。
对于学习光学的同学来说,掌握光的干涉原理和计算方法是非常重要的。
希望大家能够通过练习,加深对光的干涉现象的理解,提高解决实际问题的能力。
光的干涉习题与答案解析
组合产生的第 10 个暗环半径分别为 rBC 4.5mm 和 rAC 5mm ,试计算 RA 、 RB 和 RC 。
h r2
解:
2R
OA
hAB
hA
hB
rAB 2 2RA
rAB 2 2RB
rAB 2 2
1 ( RA
1 )
RB
同理, hBC
rBC 2
1 ( RB
1 RC
)
RA
hAC
rAC 2
P2
2mm
P1
P0
0.4m
1.5m
题图
y r0 1500 500106 0.1875mm
解:(1)干涉条纹间距
d
4
(2)产生干涉区域 P1P2 由图中几何关系得:设 p2 点为 y2 位置、 P1 点位置为 y1
则干涉区域
y y2 y1
y2
1 2
r0
r tan2
1 2
r0
r
1 2
1 2
r0
y r0 500 500106 1.25
解: d 0.2
mm
I1 2I2
A12 2 A22
A1 2 A2
V
1
2
A1 A1
/ /
A2 A2
2
22 1 2
0.9427
0.94
5. 波长为 700nm 的光源与菲涅耳双镜的相交棱之间距离为 20cm,棱到光屏间的距离 L 为 180cm,若所得干涉条纹中相邻亮条纹的间隔为 1mm,求双镜平面之间的夹角θ。
1 ( RA
1 RC
解:对于亮环,有
rj
(2 j 1) R 2
( j 0,1,2,3,)
光的干涉练习试题及答案解析
一、选择题1严格地讲,空气折射率大于1因此在牛顿环实验中,若将玻璃夹层中的空气逐渐抽去而成为真空时,干涉环将:()A. 变大;B. 缩小;C. 不变;【答案】:A2、在迈克耳逊干涉仪的一条光路中,放入一折射率光束的光程差改变量为:()A. 2(n 1)h ;B. 2nh ;C. nh ;【答案】:A3、用劈尖干涉检测工件(下板)的表面,当波长为入的单色光垂直入射时,观察到干涉条纹如图。
图中每一条纹弯曲部分的顶点恰与左边相邻的直线部分的连线相切。
由图可见工件表面:()A.—凹陷的槽,深为入/4 ;B.有一凹陷的槽,深为入/2 ;C.有一凸起的埂,深为入/4 ;D.有一凸起的埂,深为入。
【答案】:B4、牛顿环实验装置是用一平凸透镜放在一平板玻璃上,接触点为行单色光从上向下照射,并从下向上观察,看到许多明暗相间的同心圆环,这些圆环的特点是:()A.C是明的,圆环是等距离的;B.C 是明的,圆环是不等距离的;C.C是暗的,圆环是等距离的;D.C 是暗的,圆环是不等距离的。
【答案】:B5、若将牛顿环玻璃夹层中的空气换成水时,干涉环将:()A.变大;B.缩小; C .不变;D.消失。
【答案】:B6、若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中, 则干涉条D. 消失。
n,厚度为h的透明介质板,放入后,两D. (n 1)h。
C,中间夹层是空气,用平纹( )7、两个不同的光源发出的两个白光光束,在空间相遇是不会产生干涉图样的,这是由于()A.白光是由许多不同波长的光组成;B.两个光束的光强不一样;C.两个光源是独立的不相干光源;D.两个不同光源所发出的光,频率不会恰好相等。
【答案】:C8在双缝干涉实验中,若单色光源 S 到两缝S 、S 2距离相等,则观察屏上中央明条纹位于 0 处。
现将光源S 向下移动到S 位置,则()A.中央明条纹也向下移动,且条纹间距不变;B.中央明条纹向上移动,且条纹间距不变;C.中央明条纹向下移动,且条纹间距增大;D.中央明条纹向上移动,且条纹间距增大。
18光的干涉习题思考题
习题1818-1.杨氏双缝的间距为mm 2.0,距离屏幕为m 1,求:(1)若第一级明纹距离为2.5mm ,求入射光波长。
(2)若入射光的波长为6000A,求相邻两明纹的间距。
解:(1)由Lx k d λ=,有:xd k Lλ=,将0.2mm d =,1m L =,1 2.5mm x =,1k =代入,有:3372.5100.210 5.0101m λ---⨯⨯⨯==⨯;即波长为:500nm λ=; (2)若入射光的波长为 A 6000,相邻两明纹的间距:73161030.210D x mm d λ--⨯⨯∆===⨯。
18-2.图示为用双缝干涉来测定空气折射率n 的装置。
实验前,在长度为l 的两个相同密封玻璃管内都充以一大气压的空气。
