2015年中考数学专题复习第一讲_实数

合集下载

中考数学实数总复习

中考数学实数总复习

专题基础知识回顾一实数一、单元知识网络:二、考试目标要求:了解有理数、无理数、实数的概念;会比较实数的大小,知道实数与数轴上的点一一对应,会用科学记数法表示有理数;理解相反数和绝对值的概念及意义.进一步,对上述知识理解程度的评价既可以用纯粹数学语言、符号的方式呈现试题,也可以建立在应用知识解决问题的基础之上,即将考查的知识、方法融于不同的情境之中,通过解决问题而考查学生对相应知识、方法的理解情况.了解乘方与开方的概念,并理解这两种运算之间的关系.了解平方根、算术平方根、立方根的概念,了解整数指数幂的意义和基本性质.具体目标:1.有理数(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.(2)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).(4)理解有理数的运算律,并能运用运算律简化运算.(5)能运用有理数的运算解决简单的问题.(6)能对含有较大数字的信息作出合理的解释和推断.2.实数(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根.(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.(3)了解无理数和实数的概念,知道实数与数轴上的点—一对应.(4)能用有理数估计一个无理数的大致范围.(5)了解近似数与有效数字的概念.在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值.三、知识考点梳理知识点一、实数的分类1.按定义分类:2.按性质符号分类:注:0既不是正数也不是负数.3.有理数:整数和分数统称为有理数或者“形如 (m,n是整数n≠0)”的数叫有理数.4.无理数:无限不循环小数叫无理数.5.实数:有理数和无理数统称为实数.知识点二、实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.可用式子表示为:(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.用式子表示:若a是实数,则|a|≥0.3.倒数(1)实数的倒数是;0没有倒数;(2)乘积是1的两个数互为倒数.a、b互为倒数 .4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.5.立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根仍是零.知识点三、实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数.知识点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.对于实数a、b,若a-b>0 a>b;a-b=0 a=b;a-b<0 a<b.5.无理数的比较大小:利用平方转化为有理数:如果 a>b>0,a2>b2 a>b ;或利用倒数转化:如比较与 .知识点五、实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法减去一个数等于加上这个数的相反数.3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数6.实数的六种运算关系加法与减法互为逆运算;乘法与除法互为逆运算;乘方与开方互为逆运算.7.实数运算顺序加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.8.实数的运算律加法交换律:a+b=b+a乘法交换律:ab=ba知识点六、有效数字和科学记数法1.近似数:一个近似数,四舍五入到那一位,就说这个近似数精确到哪一位.2.有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.3.科学记数法:把一个数用 (1≤<10,n为整数)的形式记数的方法叫科学记数法.四、规律方法指导1.数形结合思想实数与数轴上的点一一对应,绝对值的几何意义等,数轴在很多时候可以帮助我们更直观地分析题目,从而找到解决问题的突破口.2.分类讨论思想(算术)平方根,绝对值的化简都需要有分类讨论的思想,考虑问题要全面,做到既不重复又不遗漏.3.从实际问题中抽象出数学模型以现实生活为背景的题目,我们要抓住问题的实质,明确该用哪一个知识点来解决问题,然后有的放矢.4.注意观察、分析、总结对于寻找规律的题目,仔细观察变化的量之间的关系,尝试用数学式子表示规律.对于阅读两量大的题目,经常是把规律用语言加以叙述,仔细阅读,找到关键的字、词、句,从而找到思路. 经典例题精析考点一、实数概念及分类1. (2010上海)下列实数中,是无理数的为()思路点拨:考查无理数的概念.2.下列实数、sin60°、、、3.14159、、、中无理数有( )个总结升华:对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.举一反三:【变式1】把下列各数填入相应的集合里:(1)自然数集合:{ …}(2)整数集合:{ …}(3)分数集合:{ …}(4)无理数集合:{ …}答案:(1)自然数集合:(2)整数集合:(3)分数集合:(4)无理数集合:【答案】b,603,6n+3考点二、数轴、倒数、相反数、绝对值4.(2010湖南益阳)数轴上的点a到原点的距离是6,则点a表示的数为()思路点拨: 数轴上的点a到原点的距离是6的点有两个,原点的左边、右边各有一个。

中考数学第1讲 实数(含答案)

中考数学第1讲 实数(含答案)

第1讲 实数【回顾与思考】(1)实数的有关概念{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数①实数: 和 统称实数, 和数轴上的点是一一对应....的。

(即:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

) ②有理数: 和 的统称.任何一个有绿树都可以写成分数pq的形式,其中p 和q 是整数且最大公约数是1。

③无理数:无限 叫无理数,常见的有三类:① ;② ;③ ;④对实数进行分类,应先 ,后 。

(2)数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可)。

和数轴上的点是一一对应....的。

(即:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

)(3)相反数: 实数的相反数是一对数(只有 的两个数,叫做互为相反数,零的相反数是 ). 从数轴上看,互为相反数的两个数所对应的点关于 对称.(4)绝对值①从数轴上看,一个数的绝对值就是 的距离。

⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a②一个正数的绝对值是 ,一个负数的绝对值是 ,零的绝对值是 。

(5)倒数: 实数a(a ≠0)的倒数是 (乘积为1的两个数,叫做互为倒数);零 倒数.(6)平方根:如果 ,即 ,那么这个数x 叫做做a 的平方根(也叫二次方根)。

一个正数有 平方根,且互为相反数;0的平方根是 ;负数 平方根。

(7)算术平方根:如果 ,即 ,那么这个正数x 叫做a 的算.术.平方根,即x a =;特别规定0的算术平方根是 。

即00=。

(8)立方根:如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 叫做a 的立方根(也叫三次方根),一个正数的立方根是 ;0的立方根是 ;负数的立方根是 。

