山东省2013年春季高考数学试题word版(含答案解析)
2013年普通高等学校招生全国统一考试数学(山东卷)理
2013年普通高等学校招生全国统一考试(山东卷)数学(理科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答.答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B),如果事件A,B独立,那么P(AB)=P(A)·P(B).第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013山东,理1)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数z为().A.2+iB.2-iC.5+iD.5-i答案:D解析:由题意得z-3=52-i=2+i,所以z=5+i.故z=5-i,应选D.2.(2013山东,理2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是().A.1B.3C.5D.9答案:C解析:当x,y取相同的数时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=2,y=0时,x-y=2;其他则重复.故集合B中有0,-1,-2,1,2,共5个元素,应选C.3.(2013山东,理3)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1x,则f(-1)=().A.-2B.0C.1D.2答案:A解析:因为f(x)是奇函数,故f(-1)=-f(1)=-(12+11)=-2,应选A.4.(2013山东,理4)已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为94,底面是边长为√3的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为().A.5π12B.π3C.π4D.π6答案:B解析:如图所示,由棱柱体积为94,底面正三角形的边长为√3,可求得棱柱的高为√3.设P在平面ABC上射影为O,则可求得AO长为1,故AP长为√12+(√3)2=2.故∠PAO=π3,即PA与平面ABC所成的角为π3.5.(2013山东,理5)将函数y=sin(2x+φ)的图象沿x轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为().A.3π4 B.π4C.0D.-π4答案:B解析:函数y=sin(2x+φ)的图象向左平移π8个单位后变为函数y=sin [2(x +π8)+φ]=sin (2x +π4+φ)的图象,又y=sin (2x +π4+φ)为偶函数,故π4+φ=π2+k π,k ∈Z ,∴φ=π4+k π,k ∈Z .若k=0,则φ=π4.故选B .6.(2013山东,理6)在平面直角坐标系xOy 中,M 为不等式组{2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( ).A.2B.1C.-13 D.-12答案:C解析:不等式组表示的区域如图阴影部分所示,结合斜率变化规律,当M 位于C 点时OM 斜率最小,且为-13,故选C .7.(2013山东,理7)给定两个命题p,q,若 p 是q 的必要而不充分条件,则p 是 q 的( ). A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件 答案:A解析:由题意:q ⇒ p, p q,根据命题四种形式之间的关系,互为逆否的两个命题同真同假,所以{q⇒ p , pq 等价于{p⇒ q ,qp ,所以p 是 q 的充分而不必要条件.故选A . 8.(2013山东,理8)函数y=x cos x+sin x 的图象大致为( ).答案:D解析:因f(-x)=-x ·cos (-x)+sin (-x)=-(x cos x+sin x)=-f(x),故该函数为奇函数,排除B ,又x ∈(0,π2),y>0,排除C ,而x=π时,y=-π,排除A ,故选D .9.(2013山东,理9)过点(3,1)作圆(x-1)2+y 2=1的两条切线,切点分别为A,B,则直线AB 的方程为( ). A.2x+y-3=0 B.2x-y-3=0 C.4x-y-3=0 D.4x+y-3=0答案:A解析:该切线方程为y=k(x-3)+1,即kx-y-3k+1=0,由圆心到直线距离为√k +(-1)=1,得k=0或43,切线方程分别与圆方程联立,求得切点坐标分别为(1,1),(95,-35),故所求直线的方程为2x+y-3=0.故选A . 10.(2013山东,理10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ). A.243 B.252 C.261 D.279答案:B解析:构成所有的三位数的个数为C 91C 101C 101=900,而无重复数字的三位数的个数为C 91C 91C 81=648,故所求个数为900-648=252,应选B .11.(2013山东,理11)抛物线C 1:y=12p x 2(p>0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M.若C 1在点M 处的切线平行于C 2的一条渐近线,则p=( ). A.√316 B.√38C.2√33D.4√33答案:D解析:设M (x 0,12p x 02),y'=(12p x 2)'=x p ,故在M 点处的切线的斜率为x 0p=√33,故M (√33p ,16p).由题意又可知抛物线的焦点为(0,p 2),双曲线右焦点为(2,0),且(√33p ,16p),(0,p2),(2,0)三点共线,可求得p=43√3,故选D .12.(2013山东,理12)设正实数x,y,z 满足x 2-3xy+4y 2-z=0,则当xy z取得最大值时,2x+1y−2z的最大值为( ). A.0 B.1C.94D.3答案:B解析:由x 2-3xy+4y 2-z=0得x 2-3xy+4y 2z =1≥2√x 2·4y 2-3xy z, 即xyz ≤1,当且仅当x 2=4y 2时成立,又x,y 为正实数,故x=2y.此时将x=2y 代入x 2-3xy+4y 2-z=0得z=2y 2,所以2x +1y −2z =-1y 2+2y =-(1y -1)2+1,当1y=1,即y=1时,2x+1y−2z取得最大值为1,故选B .第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.(2013山东,理13)执行右面的程序框图,若输入的ε的值为0.25,则输出的n 的值为 . 答案:3解析:第1次运行将F 0+F 1赋值给F 1,即将3赋值给F 1,然后将F 1-F 0赋值给F 0,即将3-1=2赋值给F 0,n 增加1变成2,此时1F 1=13比ε大,故循环,新F 1为2+3=5,新F 0为5-2=3,n 增加1变成3,此时1F 1=15≤ε,故退出循环,输出n=3.14.(2013山东,理14)在区间[-3,3]上随机取一个数x,使得|x+1|-|x-2|≥1成立的概率为 . 答案:13解析:设y=|x+1|-|x-2|={3,2x -1,-3,x ≥2,-1<x <2,x ≤-1,利用函数图象(图略)可知|x+1|-|x-2|≥1的解集为[1,+∞).而在[-3,3]上满足不等式的x 的取值范围为[1,3],故所求概率为3-13-(-3)=13.15.(2013山东,理15)已知向量AB ⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗⃗ 的夹角为120°,且|AB ⃗⃗⃗⃗⃗ |=3,|AC ⃗⃗⃗⃗⃗ |=2,若AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ,且AP ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,则实数λ的值为 .答案:712解析:∵AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,又BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,∴(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )·(AC ⃗⃗⃗⃗⃗ +λAB ⃗⃗⃗⃗⃗ )=0.∴AC ⃗⃗⃗⃗⃗ 2+λAB⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ -λAB ⃗⃗⃗⃗⃗ 2=0,即4+(λ-1)×3×2×(-12)-9λ=0,即7-12λ=0,∴λ=712.16.(2013山东,理16)定义“正对数”:ln +x ={0,0<x <1,lnx ,x ≥1,现有四个命题:①若a>0,b>0,则ln+(a b)=b ln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则ln+(ab)≥ln+a-ln+b;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln 2.其中的真命题有.(写出所有真命题的编号)答案:①③④三、解答题:本大题共6小题,共74分.17.(2013山东,理17)(本小题满分12分)设△ABC的内角A,B,C所对的边分别为a,b,c,且a+c=6,b=2,cos B=79.(1)求a,c的值;(2)求sin(A-B)的值.解:(1)由余弦定理b2=a2+c2-2ac cos B,得b2=(a+c)2-2ac(1+cos B),又b=2,a+c=6,cos B=79,所以ac=9,解得a=3,c=3.(2)在△ABC中,sin B=√1-cos2B=4√29.由正弦定理得sin A=asinBb =2√23.因为a=c,所以A为锐角.所以cos A=√1-sin2A=13.因此sin(A-B)=sin A cos B-cos A sin B=10√227.18.(2013山东,理18)(本小题满分12分)如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D-GH-E的余弦值.(1)证明:因为D,C,E,F分别是AQ,BQ,AP,BP的中点,所以EF∥AB,DC∥AB.所以EF∥DC.又EF⊄平面PCD,DC⊂平面PCD,所以EF∥平面PCD.又EF⊂平面EFQ,平面EFQ∩平面PCD=GH,所以EF∥GH.又EF∥AB,所以AB∥GH.(2)解法一:在△ABQ中,AQ=2BD,AD=DQ,所以∠ABQ=90°,即AB⊥BQ.因为PB⊥平面ABQ,所以AB⊥PB.又BP∩BQ=B,所以AB⊥平面PBQ.由(1)知AB ∥GH,所以GH ⊥平面PBQ. 又FH ⊂平面PBQ,所以GH ⊥FH. 同理可得GH ⊥HC,所以∠FHC 为二面角D-GH-E 的平面角. 设BA=BQ=BP=2,连接FC,在Rt △FBC 中,由勾股定理得FC=√2, 在Rt △PBC 中,由勾股定理得PC=√5. 又H 为△PBQ 的重心,所以HC=13PC=√53.同理FH=√53.在△FHC 中,由余弦定理得cos ∠FHC=59+59-22×59=-45.故二面角D-GH-E 的余弦值为-45.解法二:在△ABQ 中,AQ=2BD,AD=DQ, 所以∠ABQ=90°. 又PB ⊥平面ABQ, 所以BA,BQ,BP 两两垂直.以B 为坐标原点,分别以BA,BQ,BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系. 