现将上管中的空气逐渐抽去,(1)则光屏上的干涉条纹将向什么方向移动;(2)当上管中空气完全抽到真空,发现屏上波长为λ的干涉条纹移过N 条。
计算空气的折射率。
解:(1)当上面的空气被抽去,它的光程减小,所以它将 通过增加路程来弥补,条纹向下移动。
(2)当上管中空气完全抽到真空,发现屏上波长为λ的干涉条纹移过N 条,可列出:λN n l =-)(1 得:1+=lN n λ。
18-3.在图示的光路中,S 为光源,透镜1L 、2L 的焦距都为f ,求(1)图中光线SaF 与光线SOF 的光程差为多少?(2)若光线SbF 路径中有长为l ,折射率为n 的玻璃,那么该光线与SOF 的光程差为多少?。
解:(1)透镜不改变光程,所以SaF 与光线SOF 光程差为0。
(2)若光线SbF 路径中有长为l ,折射率为n 的玻璃,那么光程差为几何路程差与介质折射率差的乘积,即:(1)n l δ=-。
18-4.在玻璃板(折射率为50.1)上有一层油膜(折射率为30.1)。
已知对于波长为nm 500和nm 700的垂直入射光都发生反射相消,而这两波长之间没有别的波长光反射相消,求此油膜的厚度。
(完整版)光的干涉练习题及答案
(完整版)光的干涉练习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、选择题1、严格地讲,空气折射率大于1,因此在牛顿环实验中,若将玻璃夹层中的空气逐渐抽去而成为真空时,干涉环将:( )A.变大;B.缩小;C.不变;D.消失。
【答案】:A2、在迈克耳逊干涉仪的一条光路中,放入一折射率n ,厚度为h 的透明介质板,放入后,两光束的光程差改变量为:( )A.h n )1(2-;B.nh 2;C.nh ;D.h n )1(-。
【答案】:A3、用劈尖干涉检测工件(下板)的表面,当波长为λ的单色光垂直入射时,观察到干涉条纹如图。
图中每一条纹弯曲部分的顶点恰与左边相邻的直线部分的连线相切。
由图可见工件表面: ( )A.一凹陷的槽,深为λ/4;B.有一凹陷的槽,深为λ/2;C.有一凸起的埂,深为λ/4;D.有一凸起的埂,深为λ。
【答案】:B4、牛顿环实验装置是用一平凸透镜放在一平板玻璃上,接触点为C ,中间夹层是空气,用平行单色光从上向下照射,并从下向上观察,看到许多明暗相间的同心圆环,这些圆环的特点是:( )是明的,圆环是等距离的; 是明的,圆环是不等距离的;是暗的,圆环是等距离的; 是暗的,圆环是不等距离的。
【答案】:B5、若将牛顿环玻璃夹层中的空气换成水时,干涉环将: ( )A .变大;B .缩小;C .不变;D .消失。
【答案】:B6、若把牛顿环装置(都是用折射率为的玻璃制成的)由空气搬入折射率为的水中,则干涉条纹 ( )A .中心暗斑变成亮斑;B .变疏;C .变密;D .间距不变。
【答案】:C7、两个不同的光源发出的两个白光光束,在空间相遇是不会产生干涉图样的,这是由于( )A.白光是由许多不同波长的光组成;B.两个光束的光强不一样;C.两个光源是独立的不相干光源;D.两个不同光源所发出的光,频率不会恰好相等。
【答案】:C8、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于O处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18光的干涉习题思考题习题1818-1.杨氏双缝的间距为mm 2.0,距离屏幕为m 1,求:(1)若第一级明纹距离为2.5mm ,求入射光波长。
(2)若入射光的波长为6000A ,求相邻两明纹的间距。
解:(1)由Lx k dλ=,有:xd k L λ=,将0.2mm d =,1m L =,1 2.5mm x =,1k =代入,有:3372.5100.210 5.0101m λ---⨯⨯⨯==⨯;即波长为:500nm λ=;(2)若入射光的波长为A 6000,相邻两明纹的间距:73161030.210D x mm d λ--⨯⨯∆===⨯。
18-2.图示为用双缝干涉来测定空气折射率n 的装置。
实验前,在长度为l 的两个相同密封玻璃管内都充以一大气压的空气。
现将上管中的空气逐渐抽去,(1)则光屏上的干涉条纹将向什么方向移动;(2)当上管中空气完全抽到真空,发现屏上波长为λ的干涉条纹移过N 条。
计算空气的折射率。
解:(1)当上面的空气被抽去,它的光程减小,所以它将通过增加路程来弥补,条纹向下移动。
(2)当上管中空气完全抽到真空,发现屏上波长为λ的干涉条纹移过N 条,可列出:λN n l =-)(1得:1+=lN n λ。