中考数学专题:实数与代数式

中考数学专题:实数与代数式

专题一 数与式中考要求:实数:借助数轴理解相反数、倒数、绝对值的意义及性质;掌握实数的分类、大小比较及混合运算;会用科学记数法、有效数字、精确度确定一个数的近似值;能用有理数估计一个无理数的大致范围.代数式:了解整式、分式、二次根式、最简二次根式的概念及意义; 会用提公因式法、公式法对整式进行因式分解; 理解平方根、算术平方根、立方根的意义及其性质; 根据整式、分式、二次根式的运算法则进行化简、求值.考查方式:本专题内容在中考中涉及数轴、相反数、绝对值等概念,多以填空题、选择题的形式出现. 科学记数法、近似数和有效数字往往与生产生活及科技领域中的实际问题相联系,具有较强的应用性,是中考的热点. 关于代数式的概念与运算,往往是单独命题,试题以填空题、选择题及计算题的形式出现,试题难度为中、低档. 试题设计有的带有开放探索性,覆盖面广,常常以大容量、小综合的形式考查灵活运用知识的能力.备考策略:1. 夯实基础,理清考点.2. 对课本中的典型和重点题目做变式、延伸.3. 注意一些跨学科的常识,加强学科整合.4. 关注中考的新题型.5. 关注课程标准中新增的目标.6. 探究性试题的复习步骤:(1)纯数字的规律探索.(2)结合平面图形探索规律.(3)结合空间图形探索规律,(4)探索规律方法的总结.第1课时 实数的概念课时核心问题:数系的扩张及实数相关概念的理解应用. 聚焦考点☆温习理解一、实数1. 有理数: ,它包括 、 .2. 无理数: .3. 实数及分类:注意:在理解无理数时,要注意“无限不循环”,归纳起来有四类:(1)开方开不尽的数,如(2)有特定意义的数,如圆周率π,或化简后含有π 的数,如π23+等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等. 二、绝对值一个数的绝对值指的是表示.几何意义:一般地,数轴上表示叫做数a 的绝对值,记作|a |.代数意义:(1)正数的绝对值是 ;(2)负数的绝对值是 ;(3)零的绝对值是 .也可以写成:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩.说明:(1)|a |≥0,即|a |是一个非负数;(2)|a |概念中蕴含分类讨论思想;(3)“| |”有括号的作用.三、相反数叫做互为相反数. 零的相反数是零.从数轴上看, 互为相反数的两个数所对应的点关于原点对称. 若a 与b 互为相反数,则a +b =0, 反之也成立.四、倒数如果a 与b 互为倒数,则有ab =1,反之亦成立. 倒数等于本身的数是1和1-. 零没有倒数.五、平方根如果一个数的平方等于a(a≥0),那么这个数就叫做a的平方根(或二次方根). 一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根. 正数a的平方根记作“”.正数a的正的平方根叫做a的算术平方根,记作“”.正数和零的算术平方根都只有一个,零的算术平方根是零.1.(0) ||(0)a aaa a⎧==⎨-<⎩≥.2.与2的联系:3.0)<0)aa>=⎩.六、立方根如果一个数的立方等于a, 那么这个数就叫做a的立方根(或a的三次方根). 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.注意:(1)=,说明三次根号内的负号可以移到根号外面;(2)=3.典例解析考点一、实数的分类【例1】下列实数是无理数的是().B. 1C. 0D.1-听课记录:【举一反三】1.下列四个实数中,是无理数的是().A. 0B. 3-D.3112. 下列选项中,属于无理数的是().A. 2B. πC. 32D. 2-3. 下列各数:227,π,cos60︒,0,,其中无理数的个数是().A. 1B. 2C. 3D. 4考点二、绝对值【例2】|2|-等于().A. 2B. 2-C.12D.12-听课记录:【举一反三】2的绝对值是().A. ±2B. 2C. 12D. 2-考点三、相反数【例3】5的相反数是().A. 5B. 5-C. 15D.15-听课记录:【举一反三】1. 2014的相反数是().A. 2014B. 2014-C.12014D.12014-2.15-的相反数是().A. 15B.15-C. 5D. 5-考点四、倒数【例4】12-的倒数是().A. B.C. D. 听课记录:【举一反三】1. 12的倒数是().A. 2B. 2-C. 12D. 12- 2. 14-的倒数是( ). A. -4B. 4C. 14D. 14- 考点五、平方根【例5】得( ).A. 100B. 10C.D. 10± 听课记录:【举一反三】1. 一个数的算术平方根是2,则这个数是 .2. 的平方根是 .3. 若2y =,则()y x y += .4. 若实数x , y 满足|4|0x -=,则以x , y 的值为等腰三角形的周长为 .5. 若1a <1-= .6. 2210b b ++=,则221||a b a +-= .7. 设1a =,a 在两个相邻整数之间,则这两个整数是 .第2课时 实数的计算课时核心问题:实数的灵活运算.聚焦考点☆温习理解一、实数大小的比较1. 数轴:规定了、、的直线叫做数轴. (画数轴时要注意上述三要素缺一不可)解题时要真正掌握数形结合思想,理解实数与数轴上的点是一一对应的,并且能灵活运用.2. 实数大小比较的几种常见方法.(1)数轴比较:数轴上的点所表示的数在右边的总比左边的大;(2)求差比较:设a, b为实数,有a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.(3)求商比较:设a, b为两正实数,有a>1⇔a>b;ba<1⇔a<b;ba=1⇔a=b.b(4)绝对值比较法:设a, b为两负实数,则a a b>⇔<.b(5)平方比较法:设a,b为两负实数,则22a b a b >⇔<.二、科学计数法和近似数1. 有效数字:一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字.2. 科学计数法:把一个数写成10n a ±⨯的形式,其中110a <≤,n 是整数,这种计数法叫做科学计数法.三、实数的运算1. 加法交换律:a b b a +=+.2. 加法结合律:()()a b c a b c ++=++.3. 乘法交换律:ab ba =.4. 乘法结合律:()()ab c a bc =.5. 乘法对加法的分配律:()a b c ab ac +=+.6. 实数的运算顺序:先算乘(开)方,再算乘除,最后算加减,如果有括号,就先算括号里面的. 典例解析考点一、实数的大小比较【例1】下列各数中,最大的数是( ).A. 0B. 2C.2-D.12- 听课记录:【举一反三】1. 下列各数中,最小的数是().A. 0B. 1 3C.13- D.3-2. 在数1,0,1,2--中,最小的数是().A. 1B. 0C. 1-D. 2-考点二、科学计数法与近似值【例2】“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2014年全社会固定资产投资达1762亿元,“1762亿”这个数用科学计数法表示为().A. 1762×108B. 1.762×1010C. 1.762×1011D. 1.762×1012听课记录:【举一反三】1. 据统计,2015年河南省旅游业总收入达到3875.5亿元. 若将“3875.5亿”用科学计数法表示为3.8755×10n,则n等于().A. 10B. 11C. 12D. 132. 将6.18×10-3化为小数是( ).A. 0.000618B. 0.00618C. 0.0618D. 0.6183. 20140000用科学计数法表示(保留3位有效数字)为 .考点三、实数的运算【例3】计算:201(π2014)sin 6023-⎛⎫+-+︒ ⎪⎝⎭.听课记录:【举一反三】1. 计算:2(2)(3)2-+-⨯.2. 2014(1)2sin 45--︒+-3. 计算:1011)23-⎛⎫-+-- ⎪⎝⎭.第3课时整 式 课时核心问题:整式的相关概念及运算.聚焦考点☆温习理解一、单项式1. 代数式.用运算符号把数或表示数的字母连接而成的式子叫做代数式. 单独的一个数或一个字母也是代数式.2. 单项式.只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示. 例如,2143a b -就是错误的,应写成2133a b -. 一个单项式中,所有字母的指数的和叫做这个单项式的次数,如325a b c -是6次单项式.二、多项式1. 多项式.几个单项式的和叫做多项式,其中每个单项式叫做这个多项式的项,多项式中不含字母的项叫做常数项,多项式中次数最高项的次数为多项式的次数.统称为整式.用数值代替代数式中的字母,按照代数式指出的运算计算出的代数式的结果,叫做求代数式的值.注意:(1)求代数式的值,一般先化简再代入.(2)求代数式的值,有时求不出具体字母的值,此时需要利用技巧“整体”代入求值.2. 同类项.所含 ,并且 的项叫做同类项. 几个常数项也是同类项.3. 去括号法则:(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都.(2)括号前是“-”,把括号和它前面的“-”号一起去掉,括号里各项都.三、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项.1. 幂的运算法则:(1)同底数幂相乘:m n m n⋅=(m, n都是整数,a≠0).a a a+(2)幂的乘方:()m n mn=(m, n都是整数,a≠0).a a(3)积的乘方:=⋅(n是整数,a≠0, b≠0).()n n nab a b(4)同底数幂相除:m n m n÷=(m, n都是整数,a≠0).a a a-2. 整式乘法.(1)单项式与单项式相乘,把作为积的因式,只在一个单项式里含有的字母,连同它的指数一起作为积的一个因式. (2)单项式乘多项式:m(a+b)=ma+mb.(3)多项式乘多项式:(a+b)(c+d)=ac+ad+bc+bd.3. 乘法公式.(1)平方差公式:(a+b)(a-b)=a2-b2.(2)完全平方公式:(a±b)2=a2±2ab+b2.4. 整式的除法:(1)单项式除以单项式:法则:(2)多项式除以单项式:法则:注意:(1)单项式乘单项式的结果仍然是单项式.(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项.(5)公式中的字母可以表示数,也可以表示单项式或多项式.(6)011(0),(0,)p pa a a a p a -=≠=≠为正数. (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 单项式除以多项式是不能这么计算的. 典例解析考点一、整式的加减运算【例1】下列计算正确的是( ).A. 2x -x =xB. 326a a a ⋅=C. (a -b )2=a 2-b 2D. (a +b )(a -b )=a 2+b 2听课记录:【举一反三】已知x 2-2=y ,则x (x -3y )+y (3x -1)-2的值是(). A.2- B. 0C. 2D. 4考点二、同类项的概念及合并同类项【例2】下列各式中,与2a 是同类项的是( ).A. 3aB. 2abC. 23a -D. a 2b听课记录:【举一反三】下列运算正确的是( ).A. 2323a a a +=B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a =考点三、幂的运算【例3】下列运算正确的是( ).A. 33a a a ⋅=B. 33()ab a b =C. 326()a a =D. 842a a a ÷=听课记录:【举一反三】1. 计算:2()ab 的结果是( ).A. 2abB. a 2bC. a 2b 2D. ab 22. 计算:63m m ⋅的结果是( ).A. m 18B. m 9C. m 3D. m 2考点四、整式的乘除法.【例4】计算:23(2)()a a ⋅-=.A. 312a -B. 36a -C. 12a 3D. 6a 2【例5】计算:2x (3x 2+1),正确的结果是(). A. 5x 3+2x B. 6x 3+1C. 6x 3+2xD. 6x 2+2x听课记录:【举一反三】1. 下列计算正确的是( ).A. 4416x x x ⋅=B. 325()a a =C. 236()ab ab =D. 23a a a +=2. 下列运算正确的是( ). A. 2323a a a += B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a = 考点五、整式的混合运算及求值【例6】先化简,再求值:2(3)()()a a b a b a a b -++--,其中11,2a b ==-. 听课记录:【举一反三】1. 下列计算中,正确的是( ).A. 235a b ab +=B. 326(3)6a a =C. 623a a a ÷=D. 32a a a -+=-2. 下列运算正确的是( ). A. (m +n )2=m 2+n 2B. (x 3)2=x 5C. 5x -2x =3D. (a +b )(a -b )=a 2-b 23. 下列计算正确的是( ).A. (2a 2)4=8a 6B. a 3+a =a 4C. a 2÷a =aD. (a -b )2=a 2-b 24. 化简:2()()()2a b a b a b ab ++-+-.5. 化简:2(1)2(1)a a ++-.6. 已知x (x +3)=1,求代数式2x 2+6x -5的值为 .7. 先化简,再求值:(x +1)(2x -1)-(x -3)2,其中2x =-.。