设BA=BQ=BP=2,则E(1,0,1),F(0,0,1),Q(0,2,0),D(1,1,0),C(0,1,0),P(0,0,2). 所以EQ ⃗⃗⃗⃗⃗ =(-1,2,-1),FQ ⃗⃗⃗⃗⃗ =(0,2,-1), DP⃗⃗⃗⃗⃗ =(-1,-1,2),CP ⃗⃗⃗⃗ =(0,-1,2). 设平面EFQ 的一个法向量为m =(x 1,y 1,z 1), 由m ·EQ ⃗⃗⃗⃗⃗ =0,m ·FQ ⃗⃗⃗⃗⃗ =0, 得{-x 1+2y 1-z 1=0,2y 1-z 1=0,取y 1=1,得m =(0,1,2).设平面PDC 的一个法向量为n =(x 2,y 2,z 2), 由n ·DP⃗⃗⃗⃗⃗ =0,n ·CP ⃗⃗⃗⃗ =0, 得{-x 2-y 2+2z 2=0,-y 2+2z 2=0,取z 2=1,得n =(0,2,1). 所以cos <m ,n >=m ·n|m ||n |=45. 因为二面角D-GH-E 为钝角,所以二面角D-GH-E 的余弦值为-45.19.(2013山东,理19)(本小题满分12分)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分、对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分,求乙队得分X 的分布列及数学期望.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故P(A 1)=(23)3=827,P(A 2)=C 32(23)2(1-23)×23=827,P(A 3)=C 42(23)2(1-23)2×12=427.所以,甲队以3∶0胜利、以3∶1胜利的概率都为827,以3∶2胜利的概率为427.(2)设“乙队以3∶2胜利”为事件A 4,由题意,各局比赛结果相互独立,所以P(A 4)=C 42(1-23)2(23)2×(1-12)=427. 由题意,随机变量X 的所有可能的取值为0,1,2,3,根据事件的互斥性得P(X=0)=P(A 1+A 2)=P(A 1)+P(A 2)=1627,又P(X=1)=P(A 3)=427,P(X=2)=P(A 4)=427,P(X=3)=1-P(X=0)-P(X=1)-P(X=2)=327.故X 的分布列为所以EX=0×1627+1×427+2×427+3×327=79.20.(2013山东,理20)(本小题满分12分)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1.(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且T n +a n +12n =λ(λ为常数).令c n =b 2n (n ∈N *).求数列{c n }的前n 项和R n . 解:(1)设等差数列{a n }的首项为a 1,公差为d,由S 4=4S 2,a 2n =2a n +1得{4a 1+6d =8a 1+4d ,a 1+(2n -1)d =2a 1+2(n -1)d +1.解得a 1=1,d=2.因此a n =2n-1,n ∈N *.(2)由题意知,T n =λ-n2n -1,所以n ≥2时,b n =T n -T n-1=-n2n -1+n -12n -2=n -22n -1.故c n =b 2n =2n -222n -1=(n-1)(14)n -1,n ∈N *.所以R n =0×(14)0+1×(14)1+2×(14)2+3×(14)3+…+(n-1)×(14)n -1,则14R n =0×(14)1+1×(14)2+2×(14)3+…+(n-2)×(14)n -1+(n-1)×(14)n ,两式相减得34R n =(14)1+(14)2+(14)3+…+(14)n -1-(n-1)×(14)n =14-(14)n1-14-(n-1)×(14)n =13−1+3n 3(14)n ,整理得R n =19(4-3n+14n -1),所以数列{c n }的前n 项和R n =19(4-3n+14n -1).21.(2013山东,理21)(本小题满分13分)设函数f(x)=x e 2x +c (e =2.718 28…是自然对数的底数,c ∈R ).(1)求f(x)的单调区间、最大值;(2)讨论关于x 的方程|ln x|=f(x)根的个数.解:(1)f'(x)=(1-2x)e -2x ,由f'(x)=0,解得x=12.当x<12时,f'(x)>0,f(x)单调递增;当x>12时,f'(x)<0,f(x)单调递减.所以,函数f(x)的单调递增区间是(-∞,12),单调递减区间是(12,+∞),最大值为f (12)=12e -1+c.(2)令g(x)=|ln x|-f(x)=|ln x|-x e -2x -c,x ∈(0,+∞).①当x ∈(1,+∞)时,ln x>0,则g(x)=ln x-x e -2x -c,所以g'(x)=e -2x (e 2x x +2x -1).因为2x-1>0,e 2x x >0,所以g'(x)>0.因此g(x)在(1,+∞)上单调递增.②当x ∈(0,1)时,ln x<0,则g(x)=-ln x-x e -2x -c.所以g'(x)=e -2x (-e 2x x +2x -1).因为e 2x ∈(1,e 2),e 2x >1>x>0,所以-e 2x x <-1.又2x-1<1,所以-e 2x x +2x-1<0,即g'(x )<0.因此g(x)在(0,1)上单调递减.综合①②可知,当x ∈(0,+∞)时,g(x)≥g(1)=-e -2-c.当g(1)=-e -2-c>0,即c<-e -2时,g(x)没有零点,故关于x 的方程|ln x|=f(x)根的个数为0;当g(1)=-e -2-c=0,即c=-e -2时,g(x)只有一个零点,故关于x 的方程|ln x|=f(x)根的个数为1;当g(1)=-e -2-c<0,即c>-e -2时,当x ∈(1,+∞)时,由(1)知g(x)=ln x-x e -2x -c ≥ln x-(12e -1+c)>ln x-1-c,要使g(x)>0,只需使ln x-1-c>0,即x ∈(e 1+c ,+∞);当x ∈(0,1)时,由(1)知g(x)=-ln x-x e -2x -c ≥-ln x-(12e -1+c)>-ln x-1-c,要使g(x)>0,只需-ln x-1-c>0,即x ∈(0,e -1-c );所以c>-e -2时,g(x)有两个零点,故关于x 的方程|ln x|=f(x)根的个数为2.综上所述,当c<-e -2时,关于x 的方程|ln x|=f(x)根的个数为0;当c=-e -2时,关于x 的方程|ln x|=f(x)根的个数为1;当c>-e -2时,关于x 的方程|ln x|=f(x)根的个数为2.22.(2013山东,理22)(本小题满分13分)椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别是F 1,F 2,离心率为√32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2.设∠F 1PF 2的角平分线PM 交C 的长轴于点M(m,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l,使得l 与椭圆C 有且只有一个公共点.设直线PF 1,PF 2的斜率分别为k 1,k 2.若k ≠0,试证明1kk 1+1kk 2为定值,并求出这个定值. (1)解:由于c 2=a 2-b 2,将x=-c 代入椭圆方程x 2a 2+y 2b 2=1, 得y=±b 2a , 由题意知2b 2a =1,即a=2b 2.又e=c a =√32,所以a=2,b=1.所以椭圆C 的方程为x 24+y 2=1. (2)解法一:设P(x 0,y 0)(y 0≠0).又F 1(-√3,0),F 2(√3,0),所以直线PF 1,PF 2的方程分别为l PF 1:y 0x-(x 0+√3)y+√3y 0=0,l PF 2:y 0x-(x 0-√3)y-√3y 0=0. 由题意知0√3y 0√y 0+(x 0+√3)=0√3y 0√y 0+(x 0-√3).由于点P 在椭圆上,所以x 024+y 02=1,所以√3|√(√32x 0+2)2=√3|√(√32x 0-2)2. 因为-√3<m<√3,-2<x 0<2,可得m+√3√32x 0+2=√3-m 2-√32x 0. 所以m=34x 0.因此-32<m<32.解法二:设P(x 0,y 0).当0≤x 0<2时,①当x 0=√3时,直线PF 2的斜率不存在,易知P (√3,12)或P (√3,-12).若P (√3,12),则直线PF 1的方程为x-4√3y+√3=0. 由题意得|m+√3|7=√3-m,因为-√3<m<√3,所以m=3√34. 若P (√3,-12),同理可得m=3√34. ②当x 0≠√3时, 设直线PF 1,PF 2的方程分别为y=k 1(x+√3),y=k 2(x-√3). 由题意知1√3k 1√1+k 1=2√3k 2√1+k 2,所以√3)2(m -√3)2=1+1k 121+1k 22.因为04+y 02=1, 并且k 1=0x +√3,k 2=0x -√3, 所以√3)2(m -√3)2=0√3)2024(x -√3)2+4-x 2 =3x 02+8√3x 0+163x 02-8√3x +16=√3x 0+4)2(√3x -4)2,即|m+√3m -√3|=|√3x 0+4√3x -4|.因为-√3<m<√3,0≤x 0<2且x 0≠√3, 所以√3+m√3-m =4+√3x 04-√3x . 整理得m=3x 04, 故0≤m<32且m ≠3√34. 综合①②可得0≤m<32. 当-2<x 0<0时,同理可得-32<m<0. 综上所述,m 的取值范围是(-32,32).(3)设P(x 0,y 0)(y 0≠0),则直线l 的方程为y-y 0=k(x-x 0). 联立{x 24+y 2=1,y -y 0=k (x -x 0), 整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x+4(y 02-2kx 0y 0+k 2x 02-1)=0.由题意Δ=0,即(4-x 02)k 2+2x 0y 0k+1-y 02=0.又04+y02=1,所以16y02k2+8x0y0k+x02=0,故k=-x04y0.由(2)知1k1+1k2=x0+√3y0+x0-√3y0=2x0y0,所以1kk1+1kk2=1k(1k1+1k2)=(-4y0x0)·2x0y0=-8,因此1kk1+1kk2为定值,这个定值为-8.。
2013年山东省高考数学试卷(文科)答案与解析讲解学习
