智能小车原理

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、前言

设计背景:

在科学探索和紧急抢险中经常会遇到对与一些危险或人类不能直接到达的地域的探测,这些就需要用机器人来完成。而在机器人在复杂地形中行进时自动避障是一项必不可少也是最基本的功能。因此,自动避障系统的研发就应运而生。我们的自动避障小车就是基于这一系统开发而成的。意义随着科技的发展,对于未知空间和人类所不能直接到达的地域的探索逐步成为热门,这就使机器人的自动避障有了重大的意义。我们的自动避障小车就是自动避障机器人中的一类。自动避障小车可以作为地域探索机器人和紧急抢险机器人的运动系统,让机器人在行进中自动避过障碍物。成员情况本组三位成员均为2005级基地班学生,都选修过数字电路课程。二、总体方案设计

1、设计要求

小车从无障碍地区启动前进,感应前进路线上的障碍物后,根据障碍物的位置选择下一步行进方向。并可通过两个独立按键对小车进行控速。

2、小车自动避障的原理

小车车头处装有三个光电开关,中间一个光电开关对向正前方,两侧的光电开关向两边各分开30度,(如右图所示)。小车在行进过程中由光电开关向前方发射出红外线,当红外线遇到障碍物时发生漫反射,反射光被光电开关接收。小车根据三个光电开关接受信号的情况来判断前方障碍物的分布并做出相应的动作。光电开关的平均探测距离为30cm。

3、模块方案比较及论证

根据设计要求,我们的自动避障小车主要由六个模块构成:车体框架、电源

及稳压模块、主控模块、逻辑模块、探测模块、电机驱动模块组成。各模块分述如下:

3.1车体框架

在设计车体框架时,我们有两套起始方案,自己制作和直接购买玩具电动车。方案一:自己设计制作车架自己制作小车底盘,用两个直流减速电机作为主动轮,利用两电机的转速差完成直行、左转、右转、左后转、右后转、倒车等动作。减速电机扭矩大,转速较慢,易于控制和调速,符合避障小车的要求。而且自己制作小车框架,可以根据电路板及传感器安装需求设计空间,使得车体美观紧凑。但自己制作小车设计制作周期较长,且费用较高,因而我们放弃这一方案。方案二:购买玩具电动车

玩具电动车价格低廉,有完整的驱动、传动和控制单元,其中传动装置是我们所需的,缩短了开发周期。但玩具电动车采用普通直流电机驱动,带负载能力差,调速方面对程序要求较高。同时,玩具电动车转向

依靠前轮电机带动前轮转向完成,精度低。

考虑到利用玩具电动小车做车架开发周期短,可留够充分的时间用于系统调试,且硬件上的不足我们有信心用优良的算法来弥补,故我们选择方案二。

3.2电源及稳压模块

方案一:采用交流电经直流稳压处理后供电

采用交流电提供直流稳压电源,电流驱动能力及电压稳定性最好,且负载对电源影响也最小。但由于需要电线对小车供电,极大影响了壁障小车行动的灵活性及地形的适应能力。而且壁障小车极易把拖在地上的电线识别为障碍物,人为增加了不必要的障碍。故我们放弃了这一方案。

方案二:采用蓄电池供电

蓄电池具有较强的电流驱动能力和较好的电压稳定性能,且成本低廉。可采用蓄电池经7812芯片稳压后给电机供电,再经过降压接7805芯片给单片机及其他逻辑单元供电。但蓄电池体积相对庞大,且重量过大,造成电机负载过大,不适合我们采用的小车车架(玩具电动车车架)。故我们放弃了这一方案。