2015年广西中考数学总复习课件第1课时_实数的有关概念

2015年广西中考数学总复习课件第1课时_实数的有关概念

2.实数的相关概念
(1) 数轴:规定了 ________ 、 ________ 的直 原点 正方向 和 ____________ 单位长度
线叫数轴. (2)相反数:实数a的相反数是________ ,a与b互为相反数, -a 则a+b=________ . 0
1 a (3)倒数:实数a(a≠0)的倒数是________ ,a与b互为倒数,
A.2.5³10-7 B.2.5³10-6 C.25³10-7 D.0.25³10-5
第1课时
实数的有关概念
┃考题回归教材┃ 硬币在数轴上滚动得到的启示 教材母题——人教版七下P54探究
如图1-1-1,直径为1个单位长度的圆从原点沿数轴向右滚
动一周,圆上的一点由原点到达点O′,点O′对应的数是多少?
[答案] A 第1课时 实数的有关概念
[分析] 一个较大的数可以表示成a³10n(1≤ a <10,n为整数)
的形式,n的值等于原数整数位数减1.
第1课时
实数的有关概念
变式题4
[2014²泰安] PM2.5是指大气中直径≤0.0000025
米的颗粒物,将0.0000025用科学记数法表示为( B )
A.2 B.-2
1 C. 2
1 D.- 2
3.[2014²南宁] 如果水位升高3 m时水位变化记作+3 m,那 么水位下降3 m时水位变化记作( A )
A.-3 m B.3 m
C.6 m D.-6 m
4.[2013²桂林] 下列各数是负数的是( B )
A.0 B.-2013
C.|-2013|
1 D. 2013
科学记数法:把一个数表示成 a³10n(1≤|a|<10,n为整数)