2013年山东省高考数学试卷(文科)参考答案与试题解析一.选择题:本题共12个小题,每题5分,共60分.1.(5分)(2013•山东)复数z=(i为虚数单位),则|z|()=,.2.(5分)(2013•山东)已知集合A、B全集U={1、2、3、4},且∁U(A∪B)={4},B={1,3.(5分)(2013•山东)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)4.(5分)(2013•山东)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()4S=V=5.(5分)(2013•山东)函数f(x)=的定义域为()=6.(5分)(2013•山东)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()7.(5分)(2013•山东)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,Bb==得:===cosA=8.(5分)(2013•山东)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q....x=时,10.(5分)(2013•山东)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()B=91(.11.(5分)(2013•山东)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,B求出函数在,得),得,则抛物线的焦点与双曲线的右焦点的连线所在直线方程为处的切线的斜率为由题意可知,得).p=12.(5分)(2013•山东)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,代入=+,求得二.填空题:本大题共4小题,每小题4分,共16分13.(4分)(2013•山东)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为2.=,2=214.(4分)(2013•山东)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线|OM|的最小值为.=的最小值等于故答案为:15.(4分)(2013•山东)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为5.利用已知条件求出解:因为知,=,所以16.(4分)(2013•山东)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有①③④(写出所有真命题的序号),,.时,此时lnb=,此时则,此时,,<三.解答题:本大题共6小题,共74分,17.(12分)(2013•山东)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)2(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.p=p=18.(12分)(2013•山东)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值.[]﹣,故周期为,所以)时,,,[]上的最大值和最小值分别为:19.(12分)(2013•山东)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点.(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN.AB CD=20.(12分)(2013•山东)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n.,+++++时,=时,=)﹣(==,+++,T++T+++)﹣﹣﹣21.(12分)(2013•山东)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1).试比较lna与﹣2b的大小.时,.可得出﹣<)上是减函数,在(),单调递增区间是(,,)上,导数小于在区间(,),单调递增区间是(,,),单调递增区间是(,)知,是函数的唯一极小值点故=1==0x=<<(22.(14分)(2013•山东)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值.(Ⅰ)设椭圆的标准方程为,解出即可得到椭圆的方程.的关系,再利用(Ⅰ)由题意设椭圆的标准方程为,焦距为,解得,∴椭圆的方程为.,另一方面,==,∴,,∴,,解得,或,∴综上可得:。
2013年普通高等学校招生全国统一考试(山东卷)数学试题 (理科) word解析版
2013年山东高考数学理试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数z 满足(z-3)(2-i)=5(i 为虚数单位),则z 的共轭复数为( ) A. 2+i B.2-i C. 5+i D.5-i 【答案】D【解析】由(z-3)(2-i)=5,得55(2)5(2)3332352(2)(2)5i i z i i i i i ++=+=+=+=++=+--+,所以5z i =-,选D.(2)设集合A={0,1,2},则集合B={x-y |x ∈A, y ∈A }中元素的个数是( )A. 1B. 3C. 5D.9【答案】C【解析】因为,x y A ∈,所以2,1,0,1,2x y -=--,即{2,1,0,1,2}B =--,有5个元素,选C.(3)已知函数f(x)为奇函数,且当x>0时, f(x) =x 2+1x,则f(-1)= ( ) (A )-2 (B )0 (C )1 (D )2 【答案】A【解析】因为函数为奇函数,所以(1)(1)(11)2f f -=-=-+=-,选A.(4)已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为94,底面积是边长为 3的正三角形,若P为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为 ( )(A )512π (B )3π (C ) 4π (D ) 6π 【答案】B【解析】取正三角形ABC 的中心,连结OP ,则PAO ∠是PA 与平面ABC 所成的角。
因为底面边长为3,所以33322AD =⨯=,2231332AO AD ==⨯=.三棱柱的体积为21139(3)224AA ⨯⨯=,解得13AA =,即13OP AA ==,所以tan 3OPPAO OA ∠==,即3PAO π∠=,选B.(5)将函数y=sin (2x +ϕ)的图像沿x 轴向左平移8π个单位后,得到一个偶函数的图像,则ϕ的一个可能取值为(A )34π (B ) 4π (C )0 (D ) 4π- 【答案】B【解析】将函数y=sin (2x +ϕ)的图像沿x 轴向左平移8π个单位,得到函数sin[2()]sin(2)84y x xππϕϕ=++=++,因为此时函数为偶函数,所以,42k k Zππϕπ+=+∈,即,4k k Zπϕπ=+∈,所以选B.(6)在平面直角坐标系xOy中,M为不等式组:2x y20x2y103x y80--≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线OM斜率的最小值为(A)2 (B)1 (C)13-(D)12-【答案】 C【解析】作出可行域如图,由图象可知当M位于点D处时,OM的斜率最小。
2013山东高考数学试卷及答案详解(理科)WORD版
n
n
4
2
2n
n
(Ⅰ)求数列{a}的通项公式;
n
a1
n
(为常数)。令c2b,(nN*),求
(Ⅱ)设数列{b}的前n项和为T,且T
n
n
2n
n
n
2n
数列{c}的前n项和R。
n
n
21、(本小题满分13分)
x
c
…
(e2.71828是自然对数的底数,cR)
设函数f(x)
e2x
(Ⅰ)求f(x)的单调区间、最大值;
1
2
1
2
的长轴于点M(m,0),求m的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点。
1
1
0
kkkk
设直线PF,PF的斜率分别为k,k,若k
1
,试证明
为定值,并求出这个定
1
2
2
1
2
值.
理科数学试题参考答案
一、选择题
DCABB
CADABDB
二、填空题
1
7
3
1
1
a(2n1)d2a2(n1)d1.
1
1
1,d2.
解得a
1
2n1,nN*
因此a
.
n
n
(Ⅱ)由题意知:T
,
2n1
n
nn1n2
2
时,bTT
所以n
n
n
n1
2n1
2n2
2n1
2n2
1
b
2n
(n1)(),nN*
故c
,
2013年高考理数真题试卷(山东卷)及解析
2013年高考理数真题试卷(山东卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题1.复数z满足(z﹣3)(2﹣i)=5(i为虚数单位),则z的共轭复数z¯为()A.2+iB.2﹣iC.5+iD.5﹣i2.已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.93.已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为94,底面是边长为√3的正三角形,若P为底面A1B1C1的中心,则PA与平面A1B1C1所成角的大小为()A.5π12B.π3C.π4D.π64.函数y=sin(2x+φ)的图象沿x轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能的值为()A.3π4B.π4C.0D.- π45.在平面直角坐标系xOy中,M为不等式组{2x−y−2≥0x+2y−1≥03x+y−8≤0所表示的区域上一动点,则答案第2页,总12页………装…………○…………订…………○…………线请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………装…………○…………订…………○…………线A.2 B.1 C.- 13 D.- 126.函数y=xcosx+sinx 的图象大致为( )A.B.C.D.7.用0,1,2,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A.243 B.252 C.261 D.279第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)………○…………订…………○…………线…………○…_________班级:___________考号:___________………○…………订…………○…………线…………○…8.执行右面的程序框图,若输入的ɛ值为0.25,则输出的n 值为 .9.在区间[﹣3,3]上随机取一个数x 使得|x+1|﹣|x ﹣2|≥1的概率为 . 10.定义“正对数”:ln +x= {0,0<x <1lnx,x ≥1,现有四个命题: ①若a >0,b >0,则ln +(a b )=bln +a ;②若a >0,b >0,则ln +(ab )=ln +a+ln +b ; ③若a >0,b >0,则 ln +(ab )≥ln +a −ln +b ; ④若a >0,b >0,则ln +(a+b )≤ln +a+ln +b+ln2. 其中的真命题有 (写出所有真命题的序号)三、解答题(题型注释)11.设△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且a+c=6,b=2, cosB =79.(1)求a ,c 的值;(2)求sin (A ﹣B )的值.12.如图所示,在三棱锥P ﹣ABQ 中,PB⊥平面ABQ ,BA=BP=BQ ,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,AQ=2BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .答案第4页,总12页……○…………线…………○题※※……○…………线…………○(1)求证:AB∥GH;(2)求二面角D ﹣GH ﹣E 的余弦值.13.设等差数列{a n }的前n 项和为S n , 且S 4=4S 2 , a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n 且 T n +a n +12n=λ (λ为常数).令c n =b 2n (n∈N *)求数列{c n }的前n 项和R n .