18-3.在图示的光路中,S 为光源,透镜1L 、2L 的焦距都为f , 求(1)图中光线SaF 与光线SOF 的光程差为多少?(2)若光线SbF 路径中有长为l ,折射率为n 的玻璃,那么该光线与SOF 的光程差为多少?。
解:(1)透镜不改变光程,所以SaF 与光线SOF 光程差为0。
(2)若光线SbF 路径中有长为l ,折射率为n 的玻璃,那么光程差为几何路程差与介质折射率差的乘积,即:(1)n l δ=-。
18-4.在玻璃板(折射率为50.1)上有一层油膜(折射率为30.1)。
已知对于波长为nm 500和nm 700的垂直入射光都发生反射相消,而这两波长之间没有别的波长光反射相消,求此油膜的厚度。
解:因为油膜( 1.3n =油)在玻璃( 1.5n =玻)上,所以不考虑半波损失,由反射相消条件有:2(21)122n e k k λ=-=油,,,当12500700nm nmλλ==⎧⎪⎨⎪⎩时,11222(21)22(21)2n e k n e k λλ=⎧-=-⎪⎪⎨⎪⎪⎩油油⇒2121217215k k λλ-==-, 因为12λλ<,所以12k k >,又因为1λ与2λ之间不存在'λ以满足'2(21)2n e k λ=-油式,即不存在21'k k k <<的情形,所以1k 、2k 应为连续整数,可得:14k =,23k =; 油膜的厚度为:17121 6.73104k e m n λ--==⨯油。
18-5.一块厚μm 2.1的折射率为50.1的透明膜片。
设以波长介于nm 700~400的可见光.垂直入射,求反射光中哪些波长的光最强?解:本题需考虑半波损失。
由反射干涉相长,有:2(21)122ne k k λ=-=,,,∴6644 1.5 1.2107.210212121ne k k k λ--⨯⨯⨯⨯===---; 当5k =时,5800nm λ=(红外线,舍去);当6k =时,6654.5nm λ=; 当7k =时,7553.8nm λ=; 当8k =时,8480nm λ=; 当9k =时,9823.5nm λ=;当10k =时,10378.9nm λ=(紫外线,舍去);∴反射光中波长为654.5nm 、553.8nm 、480nm 、823.5nm 的光最强。
18-6.用589.3nm λ=的光垂直入射到楔形薄透明片上,形成等厚条纹,已知膜片的折射率为52.1,等厚条纹相邻纹间距为5.0mm ,求楔形面间的夹角。
解:等厚条纹相邻纹间距为:2l n λα=,∴953589.310 3.881022 1.52 5.010rad nl λα---⨯===⨯⨯⨯⨯, 即:53.88101800.002228''απ-⨯=⨯==18-7.人造水晶珏钻戒是用玻璃(折射率为50.1)做材料,表面镀上一氧化硅(折射率为0.2)以增强反射。
要增强nm 560=λ垂直入射光的反射,求镀膜厚度。
解:由于n n >硅玻,所以要考虑半波损失。
由反射干涉相长公式有:2(21)122n e k k λ=-=硅,,,。
当1k =时,为膜的最小厚度。
得:(21)(21)704e k k nm n λ=-=-⨯硅,12k =,,。
取1=k∴镀膜厚度为70nm .18-8.由两平玻璃板构成的一密封空气劈尖,在单色光照射下,形成4001条暗纹的等厚干涉,若将劈尖中的空气抽空,则留下4000条暗纹。
求空气的折射率。
解:本题需考虑半波损失。
由λλ40012==k nd ┄①,而λλ40002='=k d ┄②由①/②得:00025.140004001==n 。
18-9.用钠灯(nm 3.589=λ)观察牛顿环,看到第k 条暗环的半径为mm 4=r ,第5+k 条暗环半径mm 6=r ,求所用平凸透镜的曲率半径R 。
解:考虑半波损失,由牛顿环暗环公式:r kR λ=,012k =,,, 有:33410610(5)kR k R λλ⨯=⨯=+⎧⎪⎨⎪⎩⇒235k k =+⇒4k =,∴23219(410) 6.794589.310r R m k λ--⨯===⨯⨯。
18-10.柱面平凹透镜A ,曲率半径为R ,放在平玻璃片B 上,如图所示。
现用波长为λ的平行单色光自上方垂直往下照射,观察A 和B 间空气薄膜的反射光的干涉条纹。
设空气膜的最大厚度λ2=d 。