中考数学一轮总复习 第1课时 实数(无答案) 苏科版

中考数学一轮总复习 第1课时 实数(无答案) 苏科版

第1课时:实数【课前预习】 (一)知识梳理1、实数的概念:⎪⎪⎩⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧数无理数:无限不循环小数有限小数或无限循环小分数整数有理数 ⎪⎩⎪⎨⎧负数正数实数02、相关概念:数轴、相反数、绝对值、倒数.3、实数的大小比较.⎩⎨⎧作差法利用数轴进行比较4、实数的运算:运算法则、运算律、运算顺序、零指数幂和负整数指数幂、科学计数法、近似数. (二)课前练习1、-5的绝对值是 ,相反数是 ,倒数是 ,绝对值小于3的整数有 .2、数轴上点A 表示-5,点B 表示2,则A 、B 两点之间的距离是 .3、在实数-23,0-3.14,2π-0.1010010001…(每两个1之间依次多1个0),tan60°. 这8个实数中,无理数有 . 4、下列各式正确的是( )A .33--=B .326-=-C .(3)3--=D .0(π2)0-=5、某市在一次扶贫助残活动中,共捐款25.8万元.将25.8万元用科学记数法表示为 .6、若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 . 【解题指导】例1 下列各数中:-1,0,169,2π,1.101001…,0.6.,12-, 45cos ,- 60cos ,722,2,π-722.有理数集合{ …}; 正数集合{ …}; 整数集合{ …}; 自然数集合{ …}; 分数集合{ …}; 无理数集合{ …}; 绝对值最小的数的集合{ …};例2 (1)已知a 、b 互为相反数,c 、d 互为倒数,e(a+b )+12cd -2e °的值;(2)实数a 、b 、c 在数轴上的对应点如图所示,化简c a例3 计算:(-1)2009+ 3(tan 60︒)-1-︱1-3︱+(3.14-π)0.例4 已知(x-2)2=0,求xyz 的值.例5 用“☆”定义新运算: 对于任意实数a 、b , 都有a ☆b =b 2+1. 例如7☆4=42+1=17,那么-5☆3= ;当m 为实数时,m ☆(m ☆2)=【巩固练习】1、2的相反数是_____,1的绝对值是______,-23的倒数为_______= .2、绝对值大于1不大于4的所有整数的和为 .3、已知数2a -与23a -,若这两数的绝对值相等,则a 的倒数是 .4、下列各数中:-30,2,0.31,227,2π,2.161161161,(-2 005)0是无理数的5B 关于 点A 的对称点为C ,则点C 表示的数是 .6、实数a 、b 在数轴上的位置如图所示:化简2a +∣a -b ∣= .7、计算 03π316(2)20073⎛⎫-+÷-+- ⎪⎝⎭【课后作业】 姓名 一、必做题:1、32-= ;213-的倒数是 ;0(=_________;14-的相反数是_________.2、若()2240a c --=,则=+-c b a .3、绝对值最小的数是______;若 |a |<2,则a 的整数解为_______;已知|a +3|=1 ,那么a =______.4、计算:312-=_________,22131-⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=__________.5、定义2*a b a b =-,则(12)3**=______.6、地球上陆地面积约为149 100 000 km 2,用科学记数法可以表示为____________km 2(保留三个有效数字)7、国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( )A .42610⨯平方米 B .42.610⨯平方米 C .52.610⨯平方米 D .62.610⨯平方米8、在数轴上表示2-的点离开原点的距离等于( )A .2B .2-C .2±D .49、如果a <0,b >0,a +b <0,那么下列关系式中正确的是( ).A .a >b >-b >-aB .a >-a >b >-bC .b >a >-b >-aD .-a >b >-b >a 10、若a,b 均为实数,下列说法正确的是( ). A .若a +b =0,则a 、b 互为相反数 B.a 的倒数是a1 C.a a =2D. b 2是一个正数 11、已知:3,2xy ==,且0xy <,则x y +的值等于( ). A.5或-5 B.1或-1 C.3或1 D.-5或-1 12、已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于2,求)21()(2122m m cd b a +-÷+--的值.13、计算:①︒-+--⎪⎭⎫ ⎝⎛--45sin )32(2102②||4+⎝ ⎛⎭⎪⎫12-1-(3-1)0-8cos45°.二、选做题1、在实数范围内定义运算“⊕”,其法则为:22a b ab ⊕=-,求方程(4⊕3)⊕24x =的解.2、我们常用的数是十进制数,如32104657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210110121202=⨯+⨯+⨯等于十进制的数6,543210110101121202120212=⨯+⨯+⨯+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?3、将一根绳子对折1次从中间剪断,绳子变成3段;将一根绳子对折2次,从中间剪断,绳子变成5段;依此类推,将一根绳子对折n 次,从中间剪一刀全部剪断后,绳子变成 段.4、罗马数字共有7个:I (表示1),V (表示5),X (表示10),L (表示50),C (表示100),D (表示500),M (表示1000),这些数字不论位置怎样变化,所表示的数目都是不变的,其计数方法是用“累积符号”和“前减后加”的原则来计数的:如:IX=10-1=9,VI=5+1=6,CD=500-100=400,则XL= ,XI= .5、如图所示是标出长度单位和正方向的数轴,若点A 对应于实数a ,点B 对应于实数b ;a ,b 是整数,且2b a -=7,则图中数轴上的原点应是点,的算术平方根是 .6、设,a b为非零实数,则a a ).A. ±2B.±1或0C.±2或0D.±2或±1 7、计算:12345314,3110,3128,3182,31244,+=+=+=+=+=…归纳计算结果中的个位数字的规律,猜测200931+的个位数字是( )A. 0B. 2C. 4D. 8 8、已知:C 23=3×21×2=3,C 35=5×4×31×2×3=10,C 46=6×5×4×31×2×3×4=15,….观察上面的计算过程,寻找规律并计算C 610=____________.........A B C D。

2015届湘教版中考数学复习课件(第1课时_实数的有关概念)