………外…………○…………装……………○…………线……学校:___________姓名:______________………内…………○…………装……………○…………线……参数答案1.D【解析】1.解:∵(z ﹣3)(2﹣i )=5, ∴z﹣3= 52−i =2+i ∴z=5+i, ∴ z ¯=5﹣i . 故选D .【考点精析】掌握复数的定义是解答本题的根本,需要知道形如的数叫做复数,和分别叫它的实部和虚部.2.C【解析】2.解:∵A={0,1,2},B={x ﹣y|x∈A,y∈A},∴当x=0,y 分别取0,1,2时,x ﹣y 的值分别为0,﹣1,﹣2; 当x=1,y 分别取0,1,2时,x ﹣y 的值分别为1,0,﹣1; 当x=2,y 分别取0,1,2时,x ﹣y 的值分别为2,1,0; ∴B={﹣2,﹣1,0,1,2},∴集合B={x ﹣y|x∈A,y∈A}中元素的个数是5个. 故选C . 3.B【解析】3.解:如图所示,∵AA 1⊥底面A 1B 1C 1 , ∴∠APA 1为PA 与平面A 1B 1C 1所成角, ∵平面ABC∥平面A 1B 1C 1 , ∴∠APA 1为PA 与平面ABC 所成角. ∵==3√34. ∴V 三棱柱ABC ﹣A1B1C1= =,解得 AA 1=√3 . 又P 为底面正三角形A 1B 1C 1的中心,∴==1,在Rt△AA 1P 中, ,∴ ∠APA 1=π3 .故选B .答案第6页,总12页○…………外…………○…………装…………○………订…………○…………线…………○※※请※※不※※要※※在※※装※※订※※线内※※答※※题※※○…………内…………○…………装…………○………订…………○…………线…………○【考点精析】通过灵活运用空间角的异面直线所成的角,掌握已知为两异面直线,A ,C与B ,D 分别是上的任意两点,所成的角为,则即可以解答此题.4.B【解析】4.解:令y=f (x )=sin (2x+φ),则f (x+ π8 )=sin[2(x+ π8 )+φ]=sin(2x+ π4 +φ), ∵f(x+ π8 )为偶函数, ∴ π4 +φ=kπ+ π2 , ∴φ=kπ+ π4 ,k∈Z, ∴当k=0时,φ= π4 . 故φ的一个可能的值为 π4 .故选B .【考点精析】根据题目的已知条件,利用函数y=Asin (ωx+φ)的图象变换的相关知识可以得到问题的答案,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.…………装………○…………订…………○…………线…………校:___________姓名:_______班级:___________考号:___________…………装………○…………订…………○…………线………… 5.C【解析】5.解:不等式组 {2x −y −2≥0x +2y −1≥03x +y −8≤0表示的区域如图,当M 取得点A (3,﹣1)时,z 直线OM 斜率取得最小,最小值为 k= −13 =﹣ 13 . 故选C .6.D【解析】6.解:因为函数y=xcosx+sinx 为奇函数,所以排除选项B , 由当x= π2 时,,当x=π时,y=π×cosπ+sinπ=﹣π<0. 由此可排除选项A 和选项C . 故正确的选项为D . 故选D . 7.B【解析】7.解:用0,1,2,…,9十个数字,所有三位数个数为:900,其中没有重复数字的三位数百位数从非0的9个数字中选取一位,十位数从余下的9个数字中选一个,个位数再从余下的8个中选一个,所以共有:9×9×8=648, 所以可以组成有重复数字的三位数的个数为:900﹣648=252. 故选B . 8.3【解析】8.解:循环前,F 0=1,F 1=2,n=1, 第一次循环,F 0=1,F 1=3,n=2, 第二次循环,F 0=2,F 1=4,n=3,答案第8页,总12页此时 1F 1=14=0.25 ,满足条件 1F 1≤0.25 ,退出循环,输出n=3,所以答案是:3.【考点精析】解答此题的关键在于理解程序框图的相关知识,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明. 9.13【解析】9.解:利用几何概型,其测度为线段的长度. 由不等式|x+1|﹣|x ﹣2|≥1 可得 ① {x <1(−x −1)−(2−x)≥1,或②{−1≤x <2(x +1)−(2−x)≥1 ,③ {x ≥2(x +1)−(x −2)≥1.解①可得x∈∅,解②可得1≤x<2,解③可得 x≥2. 故原不等式的解集为{x|x≥1},∴|在区间[﹣3,3]上随机取一个数x 使得|x+1|﹣|x ﹣2|≥1的概率为P= 3−13−(−3) = 13 . 所以答案是: 13【考点精析】通过灵活运用几何概型和绝对值不等式的解法,掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等;含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号即可以解答此题. 10.①③④【解析】10.解:(1)对于①,由定义,当a≥1时,a b ≥1,故ln +(a b )=ln (a b )=blna ,又bln +a=blna ,故有ln +(a b )=bln +a ;当a <1时,a b <1,故ln +(a b )=0,又a <1时bln +a=0,所以此时亦有ln +(a b )=bln +a ,故①正确;(2)对于②,此命题不成立,可令a=2,b= 13 ,则ab= 23 ,由定义ln +(ab )=0,ln +a+ln +b=ln2,所以ln +(ab )≠ln +a+ln +b ,故②错误; (3)对于③,i . ab ≥1时,此时 ln +(ab )≥ln(ab ) ≥0,当a≥b≥1时,ln +a ﹣ln +b=lna ﹣lnb= ln(ab ) ,此时则 ln +(ab )≥ln +a −ln +b ,命题成立;当a >1>b >0时,ln +a ﹣ln +b=lna ,此时 a b >a , ln(ab) >lna ,则 ln +(a b )≥ln +a −ln +b ,命题成立;当1>a≥b>0时,ln +a ﹣ln +b=0, ln +(a b )≥ln +a −ln +b 成立; ii . ab <1时,同理可验证是正确的,故③正确;(4)对于④,当a≥1,b≥1时,ln +(a+b )=ln (a+b ),ln +a+ln +b+ln2=lna+lnb+ln2=ln (2ab ), ∵a+b﹣2ab=a ﹣ab+b ﹣ab=a (1﹣b )+b (1﹣a )≤0, ∴a+b≤2ab,∴ln(a+b )<ln (2ab ), ∴ln +(a+b )≤ln +a+ln +b+ln2.当a >1,0<b <1时,ln +(a+b )=ln (a+b ),ln +a+ln +b+ln2=lna+ln2=ln (2a ), ∵a+b﹣2a=b ﹣a≤0, ∴a+b≤2a,∴ln(a+b )<ln (2a ),∴ln +(a+b )≤ln +a+ln +b+ln2.当b >1,0<a <1时,同理可证ln +(a+b )≤ln +a+ln +b+ln2.当0<a <1,0<b <1时,可分a+b≥1和a+b <1两种情况,均有ln +(a+b )≤ln +a+ln +b+ln2. 故④正确.所以答案是①③④.【考点精析】关于本题考查的命题的真假判断与应用,需要了解两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能得出正确答案. 11.(1)解:∵a+c=6①,b=2,cosB= 79,∴由余弦定理得:b 2=a 2+c 2﹣2accosB=(a+c )2﹣2ac ﹣ 149 ac=36﹣ 329 ac=4, 整理得:ac=9②,联立①②解得:a=c=3;(2)解:∵cosB= 79 ,B 为三角形的内角,∴sinB= √1−(79)2 = 4√29 ,∵b=2,a=3,sinB=4√29, ∴由正弦定理得:sinA= asinBb = 3×4√292 =2√23, ∵a=c,即A=C ,∴A 为锐角,∴cosA= √1−sin 2A = 13 ,则sin (A ﹣B )=sinAcosB ﹣cosAsinB= 2√23 × 79 ﹣ 13 × 4√29 = 10√227答案第10页,总12页………○…………订………○…………线…………○在※※装※※订※※线※※内※※答※※题………○…………订………○…………线…………○【解析】11.(1)利用余弦定理列出关系式,将b 与cosB 的值代入,利用完全平方公式变形,求出acb 的值,与a+c 的值联立即可求出a 与c 的值即可;(2)先由cosB 的值,利用同角三角函数间的基本关系求出sinB 的值,再由a ,b 及sinB 的值,利用正弦定理求出sinA 的值,进而求出cosA 的值,所求式子利用两角和与差的正弦函数公式化简后,将各自的值代入计算即可求出值.【考点精析】本题主要考查了两角和与差的正弦公式和正弦定理的定义的相关知识点,需要掌握两角和与差的正弦公式:;正弦定理:才能正确解答此题.12.(1)证明:如图,∵C,D 为AQ ,BQ 的中点,∴CD∥AB, 又E ,F 分别AP ,BP 的中点,∴EF∥AB,则EF∥CD.又EF ⊂平面EFQ ,∴CD∥平面EFQ .又CD ⊂平面PCD ,且平面PCD∩平面EFQ=GH ,∴CD∥GH. 又AB∥CD,∴AB∥GH(2)解:由AQ=2BD ,D 为AQ 的中点可得,三角形ABQ 为直角三角形,以B 为坐标原点,分别以BA 、BQ 、BP 所在直线为x 、y 、z 轴建立空间直角坐标系, 设AB=BP=BQ=2,则D (1,1,0),C (0,1,0),E (1,0,1),F (0,0,1), 因为H 为三角形PBQ 的重心,所以H (0, 23 , 23 ). 则 DC →=(−1,0,0) , CH →=(0,−13,23)EF →=(−1,0,0) , FH →=(0,23,−13) .设平面GCD 的一个法向量为 m →=(x 1,y 1,z 1)第11页,总12页由 {m →⋅DC →=0m →⋅CH →=0,得 {−x 1=0−13y 1+23z 1=0 ,取z 1=1,得y 1=2.所以 m →=(0,2,1) .设平面EFG 的一个法向量为 n →=(x 2,y 2,z 2)由 {n →⋅EF →=0n →⋅FH →=0,得 {−x 2=023y 2+13z 2=0 ,取z 2=2,得y 2=1.所以 n →=(0,1,2) . 所以 cos <m →,n →>=m →⋅n→|m →|⋅|n →|=55= 45 .则二面角D ﹣GH ﹣E 的余弦值等于- 45【解析】12.(1)由给出的D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,利用三角形中位线知识及平行公理得到DC 平行于EF ,再利用线面平行的判定和性质得到DC 平行于GH ,从而得到AB∥GH;(2)由题意可知BA 、BQ 、BP 两两相互垂直,以B 为坐标原点建立空间直角坐标系,设出BA 、BQ 、BP 的长度,标出点的坐标,求出一些向量的坐标,利用二面角的两个面的法向量所成的角的余弦值求解二面角D ﹣GH ﹣E 的余弦值.【考点精析】解答此题的关键在于理解直线与平面平行的性质的相关知识,掌握一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行;简记为:线面平行则线线平行. 13.(1)解:设等差数列{a n }的首项为a 1,公差为d ,由a 2n =2a n +1,取n=1,得a 2=2a 1+1,即a 1﹣d+1=0①再由S 4=4S 2,得 4a 1+4×3d 2=4(a 1+a 1+d) ,即d=2a 1②联立①、②得a 1=1,d=2.所以a n =a 1+(n ﹣1)d=1+2(n ﹣1)=2n ﹣1(2)解:把a n =2n ﹣1代入 T n +a n +12n=λ ,得 T n +2n 2n =λ ,则 T n =λ−2n2n .所以b 1=T 1=λ﹣1,当n≥2时, b n =T n −T n−1=(λ−2n2n )−(λ−2(n−1)2n−1) =n−22n−1.所以 b n =n−22n−1 , c n=b 2n =2n−222n−1=n−14n−1.R n =c 1+c 2+…+c n = 0+141+242+⋯+n−14n−1③14R n=142+243+⋯+n−14n④答案第12页,总12页………订…………○……※※线※※内※※答※※题※※………订…………○……③﹣④得: 34R n =14+142+⋯+14n −n−14n = 14(1−14n−1)1−14−n−14n所以 R n =49(1−3n+14n) ; 所以数列{c n }的前n 项和 R n =49(1−3n+14n)【解析】13.(1)设出等差数列的首项和公差,由已知条件列关于首项和公差的方程组,解出首项和公差后可得数列{a n }的通项公式;(2)把{a n }的通项公式代入 T n +a n +12n=λ ,求出当n≥2时的通项公式,然后由c n =b 2n 得数列{c n }的通项公式,最后利用错位相减法求其前n 项和.【考点精析】本题主要考查了等差数列的通项公式(及其变式)和数列的前n 项和的相关知识点,需要掌握通项公式:或;数列{a n }的前n 项和s n 与通项a n 的关系才能正确解答此题.。