(1)求明、暗条纹的位置(用r 表示); (2)共能看到多少条明条纹;(3)若将玻璃片B 向下平移,条纹如何移动?解:设某条纹处透镜的厚度为e ,则对应空气膜厚度为d e -,那么:22r d e R-=,2222e kλλ+=,(123k =±±±,,,明纹), 2(21)22e k λλ+=+,(012k =±±,,,暗纹); (1)明纹位置为:212()4k r R d λ-=-,12k =±±,, ed e-暗纹位置为:r =,012k =±±,,;(2)对中心处,有:max 2e d λ==,0r =,代入明纹位置表示式,有:max 4.54k =≈,又因为是柱面平凹透镜,∴明纹数为8条;(3)玻璃片B 向下平移时,空气膜厚度增加,条纹由里向外侧移动。
18-11.利用迈克尔孙干涉仪可以测量光的波长。
在一次实验中,观察到干涉条纹,当推进可动反射镜时,可看到条纹在视场中移动。
当可动反射镜被推进0.187mm 时,在视场中某定点共通过了635条暗纹。
试由此求所用入射光的波长。
解:由2d N λ=,37220.18710 5.8910()589635d m nm N λ--⨯⨯===⨯=。
18-12.在用迈克尔逊干涉仪做实验时,反射镜移动了0.3220l mm ∆=距离。
在此过程中观察到有1024条条纹在视场中移过。
求实验所用光的波长。
解:由2l N λ∆=,有:37220.32210 6.28910()628.91024l m nm N λ--∆⨯⨯===⨯=。
思考题1818-1在劈尖的干涉实验中,相邻明纹的间距__________(填相等或不等),当劈尖的角度增加时,相邻明纹的间距离将______________(填增加或减小),当劈尖内介质的折射率增加时,相邻明纹的间距离将______________(填增加或减小)。
答:根据相邻条纹的间距:2l nλθ=,条纹间距相等;当劈尖的角度增加时,相邻明纹的间距离将减小; 当劈尖内介质的折射率增加时,相邻明纹的间距离将减小。
18-2.图示为一干涉膨胀仪示意图,上下两平行玻璃板用一对热膨胀系数极小的石英柱支撑着,被测样品W 在两玻璃板之间, 样品上表面与玻璃板下表面间形成一空气劈尖,在以波长为λ的单色光照射下,可以看到平行的等厚干涉条纹。
当W 受热膨胀时,条纹将: (A )条纹变密,向右靠拢; (B )条纹变疏,向上展开; (C )条纹疏密不变,向右平移; (D )条纹疏密不变,向左平移。
答:由于W 受热膨胀时,虽空气劈尖变小,但劈尖角不变, 根据相邻条纹的间距:2l n λθ=,知间距不变;干涉条纹反映了厚度,所以当厚度向左平移,则相应的条纹也向左平移。
选择(D )。
18-3.如图所示,在一块光学平玻璃片B 上,端正地放一锥顶角很大的圆锥形平凸透镜A ,在A 、B 间形成劈尖角ϕ很小的空气薄层。
当波长为λ的单色平行光垂直地射向平凸透镜时,可以观察到在透镜锥面上出现干涉条纹。
(1)画出于涉条坟的大致分布并说明其主要特征; (2)计算明暗条纹的位置;(3)若平凸透镜稍向左倾斜,干涉条纹有何变化?用图表示。
答:(1)图略,分析:这是一个牛顿环和劈尖的综合体,所以它的形状类似于牛顿环,也属于等厚干涉,干涉条纹是中心处 为暗纹,一系列间隔均匀的同心圆环;(2)计算明暗条纹的位置;明条纹:2ne 2k λλ+=±,暗条纹:2ne 2122k λλ+=±+(); (3)若平凸透镜稍向左倾斜,干涉条纹将不再是对称的圆环,而是左密右疏的类圆环。
图示略。
18-4.若待测透镜的表面已确定是球面,可用观察等厚条纹半径变化的方法来确定透镜球面半径比标准样规所要求的半径是大还是小。
如图,若轻轻地从上面往下按样规,则图__________中的条纹半径将缩小,而图_________中的条纹半径将增大。
答:设工件为L ,标准样规为G 。
若待测工件表面合格,则L 与G 之间无间隙,也就没有光圈出现。
如果L 的曲率R 太小(如图b ),则L 与G 的光圈很多,轻压后中心仍然为暗斑,但条纹半径要减小;如果L 的曲率R 太大(如图a ),则L 与G 的光圈除边缘接触,中间部分形成空气膜,轻压后中心斑点明暗交替变化,而且所有光圈向外扩展。
第一空选b ,第二空选a 。
18-5.图a 为检查块规的装置,0G 为标准块规,G 为上端面待测的块规,用波长为λ的平行光垂直照射,测得平晶与块规之间空气劈尖的干涉条纹如图所示,对于与0G 和G 的条纹间距分别为0l 和l ,且l l <0。
若将G 转过0180,两侧条纹均比原来密。
(1)判断并在图c 中画出G 规上端面的形貌示意图; (2)求G 规左、右侧与0G 的高度差。
答:(1)根据相邻条纹的间距:θλ2=l ,对于0G 和G 的条纹间距分别为0l 和l ,l l <0,可知0θθ>。