2015届湘教版中考数学复习课件(第1课时_实数的有关概念)
数的相反数,也称这两个数互为相反数.
-x+y . 数 a 的相反数为________ ,x-y 的相反数为________ -a
若 a 与 b 互为相反数,则 a+b=________ 0 . 互为相反数的两个数在数轴上所对应的点到原点的距离 ________ 相等 .
考点聚焦 归类探究 回归教材
第1课时┃ 实数的有关概念
考点聚焦
归类探究
回归教材
第1课时┃ 实数的有关概念
探究三 科学记数法
命题角度: 用科学记数法表示数.
例3 搜索到与之相关的结果的条 数约为61700000,这个数用科学记数法表示为( C ) A. 617×105 C. 6.17×107 B. 6.17×106 D. 0.617×108
3
考点聚焦
归类探究
回归教材
第、相反数、倒数、绝对值的概念及计算.
例2 (1)[2014· 娄底] 2014的相反数是( A ) 1 1 A. -2014 B. - C. 2014 D. 2014 2014
解 析
2014的相反数是- 2014. 故选A.
考点聚焦
归类探究
回归教材
第1课时┃ 实数的有关概念
6.
近似数:一个近似数四舍五入到哪一位,那么就说这个近似 数精确到哪一位.对于带计数单位的近似数,其精确到的 数位由近似数的位数和后面的单位共同确定.如3.618万, 数字8实际上是十位上的数字,即精确到了十位.
考点聚焦
归类探究
回归教材
第1课时┃ 实数的有关概念
考点聚焦 归类探究 回归教材
第1课时┃ 实数的有关概念
【方法点析】 常见的无理数的三种情形:①开方开不尽的数;②圆周 率π及含π的数;③构造型无理数,如:0.1010010001„(相 邻两个1之间依次多一个0). 【失分盲点】 判定无理数时,不能只被表面形式迷惑,而应从最后结 果去判断.注意用根号表示的数不一定是无理数,如 8 =2是 有理数;用三角函数符号表示的数也不一定是无理数,如 sin30°,tan45°是有理数.

中考数学专题复习1实数的运算(原卷版)

中考数学专题复习1实数的运算(原卷版)

实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。

(有限小数与无限循环小数都是有理数。

)2.正整数、0、负整数统称为整数。

正分数、负分数统称分数。

3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

4.正数和负数表示相反意义的量。

【注意】0既不是正数,也不是负数。

【例1】.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。

圆圆在该快递公司寄一件8千克的物品,需要付费( )。

A.17元B.19元C.21元D.23元考点02 数轴1.数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C 表示的数是()A.﹣0.5B.﹣1.5C.0D.0.5考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。

2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。

正数的倒数为正数,负数的倒数为负数,0没 有倒数。

倒数是本身的只有1和-1。

4. 倒数性质:(1)若a 与b 互为倒数,则a·b=1;反之,若a·b=1,则a 与b 互为倒数。

(2)若a 与b 互为负倒数,则a·b=-1;反之,若a·b= -1则a 与b 互为倒数。

中考数学考点总复习课件:第1节 实 数

中考数学考点总复习课件:第1节 实 数
A.0 B.2 C.4 D.6 19.(导学号 65244001)(2016·丹东)观察下列数据:-2,52,-130,147,-256,…,它们 是按一定规律排列的,按照此规律,第 11 个数据是______-_1_12_12______.
20.(导学号 65244002)(2016·枣阳)一列数 a1,a2,a3,…满足条件:a1=12,an=1-1an-1(n≥2,且 n 为整数),
a(a≥0), (2)|a|=-a(a<0)即,正数的绝对值是____它__本__身,0的绝对值是____0_,负数的 绝对值是它的____相__反__数_; (3)一个数的绝对值是 ____非__负__数_,即|a| ____≥__ 0.
6.倒数:(1)若两个非零数 a,b 的积为 1,即___a_·b_=__1___, 则 a 与 b 互为倒数,反之亦然;
【对应训练 4】(2017·苏州)小亮用天平称得一个罐头的质量为 2.026 kg, 用四舍五入法将 2.026 精确到 0.01 的近似值为( D ) A.2 B.2.0 C.2.02 D.2.03 【对应训练 5】(2017·十堰)某颗粒物的直径是 0.000 002 5,把 0.000 002 5 用科学记数法表示为___2__.5_×__1_0_-__6___.
2
2
6.-2的绝对值的相反数是( D ) 3
A.32 B.-32 C.23 D.-23
7.(2017·乌鲁木齐)如图,数轴上点 A 表示数 a,则|a|是( A )
A.2 B.1 C.-1 D.-2 8.(2017·天门)北京时间 5 月 27 日,蛟龙号载人潜水器在太平洋马里亚纳海沟作业区开展了
若|a-b|=2 016,且 AO=2BO,则 a+b 的值为___-__6_7__2____.

2015年人教版中考数学总复习课件(考点聚焦+归类探究+回归教材):第1课时 实数(共35张PPT)

2015年人教版中考数学总复习课件(考点聚焦+归类探究+回归教材):第1课时 实数(共35张PPT)

第1课时┃ 实数
例2 填空题: 0 (1)相反数等于它本身的数是________ ; ±1 ; (2)倒数等于它本身的数是________ 0和1 ; (3)平方等于它本身的数是________ 0 (4)平方根等于它本身的数是________ ; 非负数 . (5)绝对值等于它本身的数是________
考点聚焦 归类探究 回归教材
第1课时┃ 实数
方法点析
对无理数的判断,不能只被表面形式迷惑,而应先化 简再判断.如 27, 16就是有理数. 3
考点聚焦
归类探究
回归教材
第1课时┃ 实数
探究二
实数的有关概念
命题角度: 1.数轴、相反数、倒数、绝对值的概念; 2.绝对值的相关计算.
考点聚焦
归类探究
回归教材
考点聚焦 归类探究 回归教材
第1课时┃ 实数
2.按大小分类: 零 正有理数 正整数 正实数 正无理数 实数 正分数 负整数 负有理数 负实数 负分数 负无理数 22 3 [注意] (1)任何分数都是有理数,如 ,- 等; 7 11 (2)0 既不是正数,也不是负数,但 0 是自然数.
考点聚焦
归类探究
回归教材
第1课时┃ 实数
考点3
非负数
1.非负数的概念:正数和零叫做非负数.常见的非负数
a,a2, a(a≥0). 有
2.非负数的性质:若几个非负数的和等于,则这几个 数都为零.考点聚焦
归类探究
回归教材
第1课时┃ 实数
考点4
实数的运算
1.运算法则:在实数范围内,加、减、乘、除(除数不为 零)、乘方运算都可以进行,但开方运算不一定能进行,正实数 和零总能进行开方运算,而负实数只能开奇次方,不能开偶次 方. 2.运算性质:有理数的一切运算性质和运算律都适用于 实数运算. 3.运算顺序:先算乘方、开方,再算乘除,最后算加减, 有括号的要先算括号内的,若没有括号,在同一级运算中,要 从左至右依次进行运算.