2013年山东高考理科数学(解析版+Word版)
2013年山东理科数学(解析版)本777试卷分第Ⅰ卷和第Ⅱ卷两部分。
共4页,满分150分。
考试用时150分钟.考试结束后,将本卷和答题卡一并交回。
注意事项:1. 答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B);如果事件A ,B 独立, 那么P (AB )=P(A)*P(B) 第Ⅰ卷 (共60分) 一、选择题(1)复数z 满足(3)(2)5(z i i --=为虚数单位),则z 的共轭复数z 为 (A) 2i + (B) 2i - (C) 5i + (D)5i - 答案:D.解析:由(3)(2)5z i --=得,532z i=+-,化简得5z i =+,5z i =-. (2)已知集合{}0,1,2A =,则集合{}|,B x y x A y A =-∈∈中元素的个数是 (A) 1 (B) 3 (C) 5 (D)9 答案:C.解析:000,011,022,101,110,121,202,211,220-=-=--=--=-=-=--=-=-=,所以{}2,1,0,1,2B =--. (3) 已知函数()f x 为奇函数,且当0x >时, 21()f x x x=+,则(1)f -= (A) 2- (B)0 (C)1 (D)2 答案:A.解析:已知函数()f x 为奇函数,所以,(1)(1)(11)2f f -=-=-+=-.(4) 已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为 (A)512π (B) 3π (C) 4π (D) 6π答案:B.解析:设侧棱长为h ,则9,44h ==32,1,tan 3PA A PA A PA π'''=∠=∠=.(5) 将函数sin(2)y x ϕ=+的图像沿x 轴向左平移8π个单位后,得到一个偶函数的图像,则ϕ的一个可能取值为 (A )34π (B )4π (C )0 (D )4π-答案:B.解析:将函数sin(2)y x ϕ=+的图像沿x 轴向左平移8π个单位得sin(2)4y x πϕ=++,得到一个偶函数的图像,42k k Z ππϕπ+=+∈,ϕ=4π.(6) 在平面直角坐标系xoy中,M为不等式组220,210,380.x yx yx y--≥⎧⎪+-≥⎨⎪+-≤⎩所表示的区域上一动点,则直线OM斜率的最小值为(A)2(B) 1(C)13-(D)12-(A)2 (B)1 (C )(D )答案:C.解析:画出可行域,由斜率的定义可得直线OM 斜率的最小值为.(7)给定两个命题,p q 若p ⌝是q 的必要而不充分条件,则p 是q ⌝的(A )充分而不必条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 答案:A解析:因为p ⌝是q 的必要而不充分条件,不妨令1p x ⌝>:,:2q x >,则1p x ≤:,:2q x ⌝≤,则p 是q ⌝的充分而不必条件。
2013山东高考数学理科+文科试题(有详细答案)
绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。
共4页,满分150分。
考试用时150分钟.考试结束后,将本卷和答题卡一并交回。
注意事项:1. 答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B);如果事件A ,B 独立,那么P (AB )=P(A)*P(B) 第Ⅰ卷 (共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、复数z 满足i i z (5)2)(3(=--为虚数单位),则z 的共轭复数-z 为( ) (A )2+i (B )2-i (C )5+i (D )5-i2、已知集合}2,1,0{=A ,则集合},|{A y A x y x B ∈∈-=中元素的个数是( ) (A )1 (B )3 (C )5 (D )93、已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则)1(-f =( ) (A )-2 (B )0 (C )1 (D )2 4、已知三棱柱111C B A ABC -的侧棱与底面垂直,体积为49,底面是边长为3的正三角形,若P 为底面111C B A 的中心,则PA 与平面ABC 所成角的大小为( ) (A )125π (B )3π (C )4π (D )6π 5、若函数)2sin()(ϕ+=x x f 的图像沿x 轴向左平移8π个单位,得到一个偶函数的图像,则ϕ的一个可能取值为( ) (A )43π (B )4π (C )0 (D )4π-6、在平面直角坐标系x O y 中,M 为不等式组220210380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线O M 斜率的最小值为()2A ()1B ()13C -()12D -7、给定两个命题,、q p 若p ⌝是q 的必要而不充分条件,则p 是q ⌝的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件 8、函数x x x y sin cos +=的图象大致为xyπOxyπOxyπOxyπO(A) (B) (C) (D)9、过点(3,1)作圆1)1(22=+-y x 作圆的两条切线切点为A ,B ,则直线AB 的方程 (A )032=-+y x (B )032=--y x (C )034=--y x (D )034=-+y x10、用0,1, ,9十个数字可以组成有重复数字的三位数的个数为 (A )243 (B )252 (C )261 (D )27911、抛物线)0(21:21>=p x p y C 的焦点与双曲线13:222=-y x C 的右焦点的连线交1C 于第一象限的点M ,若1C 在点M 处的切线平行于2C 的一条渐近线,则=p63 (B )83 (C )332 (D )33412、设正实数z y x ,,满足04322=-+-z y xy x ,则当z xy 取最大值时,z y x 212-+的最大值为(A )0 (B )1 (C )49(D )3二、填空题:本大题共4小题,每小题4分,共16分13、执行右面的程序框图,若输入的ε值为0.25,则输出的n 的值为______________14、在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为______________.15、已知向量−→−AB 与−→−AC 的夹角1200,且|−→−AB |=3,|−→−AC |=2,若−→−−→−−→−+=AC AB AP λ,且−→−−→−⊥BC AP ,则实数λ的值为____________.16、 定义“正对数”: 0,01ln ,ln ,1x x x x +<<⎧=⎨≥⎩现有四个命题:①若0,0,a b >>()l n l n ;b a b a ++=②若0,0,a b >>()l n l n l n ;a b a b +++=+ ③若0,0,a b >>l n l n l n ;a a b b +++⎛⎫≥- ⎪⎝⎭④若0,0,a b >>()l n l n l n +l n 2;a b a b ++++≤+ 其中真命题有____________.(写出所有真命题的编号)三、解答题:本大题共6小题,共74分。
2013年山东春季高考试题汇总(语文、数学、外语-含详细答案)
山东省2013年普通高校招生(春季)考试语文试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间150分钟。
考试结束后,将本试卷和答题卡一并交回。
卷一(选择题共60分)本卷共24个小题,在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,填涂在答题卡上。
一、(24分,每小题2分)1.下列加点字的读音,完全正确的是()A.同胞.(bāo)混淆.(xiáo )长堤.(dī)玷.污(diàn )B.承载.(zài)横.财(héng)模.样(mó)纤.细(xiān)C.埋.怨(mái)兴.奋(xīng)曲.折(qū)笨拙.(zhuó)D.给.予(gěi)颈.项(jìng)即.使(jí)筵.席(yán)2.下列句子中,没有错别字的是()A.金庸的武侠小说风糜华语世界,征服了亿万读者。
B.这首诗歌脍灸人口,被多种版本的中学语文教材选用。
C.春天的西湖如一幅淡淡的水墨画,吸引着中外游客纷至踏来。
D.近来,由于媒体的报道,人们对“数字地球”这一概念产生了浓厚的兴趣。
3.依次填入下列各句横线处的词语,正确的是()①星期天上午,我去找李明打篮球,____他走亲戚去了。
②冬去春来,山上的冰雪____了,汇成一条条小溪,从山上留下来。
③这位音乐家最高兴的____获得了大奖,____在音乐中领悟到了人生的真谛。
A.恰好溶化不仅而且 B.恰好融化不是而是C.恰巧融化不是而是 D.恰巧溶化不仅而且4.下列句子中标点符号的使用,正确的是()A.多美啊!这万物复苏、生机盎然的春天。
B.“请弹一首欢快的曲子吧,”她说,“帮大家驱走忧伤。
”C.儿童的游戏,究竟是为了学习?为了娱乐?还是为了锻炼?D.燕子去了,有再来的时候,杨柳枯了,有再青的时候,桃花谢了,有再开的时候。
5.下列句子中加点成语的使用,正确的是()A.这对失散多年的姐妹终于破镜重圆....了。
2013年山东省高考数学试卷(文科)答案与解析