方案三:采用干电池组进行供电

采用四节干电池降压至5V后给单片机及其他逻辑单元供电,另取六节干电池为电机及光电开关供电。这样电机启动及制动时的短暂电压干扰不会影响到逻辑单元和单片机的工作。干电池用电池盒封装,体积和重量较小,同时玩具车底座可以安装四节干电池,正好可为单片机及其他逻辑单元供电。在稳压方面,起始时考虑使用7805芯片对6V的电池电压进行降压稳压。但考虑到这样使得7805芯片消耗大量能量,降低电池寿命;同时,由于mega16、光电开关、小车电机对于供电电压要求并不苛刻,故我们将6V电池电压接一个二极管降压后直接给单片机及其他逻辑单元供电。而电机和光电开关的电源不做稳压处理。这样只需在小车主板上加两个调速按钮,根据电池电量选择合适功率即可,甚至于可直接在软件里设置自动换挡。

综合考虑,我们采用方案三。示意图如下

3.3主控模块

作为单片机原理与接口技术课程的course project,我们直接选用了课程主要介绍的,Atmel公司的

ATmaga16L单片机作为主控模块。

Mega16是高性能、低功耗的8 位AVR 微处理器,具有先进的RISC结构,内部集成两个具有独立预分频器和比较器功能的8 位定时器/ 计数器和一个具有预分频器、比较功能和捕捉功能的16 位定时器/ 计数器。可通过JTAG对MCU进行程序烧写及仿真。内置晶振,使用方便。

在设计开发过程中我们使用课程设计提供的开发板进行程序调试和下载,配车使用时直接将MCU拔出插入我们小车系统电路板底座中。示意图如下:

3.4 逻辑模块

在探测模块和单片机中断接口之间、独立按键与单片机中断接口之间,需要经过电平的逻辑处理进行连接。主要涉及到一个三输入或非门和一个二输入与门。这两个逻辑关系我们直接选用74HC系列的集成芯片实现。

由于三输入或非门在市场上很难购买到,我们采用了两个二输入或非门和一个二输入与门完成了三输入或非门。由于我们采用的74HC08(四二输入与门)、74HC02(四二输入或非门)均为四二输入的,各提供四个二输入与门和四个二输入或非门,我们用各用一片芯片即可实现所需逻辑功能。

示意图如下:

3.5探测模块

方案一:使用超声波探测器

超声波探测器探测距离远,测距方便。但由于声波衍射现象较严重,且波包散面太大,易造成障碍物的错误判断。同时,超声波探测具有几厘米甚至几十厘米的盲区,这对于我们的避障小车是个致命的限制。故我们放弃了这一方案。

方案二:使用光电对管探测

光电对关价格低廉,性能稳定,但探测距离过近(一般不超过3cm),使得小车必须制动迅速。而我们由于采用普通直流电机作为原动力,制动距离至少需要10cm。因此我们放弃了这一方案。

方案三:使用视频采集处理装置进行探测

使用CCD实时采集小车前进路线上的图像并进行实时传输及处理,这是最精确的障碍物信息采集方案,可以对障碍物进行精确定位和测距。但是使用视频采集会大大增加小车成本和设计开发难度,而且考虑到我们小车行进转弯的精确度并未达到视频处理的精度,因而使用视频采集在实际应用中是个很大的浪费,所以我们放弃了这一方案。

方案四:使用光电开关进行障碍物信息采集

使用三只E3F-DS30C4光电开关,分别探测正前方,前右侧,前左侧障碍物信息,在特殊地形(如障碍物密集地形)可将正前方的光电开关移置后方进行探测。E3F-DS30C4光电开关平均有效探测距离0~30cm 可调,且抗外界背景光干扰能力强,可在日光下正常工作(理论上应避免日光和强光源的直接照射)。我们小车换档调速后的最大制动距离不超过30cm,一般在10~20cm左右,因而探测距离满足我们的小车需求。

综上考虑,我们选用方案四。示意图如下:

3.6电机驱动模块

方案一:使用分立原件搭建电机驱动电路

使用分立原件搭建电机驱动电路造价低廉,在大规模生产中使用广泛。但分立原件H桥电路工作性能不够稳定,较易出现硬件上的故障,故我们放弃了这一方案。

方案二:使用L298N芯片驱动电机

L298N是一个具有高电压大电流的全桥驱动芯片,输出电压最高可达50V,可以直接通过电源来调节输出

相关文档
最新文档