中考数学一轮复习专题 实数知识点、对应习题及答案

中考数学一轮复习专题  实数知识点、对应习题及答案

实数考点1 实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数. 例1 比较3-2与2-1的大小.分析:比较3-2与2-1的大小,可先将各数的近似值求出来, 即3-2≈1.732-1.414=0.318,2-1≈1.414-1=0.414,再比较大小例2 在-6,0,3,8这四个数中,最小的数是( )A.-6B.0C.3D.8 答:2-1,A 利用数轴考点2 无理数常见的无理数类型(1) 一般的无限不循环小数,如:1.41421356¨··· (2) 看似循环而实际不循环的小数,如0.1010010001···(相邻两个1之间0的个数逐次加1)。

(3) 有特定意义的数,如:π=3.14159265···(4).开方开不尽的数。

如:35,3注意:(1)无理数应满足:①是小数;②是无限小数;③不循环;(2)无理数不是都带根号的数(例如π就是无理数),反之,带根号的数也不一定都是无理数(例如4,327就是有理数).例3 下列是无理数的是( )A.-5/2B.πC. 0D.7.131412例4在实数中-23 ,0 3.14 )A .1个B .2个C .3个D .4个答:B ,A考点3 实数有关的概念实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数(2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数例5若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例6实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例7 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( )A. 5-2B. 2-5C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例8已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b的值为 分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。

中考数学第一轮复习精品课件第一章 第1讲实数

中考数学第一轮复习精品课件第一章 第1讲实数

C.4.5×105
D.0.45×106
2.数轴上的点 A 到原点的距离是 3,则点 A 表示的数为 ( A ) A.3 或-3 C.-3
B.3
D.6 或-6
3.如果规定收入为正,支出为负.收入 500 元记作+500 元,那么支出 237 元应记作( B ) A.-500 元 C.237 元 B.-237 元 D.500 元
第一章
数与式
第1讲 实数
1.了解无理数和实数的概念,理解实数的意义,能用数轴 上的点表示实数,会比较实数的大小.知道实数与数轴上的点 一一对应. 2.借助数轴理解相反数和绝对值的意义,会求实数的相反 数与绝对值(绝对值符号内不含字母). 3.理解乘方的意义,会用科学记数法表示数,掌握实数的 加、减、乘、除、乘方及简单的混合运算(以三步为主).
4.0 的特殊性.
0 (1)0 的相反数是__________ .
0 (2)0 的绝对值是__________ .
倒 (3)0 没有________ 数.
【学有奇招】 1.对于实数的概念,关键记住无理数的概念.在实数中只 有无限不循环小数是无理数,其他都是有理数.常见的无理数 有三种:①有规律但不循环的数,例如:0.101 001 000 100
π 001…;②π 及其衍生出来的数,例如:3π,2等;③含有根号 2 但开不尽方的数,例如: 2, 5, 2 等. 3
2.有理数的加法运算口诀:同号相加一边倒;异号相加 “大”减“小”,符号跟着大的跑;绝对值相等“零”正好. 注意:“大”减“小”是指绝对值的大小.
1.5 月的某一天,参观上海世博会的人数达到 450 000, 用科学记数法表示这个数为( C ) A.45×104 B. 4.5×106

中考数学 专题01 实数的有关概念及运算(原卷版)

中考数学 专题01 实数的有关概念及运算(原卷版)

归纳 4:科学记数法与近似数 基础知识归纳:根据科学记数法的定义,科学记数法的表示形式为 a×10n,其中 1≤|a|<10,n 为整数, 表示时关键要正确确定 a 的值以及 n 的值. 基本方法归纳:利用科学记数法表示一个数,在确定 n 的值时,看该数是大于或等于 1 还是小于 1.当该 数大于或等于 1 时,n 为它的整数位数减 1;当该数小于 1 时,-n 为它第一个有效数字前 0 的个数(含小
中考数学复习资料
的克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是 ( )A.B.Fra bibliotek C.D.
3.(2019 内蒙古通辽市,第 1 题,3 分) 1 的相反数是( ) 2019
A.2019 B. 1 C.﹣2019 D. 1
( )
A.5×106 B.107 C.5×107 D.108 14.(2019 重庆 A,第 8 题,4 分)按如图所示的运算程序,能使输出 y 值为 1 的是( )
A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1
归纳 5:实数的混合运算 基础知识归纳:实数混合运算时,将运算分为三级,加减为一级运算,乘除为二级运算,乘方为三级运 算.同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算 中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行 基本方法归纳:实数的混合运算经常涉及到零指数幂、负整数指数幂、特殊角的三角函数值、绝对值的化 简、二次根式等内容,要熟练掌握这些知识. 注意问题归纳:实数的混合运算经常以选择、填空和解答的形式出现,是中考是热点,也是比较容易出错 的地方,在解答此类问题时要注意基本性质和运算的顺序.

2015中考精英数学(人教)总复习课件 第1讲 实数

2015中考精英数学(人教)总复习课件 第1讲  实数

用科学记数法表示有单位的 数时,易把单位漏掉,导致含单位的近 似数的精确度与不含单位的近似数的精 确度混淆.
【例3】(2014· 巴中)2014年三月发生了一件举国悲痛 的空难事件——马航失联,该飞机上有中国公民154 名.噩耗传来后,我国为了搜寻生还者及找到失联飞 机,在搜救方面花费了大量的人力物力,已花费人民 币大约934千万元.把934千万元用科学记数法表示为 ( C )元.
A.9.34×102 C.9.34×109
B.0.934×103 D.9.34×1010
真题热身
1.(2013· 咸宁)如果温泉河的水位升高 0.8 m 时水位变化记作 +0.8 m,那么水位下降 0.5 m 时水位变化记作( D ) A.0 m B. 0.5 m C.- 0.8 m D.- 0.5 m 2.(2014· 潍坊)下列实数中是无理数的是(D ) 22 - A. B. 2 2 7 C. 5.15 D.sin45° - 3.(2014· 玉林)将 6.18×10 3 化为小数是( B ) A.0.000618 B. 0.00618 C. 0.0618 D.0.618
··
4.(2014· 徐州)点 A,B,C 在同一条数轴上,其中点 A,B 表 示的数分别为-3,1,若 BC=2,则 AC 等于( D ) A.3 B.2 C.3 或 5 D.2 或 6 5.(1)(2014· 重庆)实数-12 的相反数是____ 12 ; 2 . (2)(2014· 成都)计算:|- 2|=____ 6.(2013· 雅安)已知一组数 2,4,8,16,32,„,按此规律, 则第 n 个数是____ 2n .
实数的有关概念
1.数轴的三要素:________、________和单位长度. 2.实数与数轴:实数与数轴上的点________对应. 3 . 实数的相反数、倒数、绝对值:实数 a 的相反数为 ________;若 a, b 互为相反数, 则 a+b=________;非零实 数 a 的倒数为 ________(a≠0) ;若 a , b 互为倒数 , 则 ab= (a≥0), ________;实数 a 的绝对值为|a |= (a<0). 4.乘方:求 n 个________因数 a 的________的运算叫做乘方.