2013年山东省高考数学试卷(文科)参考答案与试题解析一.选择题:本题共12个小题,每题5分,共60分.1.(5分)(2013•山东)复数z=(i为虚数单位),则|z|()=,.2.(5分)(2013•山东)已知集合A、B全集U={1、2、3、4},且∁U(A∪B)={4},B={1,3.(5分)(2013•山东)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)4.(5分)(2013•山东)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()4S=V=5.(5分)(2013•山东)函数f(x)=的定义域为()=6.(5分)(2013•山东)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()7.(5分)(2013•山东)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,Bb==得:===cosA=8.(5分)(2013•山东)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q....x=时,10.(5分)(2013•山东)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()B=91(.11.(5分)(2013•山东)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,B求出函数在,得),得,则抛物线的焦点与双曲线的右焦点的连线所在直线方程为处的切线的斜率为由题意可知,得).p=12.(5分)(2013•山东)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,代入=+,求得二.填空题:本大题共4小题,每小题4分,共16分13.(4分)(2013•山东)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为2.=,2=214.(4分)(2013•山东)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线|OM|的最小值为.=的最小值等于故答案为:15.(4分)(2013•山东)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为5.利用已知条件求出解:因为知,=,所以16.(4分)(2013•山东)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有①③④(写出所有真命题的序号),,.时,此时lnb=,此时则,此时,,<三.解答题:本大题共6小题,共74分,17.(12分)(2013•山东)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)2(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.p=p=18.(12分)(2013•山东)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值.[]﹣,故周期为,所以)时,,,[]上的最大值和最小值分别为:19.(12分)(2013•山东)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点.(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN.AB CD=20.(12分)(2013•山东)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n.,+++,++时,=时,=)﹣(==,+++,T++T+++)﹣﹣﹣21.(12分)(2013•山东)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1).试比较lna与﹣2b的大小.时,.可得出﹣<)上是减函数,在(),单调递增区间是(,,)上,导数小于在区间(,),单调递增区间是(,,),单调递增区间是(,)知,是函数的唯一极小值点故=1==0x=<<(22.(14分)(2013•山东)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值.(Ⅰ)设椭圆的标准方程为的关系,再利用(Ⅰ)由题意设椭圆的标准方程为,焦距为,解得,∴椭圆的方程为.,另一方面,==,∴,,∴,,解得,或,∴综上可得:。
2013年全国普通高等学校招生统一考试文科数学(山东卷带解析)答案解析docx
2013年全国普通高等学校招生统一考试文科(山东卷)数学试题1、【答案】C【解析】【考点定位】本题考查复数的基本概念和运算,通过分母实数化思想来考查运算能力,要注意在运算中多次出现,符号确定容易出错.2、【答案】A【解析】,因为,所以中必有元素,【考点定位】本题考查集合的交集、并集和补集运算,考查推理判断能力.对于,这两个条件,可以判断集合中的元素有三种情形,而指出中必有元素,简化了运算,使结果判断更容易.3、【答案】D【解析】【考点定位】本题考查函数的奇偶性的应用,考查运算求解能力和转化思想. 根据直接运算而若求在上的解析式再求便“多余”了.【答案】B【解析】由正视图可知该四棱锥为正四棱锥,底面边长为,高为,侧面上的斜高为,所以【考点定位】本题考查三视图的应用,考查空间想象能力和运算能力. 因求体积的影响,可能会把求侧面积误认为全面积而选C. 此外棱锥体积运算时不要漏乘5、【答案】A【解析】由题意得,所以【考点定位】本题考查函数的定义域的求法,考查数形结合思想和运算能力. 根据函数解析式确定函数的定义域,往往涉及到被开放数非负、分母不能为零,真数为正等多种特殊情形,然后通过交集运算确定.6、【答案】C【解析】两次运行结果如下:第一次第二次【考点定位】本题考查程序框图的运行途径,考查读图能力和运算能力. 本题不同于以往所见试题,两次运行程序输出结果.针对类似问题可根据框图中的关键“部位”进行数据罗列,从而确定正确的输出结果.【答案】B【解析】,所以,整理得求得或若,则三角形为等腰三角形,不满足内角和定理,排除. 【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出后,要及时判断出,便于三角形的初步定型,也为排除提供了依据.如果选择支中同时给出了或,会增大出错率.8、【答案】A【解析】由且可得且,所以是的充分不必要条件.【考点定位】本题考查充分必要条件的判断,通过等价命题的转化化难为易,也渗透了转化思想的考查. 本题依据原命题的逆否命题进行判断较为简单,也可以依据题目条件构造一个满足“是的必要而不充分条件”的简单例子,进行转化比较,从而确定答案.9、【答案】D【解析】函数在时为负,排除A,由奇函数的性质可排除B,再比较C,D,不难发现在取接近于的正值时排除C.【考点定位】本题考查函数的奇偶性、函数的单调性、函数的值域等函数的重要性质,考查了函数图象的识别能力.本题可根据函数的性质对比图象进行逐一验证,若通过求导方法来研究该函数的图象和性质后再做准确判断,增加了运算负担.10、【答案】B【解析】由图可知去掉的两个数是,所以,【考点定位】本题考查茎叶图的识别、方差运算能统计知识,考查数据处理能力和运算能力. 确定被去掉的数据是解题的关键,本题给出的数据中最大,即便是处理方差运算时要对方差概念牢固掌握,避免与标准差混淆误选D.11、【答案】D【解析】画图可知被在点M处的切线平行的渐近线方程应为,设,则利用求导得又点共线,即点共线,所以,解得所以【考点定位】本题考查了抛物线和双曲线的概念、性质和导数的意义,进一步考查了运算求解能力.这一方程形式为导数法研究提供了方便,本题“切线”这一信号更加决定了“求导”是“必经之路”.根据三点共线的斜率性质构造方程,从而确定抛物线方程形式,此外还要体会这种设点的意义所在.12、【答案】C【解析】当且仅当时成立,因此所以【考点定位】本题考查基本不等式的应用,考查运算求解能力、推理论证能力和转化思想、函数和方程思想. 基本不等式的使用价值在于简化最值确定过程,而能否使用基本不等式的关键是中的是否为定值,本题通过得以实现.13、【答案】【解析】最短弦为过点与圆心连线的垂线与圆相交而成,,所以最短弦长为【考点定位】本题考查直线和圆的位置关系,考查数形结合思想和运算能力. 圆的半径、弦心距、半弦构成的直角三角形在解决直线和圆问题常常用到,本题只需要简单判断最短弦的位置就能轻松解答,有时候可能会出现点到直线的距离公式来求弦心距的长度.14、【答案】【解析】确定可行域为点形成的三角形,因此的最小值为点到直线的距离,所以【考点定位】本题考查线性规划下的最值求法,考查数形结合思想、图形处理能力和运算能力. 线性规划问题的重点是确定可行域,要根据已知条件逐一画出直线并代点验证从而确定区域位于直线的某一侧,类比集合的交集运算确定公共部分,再按照研究方向求得结果.15、【答案】【解析】,所以【考点定位】本题考查平面向量的加减坐标运算和数量积坐标运算,考查转化思想和运算能力. 本题通过进行运算极易想到,但求时往往出现坐标的“倒减”,虽然不影响运算的结果,被填空题型所掩盖,但在解答题中就会被发现.16、【答案】①③④【解析】对于①可分几种情形加以讨论,显然时,依运算,成立,时亦成立.若,则成立.综合①正确.对于②可取特殊值验证排除.对于③分别研究在内的不同取值,可以判断正确;对于④根据在内的不同取值,进行判断,显然中至少有一个小于结论成立,当均大于时,,所以满足运算,结论成立.【考点定位】本题通过新定义考查分析问题解决问题的能力,考查了分类讨论思想,并对推理判断能力和创新意识进行了考查. “正对数”与“普通对数”的差异只在于内,因此在取值验证时要特别注意这一“差异”,对于“正对数”的四则运算法则才能作出正确判断.17、【答案】(Ⅰ)(Ⅱ)【解析】(I)可得到满足条件的基本事件有种情形,目标事件只有种,所以选到的人都在以下的概率为(II)把研究学生的人数扩大到人,基本事件个数增加到,并且要通过身高和体重两方面的限制确定目标事件,因此选到的人的身高都在以上且体重指标都在中的概率为【考点定位】本题考查古典概型的运算,通过对基本事件和目标事件的罗列考查数据处理能力和运算能力. 判断为古典概型后,根据题意罗列可能的结果组成的基本事件是关键.由于本题的两个问题研究的对象发生变化,在寻找基本事件和目标事件时要做到不重不漏.18、【答案】(Ⅰ) (Ⅱ) ,.【解析】因为图象的一个对称中心到最近的对称轴的距离为,又,所以(II)由(I)知,当时,,所以因此故在区间上的最大值和最小值分别为,.【考点定位】.本题考查三角函数的图象和性质,通过三角恒等变换考查转化思想和运算能力.第一问先逆用倍角公式化为的形式,再利用图象研究周期关系,从而确定第二问在限制条件下求值域,需要通过不等式的基本性质先求出的取值范围再进行求解.式子结构复杂,利用倍角公式简化时要避免符号出错导致式子结构不能形成这一标准形式,从而使运算陷入困境.19、【答案】见解析【解析】(I)取的中点,连接因为为的中点,所以,又,所以因此四边形是平行四边形.所以又平面,平面,因此平面.另解:连结.因为为的中点,所以又所以又,所以四边形为平行四边形,因此. 又平面,所以平面.因为分别为的中点,所以又平面,所以平面.因为,所以平面平面.(II)证明因为分别为的中点,所以,又因为,所以同理可证.又,平面,平面,因此平面.又分别为的中点,所以.又,所以因此平面,又平面,所以平面平面.【考点定位】本题考查空间直线与平面,平面与平面间的位置关系,考查推理论证能力和空间想象能力.要证平面,可证明平面与所在的某个平面平行,不难发现平面平面.证明平面平面时,可选择一个平面内的一条直线()与另一个平面垂直.线面关系与面面关系的判断离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系,中点形成的三角形的中位线等,都为论证提供了丰富的素材.20、【答案】(Ⅰ)(Ⅱ)【解析】(I) 设等差数列的首项为,公差为.由,得,解得因此(Ⅱ) 由可得当时,,当时,所以又,两式相减得所以【考点定位】本题考查等差数列的通项公式、错位相减求和方法,考查方程思想、转化思想和运算能力、推理论证能力.