2015年北京中考数学总复习课件(第1课时_实数的有关概念)

2015年北京中考数学总复习课件(第1课时_实数的有关概念)

考点聚焦 京考探究
第1课时┃ 实数的有关概念
考点3 非负数
考点聚焦
京考探究
第1课时┃ 实数的有关概念
京 考 探 究
考 情 分 析
考点聚焦
京考探究
第1课时┃ 实数的有关概念
热 考 京 讲
热考一 实数的有关概念及分类
例 1 [2014· 北京] 2 的相反数是( B ) 1 1 A.2 B.-2 C.- D. 2 2
考点2 实数的有关概念
正方向 和________ 单位长度 原点 、________ (1)数轴:数轴的三要素包括________ ;数轴上的 点与________ 实数 一一对应. (2)相反数:a的相反数是________ 0 -a ;即a,b互为相反数⇔a+b=________ . 1 0 没有倒数, (3)倒数:a的倒数为________ ;即a,b互为倒数⇔ab=_1(__ a 故ab≠________)0 .
方法点析
用科学记数法把数 m 一般写成“a×10n” 的形式, 当|m|≥10 时,n 为正整数,n 的值等于该数整数部分的位数减 1;当|m|<0 时, n 为负整数, n 的值等于该数左数第一个非零数字前所有 0(包 括小数点前面的 0)的个数.特别需注意以下两点:
考点聚焦 京考探究
第1课时┃ 实数的有关概念
1.注意在 a×10n 中,|a|必须是大于或等于 1 且 小于 10 的数,小数点向左移动的位数等于所记数的 整数位数减去 1. 2.注意在 a×10n 中,|n|是一个正整数,且比原 数的整数位数小 1.
考点聚焦
京考探究
第1课时┃ 实数的有关概念
热考三
非负数和为0
例 4 若(x+2)2+ y-3=0,则 xy 的值为( B ) A.-8 B.-6 C.5 D. 6

2015年河北中考数学总复习课件(第1课时_实数的有关概念与大小比较)

2015年河北中考数学总复习课件(第1课时_实数的有关概念与大小比较)

冀考解读
课前热身
考点聚焦
冀考探究
第1课时┃ 实数的有关概念与大小比较
考点2 实数的有关概念 原点 、 ________ 正方向 和 (1) 数 轴 : 数 轴 的 三 要 素 包 括 ________ 实数 一一对应. __________ 单位长度 ;数轴上的点与________ (2)相反数:a 的相反数是________ -a ;a,b 互为相反数⇔ a+b=________ . 0 1 (3)倒数:a(a≠0)的倒数为________ ;a,b 互为倒数⇔ a ab=________(________ 没有倒数,故 ab≠________) . 1 0 0
3. 在实数-2, 0, 2, 3 中, 最小的实数是 ( A ) A.-2 B.0 C.2 D.3 4. 截至 2013 年 3 月底, 某市人口总数已达到 4230000 人. 将 4230000 用科学记数法表示为 ( B ) A.0.423×107 B.4.23×106 C.42.3×105 D.423×104
实数的大小比较 选择、填空 有理数的四则运算 选择、填空、解答 乘方与开方运算 选择、填空 实数中非负数的性质 选择、填空、解答
冀考解读 课前热身 考点聚焦
冀考探究
第1课时┃ 实数的有关概念与大小比较
课 前 热 身
1.下列各数中,为负数的是 A.0 B.-2 C.1 1 D. 2 ( B )
解 析
冀考解读
课前热身
考点聚焦
冀考探究
第1课时┃ 实数的有关概念与大小比较
考点4 平方根与立方根
类型 表示方法 a>0 a=0 a<0
a 的平方根 ± a
a 的算术平 方根 a
a 的立方根 3 a

2015届中考数学精品复习课件【第1讲】实数

2015届中考数学精品复习课件【第1讲】实数

(4)绝对值:在数轴上,一个数对应的点离原点的__距离__, 叫做这个数的绝对值. a ,(a>0)
|a|=
0 ,(a=0)
-a ,(a<0) |a|是一个非负数,即|a|__≥0__. (5)科学记数法,近似数: 科学记数法就是把一个数表示成__± a×10n__(1≤a<10,n 是整数) 的形式;一个近似数,__四舍五入__到哪一位,就说这个数精确到 哪一位.
与实数相关的概念
【点评】 (1)互为相反数的两个数和为0;(2)正数的 绝对值是它本身,负数的绝对值是它的相反数,0的绝 对值是 0;(3)两个非负数的和为 0 ,则这两个数分别等 于0.
与实数相关的概念
4.(1)(2012· 凉山)若 x 是 2 的相反数,|y|=3,则 x-y 的值是( D ) A.-5 B.1 C.-1 或 5 D.1 或-5 1 1 1 1 (2)计算:-(- )=__ __;|- |=__ __; 2 2 2 2 1 1- (- )0=__1__;(- ) 1=__-2__. 2 2 |a| |b| |ab| (3)若 ab>0,则 + - 的值等于__1 或-3__. a b ab
数形结合思想 数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的 一种思想策略.“数无形,少直观;形无数,难入微.”数形结合思想可以使 问题化难为易、化繁为简.
分类讨论思想
分类讨论思想是“化整为零,各个击破,再积零为整”的数学策略,分类注 意按一定的标准进行;分类既不能遗漏,也不能交叉重复.
自然数

无理数
分数
正分数 有限小数或无 负分数
限循环小数
正实数 根据需要,我们也可以按符号进行分类,如:实数零 负实数

中考数学第一轮复习教案(实数、整式、分式、根式)

中考数学第一轮复习教案(实数、整式、分式、根式)

中考总习1 实数1、平方根定义1:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根。

a 的算术平方根记作a ,读作“根号a ”,a 叫做被开方数。

即a x =。

规定:0的算术平方根是0。

定义2:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根。

即如果x 2=a ,那么x 叫做a 的平方根。

即a x ±=。

定义3:求一个数a 的平方根的运算,叫做开平方。

因为一个非零实数的平分肯定是正数,所以,正数有两个平方根,它们互为相反数;例如:4的平分根为±2,是互为相反数的;0的平方根是0;负数没有平方根。

2、立方根定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。

即如果x 3=a ,那么x 叫做a 的立方根,记作3a 。

即3a x =。

求一个数的立方根的运算,叫做开立方。

正数的立方根是正数;负数的立方根是负数;0的立方根是0。

3、无理数无限不循环小数又叫做无理数。

初中常见的无理数有:带有根号开不出来的式子,例如:、、等等;带有的式子,例如: ,等等;无限不循环小数,例如:1.325…,-0.2587…等等4、实数有理数和无理数统称实数。