根据已知条件列出关于首项和公差的方程组,从而确该数列的通项公式,这一问相对简单,第二问通过递推关系得到数列的通项公式后再按照错位相减方法转化为等比数列的求和运算进行解决.本题第二问的条件因其结构复杂在使用上形成障碍,如果表示为数列的前项和的形式,则不难想到利用这一熟悉结构来处理.21、【答案】(Ⅰ) 单调递减区间是,单调递增区间是(Ⅱ)【解析】(Ⅰ)由得(1)当时,(i)若,当时,恒成立,所以函数的单调递减区间是.(ii)若,当时,,函数单调递减,当时,,函数单调递增.所以的单调递减区间是,单调递增区间是(2)当时,令得,由得显然当时,,函数单调递减;当时,,函数单调递增.所以函数的单调递减区间是,单调递增区间是.(Ⅱ)由题意知函数在处取得最小值,由(I)知是的唯一极小值点,故,整理得,令则由得当时,,单调递增;当时,,单调递减.因此故,即即【考点定位】本题考查导数法研究函数的单调性和相关函数值的大小比较,考查分类讨论思想、推理论证能力和运算求解能力.函数的单调区间判断必然通过导数方法来解决,伴随而来的是关于的分类讨论.比较与的大小时要根据已知条件和第一问的知识储备,构造新的函数利用单调性直接运算函数值得到结论.本题具备导数研究函数单调性的特征,必然按照程序化运行,即求导、关于参数分类讨论、确定单调区间等步骤进行.而第二问则是在第一问的基础上进一步挖掘解题素材,如隐含条件的发现、新函数的构造等,都为解决问题提供了有力支持.22、【答案】(I) (Ⅱ) 或【解析】(I)设椭圆的方程为,由题意知,解得因此椭圆的方程为(II)(1)当两点关于轴对称时,设直线的方程为,由题意知或,将代入椭圆方程得.所以解得或.又,因为为椭圆上一点,所以,或又因为所以或(2)当两点关于轴不对称时,设直线的方程为,将其代入椭圆方程得.设,由判别式可得,此时所以,因为点到直线的距离为,所以令,则解得或,即或.又,因为为椭圆上一点,所以,即,所以或又因为所以或经检验,适合题意.综上可知或【考点定位】本题基于椭圆问题综合考查椭圆的方程、直线和椭圆的位置关系、平面向量的坐标运算等知识,考查方程思想、分类讨论思想、推理论证能力和运算求解能力.第一问通过椭圆的性质确定其方程,第二问根据两点关于轴的对称关系进行分类讨论,分别设出直线的方程,通过联立、判断、消元等一系列运算“动作”达成目标.本题极易简单考虑设直线的形式而忽略斜率不存在的情况造成漏解.在联立方程得到后,后续运算会多次出现这一式子,换元简化运算不失为一种好方法,令,搭建了与的桥梁,使坐标的代入运算更为顺畅,使“化繁为简”这一常用原则得以完美呈现。
山东春季高考试题汇总(语文、数学、外语,含详细答案)
山东省2013年普通高校招生(春季)考试语文试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间150分钟。
考试结束后,将本试卷和答题卡一并交回。
卷一(选择题共60分)本卷共24个小题,在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,填涂在答题卡上。
一、(24分,每小题2分)1.下列加点字的读音,完全正确的是()A.同胞.(bāo)混淆.(xiáo )长堤.(dī)玷.污(diàn )B.承载.(zài)横.财(héng)模.样(mó)纤.细(xiān)C.埋.怨(mái)兴.奋(xīng)曲.折(qū)笨拙.(zhuó)D.给.予(gěi)颈.项(jìng)即.使(jí)筵.席(yán)2.下列句子中,没有错别字的是()A.金庸的武侠小说风糜华语世界,征服了亿万读者。
B.这首诗歌脍灸人口,被多种版本的中学语文教材选用。
C.春天的西湖如一幅淡淡的水墨画,吸引着中外游客纷至踏来。
D.近来,由于媒体的报道,人们对“数字地球”这一概念产生了浓厚的兴趣。
3.依次填入下列各句横线处的词语,正确的是()①星期天上午,我去找李明打篮球,____他走亲戚去了。
②冬去春来,山上的冰雪____了,汇成一条条小溪,从山上留下来。
③这位音乐家最高兴的____获得了大奖,____在音乐中领悟到了人生的真谛。
A.恰好溶化不仅而且 B.恰好融化不是而是C.恰巧融化不是而是 D.恰巧溶化不仅而且4.下列句子中标点符号的使用,正确的是()A.多美啊!这万物复苏、生机盎然的春天。
B.“请弹一首欢快的曲子吧,”她说,“帮大家驱走忧伤。
”C.儿童的游戏,究竟是为了学习?为了娱乐?还是为了锻炼?D.燕子去了,有再来的时候,杨柳枯了,有再青的时候,桃花谢了,有再开的时候。
5.下列句子中加点成语的使用,正确的是()A.这对失散多年的姐妹终于破镜重圆....了。
2013年普通高等学校招生全国统一考试 文科数学(山东卷)【word精析版】
的起点,又是思维的落脚点,较好地考查了考生潜在的数学素养和创新意识,充分调动考生的能动性,引导考生从不同的角度思考问题,用灵活的方法解决问题.试卷中出现了一些“生活元素”,如本试卷分第I卷和第II卷两部分,共4页.满分150分.考试用时120分钟,考试结束,务必将试卷和答题卡一并上交.注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件互斥,那么第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数为虚数单位,则( )A.25B.C.6D.2. 已知集合均为全集的子集,且, ,则( )A. B. C. D.3. 已知函数为奇函数,且当时, ,则( )A. B. C. D.【答案】D【解析】【考点定位】本题考查函数的奇偶性的应用,考查运算求解能力和转化思想. 根据直接运算而若求在上的解析式再求便“多余”了.4. 一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示该四棱锥侧面积和体积分别是A. B. C. D. 5. 函数的定义域为( )A. B. C. D.通过交集运算确定.6. 执行右边的程序框图,若第一次输入的的值为,第二次输入的的值为,则第一次、第二次输出的的值分别为( )A. B. C. D.7.的内角的对边分别是,若,,,则( )A. B. C. D.【答案】B【解析】,所以,整理得求得或8. 给定两个命题,的必要而不充分条件,则的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件9. 函数的图象大致为( )10. 将某选手的个得分去掉个最高分,去掉个最低分,个剩余分数的平均分为,现场做的个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以表示:则个剩余分数的方差为( )A. B. C. D.11. 抛物线的焦点与双曲线的右焦点的连线交于第一象限的点,若在点处的切线平行于的一条渐近线,则( )A. B. C. D.解能力.这一方程形式为导数法研究提供了方便,本题“切线”这一信号更加决定了“求导”是“必经之路”.根据三点共线的斜率性质构造方程,从而确定抛物线方程形式,此外还要体会这种设点的意义所在.12. 设正实数满足,则当取得最大值时,的最大值为( )A. B. C. D.二.填空题:本大题共4小题,每小题4分,共16分.13.过点(3,1)作圆的弦,其中最短的弦长为__________.能轻松解答,有时候可能会出现点到直线的距离公式来求弦心距的长度.14. 在平面直角坐标系中,为不等式组所表示的区域上一动点,则直线的最小值为____.15. 在平面直角坐标系中,已知,,若,则实数的值为_____.16.定义“正对数”:,现有四个命题:①若,则;②若,则③若,则④若,则其中的真命题有____________(写出所有真命题的序号)三.解答题:本大题共6小题,共74分.17.某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下表所示:A B C D E身高 1.69 1.73 1.75 1.79 1.82体重指标19.2 25.1 18.5 23.3 20.9(Ⅰ)从该小组身高低于的同学中任选人,求选到的人身高都在以下的概率(Ⅱ)从该小组同学中任选人,求选到的人的身高都在以上且体重指标都在中的概率.【答案】(Ⅰ) (Ⅱ)【解析】(I)可得到满足条件的基本事件有种情形,18. 设函数,且的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求的值;(Ⅱ)求在区间上的最大值和最小值. 所以因此19. 如图,四棱锥中,, ,分别为的中点.(Ⅰ)求证:;(Ⅱ)求证:.【答案】略【解析】(I)取的中点,连接因为为的中点,所以,又,所以因此四边形是平行四边形.又,所以20.设等差数列的前项和为,且,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列满足,求的前项和.【考点定位】本题考查等差数列的通项公式、错位相减求和方法,考查方程思想、转化思想和运算能力、推理论证能力.根据已知条件列出关于首项和公差的方程组,从而确该数列的通项公式,这一问相对简单,第二问通过递推关系得到数列的通项公式后再按照错位相减方法转化为等比数列的求和运算进行解决.本题第二问的条件因其结构复杂在使用上形成障碍,如果表示为数列的前项和的形式,则不难想到利用这一熟悉结构来处理.21.已知函数(Ⅰ)设,求的单调区间;(Ⅱ) 设,且对于任意,.试比较与的大小.由(I)知是的唯一极小值点,然按照程序化运行,即求导、关于参数分类讨论、确定单调区间等步骤进行.而第二问则是在第一问的基础上进一步挖掘解题素材,如隐含条件的发现、新函数的构造等,都为解决问题提供了有力支持.22.在平面直角坐标系中,已知椭圆的中心在原点,焦点在轴上,短轴长为,离心率为.(I)求椭圆的方程;(II)为椭圆上满足的面积为的任意两点,为线段的中点,射线交椭圆与点,设,求实数的值..【考点定位】本题基于椭圆问题综合考查椭圆的方程、直线和椭圆的位置关系、平面向量的坐标运算等知识,考查方程思想、分类讨论思想、推理论证能力和运算求解能力.第一问通过椭圆的。
2013年山东省高考数学试卷(理科)word版试卷及解析
2013年普通高等学校招生全国统一考试(山东卷) 理 科 数 学参考公式:如果事件A 、B 互斥,那么()()+()P A B P A P B += 如果事件A 、B 独立,那么()()()=•P AB P A P B 。
第Ⅰ卷(共60分)一、选择题:本大题共12小题。
每小题5分共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、复数z 满组(3)(2)5--=z i (z 为虚数单位),则z 的共轭复数z 为(A) 2+i (B) 2-i (C) 5+i (D) 5-i2、已知集合{}0,1,2=A ,则集合{},=-∈∈B x y x A y A 中元素的个数是(A) 1 (B) 3 (C) 5 (D) 93、已知函数()f x 为奇函数,且当0>x 时,21(),=+f x x x则(1)-=f (A) -2 (B) 0 (C) 1 (D) 2 4、已知三棱柱111-ABC A B C 的侧棱与底面垂直,体积为94,的正三角形,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为 (A)512π (B) 3π (C) 4π (D) 6π 5、将函数sin(2)ϕ=+y x 的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 (A)34π (B) 4π (C) 0 (D) 4π- 6、在平面直角坐标系xOy 中,M 为不等式组220210,380,--≥⎧⎪+-≥⎨⎪+-≤⎩x y x y x y 所表示的区域上一动点,则直线OM的斜率的最小值为(A) 2 (B) 1 (C) 13- (D) 12- 7、给定两个命题,.p q若⌝p 是q 的必要不充分条件,则p 是⌝q 的(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件8、函数cos sin =+y x x x 的图象大致为(A)(B) (C) (D)9、过点(3,1)作圆22(1)1-+=x y 的两条切线,切点分别为,A B ,则直线AB 的方程为(A) 230+-=x y (B) 230--=x y (C) 430--=x y (D) 430+-=x y 10、用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(A) 243 (B) 252 (C) 261 (D) 27911、抛物线211:(0)2=>C y x p p 的焦点与双曲线222:13-=x C y 的右焦点的连线交1C 于第一象限的点.M若1C 在点M 处的切线平行于2C 的一条渐近线,则=p(A)(B)(C)(D)12、设正实数,,x y z 满足22340.-+-=x xy y z 则当xyz取得最大值时,212+-的最大值为(A) 0 (B) 1 (C) 94(D) 3第Ⅱ卷(共90二、填空题:本大题共4小题,每小题4分,共16分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机密☆启用前山东省2013年普通高校招生(春季)考试数学试题注意事项:1. 本试卷分卷一(选择题)和卷二(非选择题)两部分.满分120分,考试时间120 分钟。
考试结束后,将本试卷和答题卡一并交回。
2. 本次考试允许使用函数型计算机,凡使用计算器的题目,最后结果精确到0.01.卷一(选择题,共60分)一、选择题(本题25个小题,每小题3分,共75分)1.若集合{}{}3,2,1,4,3,2,1==N M ,则下列关系式中正确的是( ) A. M N M =⋂ B. N N M =⋃ C. M N ⊆ D. M N ⊇ 2.若p 是假命题,q 是真命题,则下列命题为真命题的是( ) A. q ⌝ B. q p ∧⌝ C. )(q p ∨⌝ D. q p ∧3. 过点p(1,2)且与直线013=-+y x 平行的直线方程是( )A. 053=-+y xB. 073=-+y xC. 053=+-y xD. 053=--y x 4. “b c a 2=+”是“a,b,c ”成等差数列的( ) A.充分不必要条件 B.必要不充分条件C. 充要条件D. 既不充分也不必要条件 5. 函数542-+=x x y 的定义域是( )A. []5,1-B. []1,5--C. ),5[]1,(+∞⋃--∞D. ),1[]5,(+∞⋃--∞ 6. 已知点M(1,2),N(3,4),则21MN 的坐标是( ) A.(1,1) B.(1,2) C.(2,2) D. (2,3)7. 若函数)3sin(2πω+=x y 的最小正周期为π,则ω的值为( )A. 1B. 2C. 21D. 48. 已知点M(-1,6),N(3,2),则线段MN 的垂直平分线方程为( ) A. 04=--y x B. 03=+-y x C. 05=-+y x D. 0174=-+y x 9. 五边形ABCDE 为正五边形,以A,B,C,D,E 为顶点的三角形的个数是( ) A. 5 B. 10 C. 15 D. 2010. 二次函数)1)(3(--=x x y 的对称轴是( ) A. 1-=x B. 1=x C. 2-=x D. 2=x11. 已知点)2,9(+-m m P 在第一象限,则m 的取值范围是( ) A. 92<<-m B. 29<<-m C. 2->m D. 9<m12. 在同一坐标系中,二次函数a x a y +-=2)1(与指数函数x a y =的图象 可能的是 ( )A. B. C. D.13. 将卷号为1至4的四卷文集按任意顺序排放在书架的同一层上,则自左到右卷号顺序恰为1,2,3,4的概率等于( )A.81 B. 121 C. 161 D. 24114. 已知抛物线的准线方程为2=x ,则抛物线的标准方程为( ) A. x y 82= B. x y 82-= C. x y 42= D. x y 42-=15. 已知2)tan(=+απ,则α2cos 等于( )A. 54B. 53C. 52D. 5116. 在下列函数图象中,表示奇函数且在),0(+∞上为增函数的是( )A. B. C. D.17. 5)12(-x 的二项展开式中3x 的系数是( )A. -80B. 80C. -10D. 10 18. 下列四个命题:(1)过平面外一点,有且只有一条直线与已知平面平行;(2)过平面外一点,有且只有一条直线与已知平面垂直; (3)平行于同一个平面的两个平面平行; (4)垂直于同一个平面的两个平面平行。
其中真命题的个数是( )A. 1B. 2C. 3D. 4 19. 设10<<<b a ,那么5log a 与5log b 的大小关系( ) A. 55log log b a < B. 55log log b a = C. 55log log b a > D. 无法确定20. 满足线性约束条件⎪⎩⎪⎨⎧≥≥≤-+0002y x y x y x z 22-=取得最大值时的最优解是( A.(0,0) B.(1,1)C.(2,0)D. (0,2)21. 若 ),0(≠>ab b a 则下列关系式中正确的是( )A. b a >B. 22bc ac >C. b a 11< D. b c a c -<-22. 在ABC ∆中已知3=a ,4=b ,37=c ,则ABC ∆的面积是( )A. 23 B. 3 C. 23 D. 3323. 若点)3,(log 3n mp 关于原点的对称点为),9,1(/-p 则m 与n 的值分别为( )A. 31 ,2B. 3,2C. 31- ,-2 D. -3,-224. 某市2012年的专利申请量为10万件,为了落实“科教兴鲁”战略,该市计划2017年专利申请量达到20万件,其年平均增长率最少为( ) A. 12.0025 B. 13.0032 C. 14.0078 D. 18.009225. 如图所示,点p 是等轴双曲线上除顶点外的任意一点,21,A A 是双曲线的顶点,则直线1pA 与2pA 的斜率之积为( ) A. 1 B. -1 C. 2 D.-2卷二(非选择题,共60分)二、填空题(本题5个小题,每小题4分,共20分)26. 已知函数2)(x x f =,则=-)1(t f ______________.27. 某射击运动员射击5次,命中的环数为9,8,6,8,9则这5个数据的方差为______________.28. 一个球的体积与其表面积的数值恰好相等,该球的直径是______________. 29. 设直线023=--y x 与圆2522=+y x 的两个交点为A,B ,则线段AB 的长度为_________.30. 已知向量),sin ,(cos a θθ=)3,0(b =,若⋅a b 取最大值,则a 的坐标为_________ .三、解答题(本题5个小题,共55分,请在答题卡的相应的题号处写出解答过程) 31. (本题9分)在等比数列{}n a 中,42=a ,83=a 。
求: (1)该数列的通向公式; (2)该数列的前10项和。
32. (本题11分)已知点p (4,3)是角α终边上一点,如图所示。
求)26sin(απ-的值。
33. (本题11分)如图所示,已知棱长为1的正方体1111D C B A ABCD -(1) 求三棱锥BCD C -1的体积;(2) 求证:平面⊥BD C 1平面CD B A 11.1BA34. (本题12分)某市为鼓励居民节约用电,采取阶梯电价的收费方式,居民当月用电量不超过100度的部分,按基础电价收费;超过100度不超过150度的部分,按每度0.8元收费;超过150度的部分按每度1.2元收费.该居民当月的用电量x (度)与应付电费y (元)的函数图象如图所示。
(1)求该市居民用电的基础电价是多少?(2)某居民8月份的用电量为210度,求应付电费多少元? (3)当(]150,100∈x 时,求x 与y 的函数关系式(x 为自变量)35. (本题12分)已知椭圆的一个焦点为)0,3(1-F ,其离心率为23。
(1)求该椭圆的标准方程;(2)圆5422=+y x 的任一条切线与椭圆均有两个交点A,B ,求证:OB OA ⊥(O 为坐标原点)。
山东省2013年普通高校招生(春季)考试答案 一、选择题(本题25个小题,每小题3分,共75分)1.C2.B3.A4.C5.D6.A7.B8.B9.B 10.D11.A 12.C 13.D 14.B 15.D 16.A 17.B 18.B 19.C 20.C 21.D 22.D 23.A 24.C 25.A二、填空题(本题5个小题,每小题4分,共20分)26. 2)1(-t 或122+-t t 27. 56或1.2 28.6 29.8 30.(0,1)三、解答题(本题5个小题,共55分,请在答题卡的相应的题号处写出解答过程)31.(本题9分)(1)解法一:由等比数列的定义可知:公比24823===a a q 2分 由q a a =12,得21=a 2分 因此,所求等比数列的通项公式为n n n n q a a 222111=⨯==-- 1分 解法二:设等比数列的通项公式为11-=n n q a a由已知列方程组⎩⎨⎧==84211q a q a 2分解之得⎩⎨⎧==221q a 2分因此,所求等比数列的通项公式为n n n n q a a 222111=⨯==-- 1分 (2)由等比数列的前n 和公式,得q q a S --=1)1(10110 2分21)21(210--==2046 1分即:该数列的前10项和为2046. 32. (本题11分)解:由p (4,3)是角α终边上一点,知3,4==y x得543022=+==p r 1分所以53sin =α,54cos =α 2分所以257sin cos 2cos 22=-=ααα 2分 2524cos sin 22sin ==ααα 2分 所以απαπαπ2sin 6cos 2cos 6sin )26sin(-=- 2分503247-=2分 33. (本题11分)解:(1)由正方体的棱为1,可得BCD ∆的面积为211121=⨯⨯ 2分所以,61121311=⨯⨯=-BCD C V 2分(2)证明:由⊥CD 平面11BCC B ,又⊂1BC 平面11BCC B ,得1BC CD ⊥ 2分 又正方形11BCC B 中,11BC C B ⊥ 1分 且C CD C B =⋂1,⊂C B 1平面CD B A 11,⊂CD 平面CD B A 11所以⊥1BC 平面CD B A 11 2分 ⊂1BC 平面BD C 1所以,平面⊥BD C 1平面CD B A 11 2分 34. (本题12分)解:(1)设该市居民用电的基础电价是每度1k 元,则所用电量x (度)与应付电费y (元)的函数关系是)1000(1≤≤=x x k y 1分 由函数图象过点(100,50),得110050k =,即5.01=k 1分 所以,既基础电价为每度0.5元。
1分(2)由阶梯电价曲线可知,在210度电中,其中,100度的电费为501005.01=⨯=y (元); 1分50度的电费为40508.02=⨯=y (元); 1分 60度的电费为72602.13=⨯=y (元); 1分所以,该居民8月份应付电费50+40+72=162元。
1分 (3)设函数的解析式为]150,100(,2∈+=x b x k y 1分 由题意可知8.02=k 1分 由因为函数图象过点(150,90),因此b +⨯=8.015090 1分解得30-=b 1分 所以,所求函数的解析式为(]150,100,308.0∈-=x x y 。