即实数包括有理数和无理数。

备注:最小的正整数是1,最大的负整数是-1,绝对值最小的数是0。

有理数关于相反数和绝对值的意义同样适合于实数。

例如:3-的相反数为3,倒数为3331-=-,3-的绝对值为。

5、实数的分类分法一:负有理数 0 无理数 实数有理数正有理数负无理数 正无理数 有限小数或 无限循环小数无限不循环小数 知识要点分法二:实数 0由上可知,一个数要是分数,前提必须是有理数,所以,不是所有的a/b 这样的数,都是分数。

例如:不是分数,是无理数。

6、实数的比较大小有理数的比较大小的法则在实数范围内同样适用。

备注:遇到有理数和带根号的无理数比较大小时,让“数全部回到根号下”,再比较大小。

2014-2015中考数学总复习-第一轮-第一章 第1讲 实数的相关概念

2014-2015中考数学总复习-第一轮-第一章 第1讲 实数的相关概念

思路分析:较大的数保留有效数字需要用科学记数法来表示.用科学记数法 保留有效数字,要在标准形式 a × 10n中 a 的部分保留,从左边第一个不为 0 的 数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.
答案:B。 39 360=3.936×104≈3.94×104
方法指导:用科学记数法表示的数必须满足a×10n(1≤|a|<10,n为整数,表示时 关键要正确确定a的值以及n的值。)的形式;求近似数时注意看清题目要求和单位 的换算;查有效数字时,要从左边第一个不是0的数开始数起,到精确到的数位 为止,所有的数字都叫做这个数的有效数字。

D. -a-2.5
思路分析: ( 1 )因为绝对值符号里面的 a - 2.5 是负 数,去掉绝对值之后,结果为它的相反数, 所以答案为 2.5 - a ,故答案选 B . ( 2 )由题中的图可知, |a - 2.5| 表示的意义是数 a 与数 2.5 所表示的两点 之间的距离,而这两点之间的距离为 2.5 - a ,故答案选 B . 答案: B. 方法指导:解决绝对值的问题通常有两种思路,一是根据绝对值的计算法则去掉 绝对值;二是根据绝对值的几何意义直接计算.
4.绝对值:数轴上表示数 a的点与 原点 的距离叫做数a 的绝对值。即一个正数的
绝对值是它 本身 ;0的绝对值是 0 ;一个负数的绝对值是它的 相反数 。
a ( a>0 ) 即│a│= 0 ( a=0 ) -a ( a<0 )
n a 10 5.科学记数法:把一个数表示成 的形式,其中1≤ │a│ <10的数,n是
考点即时练 3.如图,数轴上表示数-2的相反数的点是( A.点P B.点Q C.点M D.点N )
答案: A 4.(2013张家界)﹣2013的绝对值是( A.﹣2013 B. 2013 C. ) D.﹣
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年中考数学专题复习第一讲 实数【基础知识回顾】一、实数的分类:1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类:实数【重点:1、正确理解实数的分类。

如:2π是 数,不是 数,722是 数,不是 数。

2、0既不是 数,也不是 数,但它是自然数】二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。

2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。

a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。

【重点:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】三、科学记数法、近似数和有效数字。

1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。

其中a 的取值范围是 。

2、近似数和有效数字:一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪ ⎨ ⎧ 正无理数 无理数 负分数 _ 零 正整数 整数 有理数 无限不循环小数 ⎩⎨⎧⎩⎨⎧负有理数负零正无理数正实数实数 (a >0) (a <0)0 (a=0)字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。

【重点:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。

2、近似数3.05万是精确到 位,而不是百分位】四、数的开方。

1、若x 2=a(a 0),则x 叫做a 的 ,记做±a ,其中正数a 的 平方根叫做a 的算术平方根,记做 ,正数有 个平方根,它们互为 ,0的平方根是 ,负数 平方根。

2、若x 3=a,则x 叫做a 的 ,记做3a ,正数有一个 的立方根,0的立方根是 ,负数 立方根。

【重点:平方根等于本身的数有 个,算术平方根等于本身的数有 ,立方根等于本身的数有 。

】【重点考点例析】考点一:无理数的识别。

例1 (2014•1,45,0.323πo &&中是无理数的个数有( )个.A . 1B . 2C . 3D . 4对应训练1.(2014•盐城)下面四个实数中,是无理数的为( )A .0B .﹣2 D .27考点二、实数的有关概念。

例2 (2014•乐山)如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作( )例3 (2014•遵义)﹣(﹣2)的值是( )A .﹣2B . 2C . ±2D . 4例4 (2014•扬州)﹣3的绝对值是( )A .3B . ﹣3C . ﹣3D .例5 (2014•黄石)13-的倒数是( ) A .13 B . 3 C . ﹣3 D .13-例6 (2014•怀化)64的立方根是( )A .4B . ±4C . 8D . ±8例7 (2014•荆门)|3|x y --互为相反数,则x+y 的值为( )A .3B . 9C . 12D . 27对应训练2.(2014•丽水)如果零上2℃记作+2℃,那么零下3℃记作()A.﹣3℃B.﹣2℃C.+3℃D.+2℃3.(2014•张家界)﹣2014的相反数是()A.﹣2014 B.2014 C.12012D.120124.(2014•铜仁地区)|﹣2014|=.5.(2014•常德)若a与5互为倒数,则a=()A.15B.5C.﹣5 D.156.(2011•株洲)8的立方根是()A.2 B.﹣2 C.3D.47.(2014•广东)若x,y为实数,且满足|x﹣3|+=0,则()2014的值是.考点三、实数与数轴。

例8 (2014•乐山)如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是()A.ab>0 B.a+b<0C.(b-1)(a+1)>0 D.(b-1)(a-1)>0对应训练8.(2014•常德)实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.ab>0C.|a|+b<0 D.a-b>08.A考点四、科学记数法。

例9 (2014•潍坊)许多人由于粗心,经常造成水龙头“滴水”或“流水”不断.根据测定,一般情况下一个水龙头“滴水”1个小时可以流掉3.5千克水,若1年按365天计算,这个水龙头1年可以流掉()千克水.(用科学记数法表示,保留3个有效数字)A.3.1×104 B.0.31×105 C.3.06×104 D.3.07×104[来源:Z。

xx。

]用科学记数法表示一个数的方法是:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).对应训练9.(2014•鸡西)2014年5月8日,“最美教师”张丽莉为救学生身负重伤,张老师舍己救人的事迹受到全国人民的极大关注,在住院期间,共有691万人以不同方式向她表示问候和祝福,将691万人用科学记数法表示为人.(结果保留两个有效数字)【聚焦中考】一、选择题1.(2014•临沂)16-的倒数是()A.6 B.﹣6 C.16D.16-1.(2014•青岛)﹣2的绝对值是()A.12-B.﹣2 C.12D.22.(2014•济宁)在数轴上到原点距离等于2的点所标示的数是()A.-2 B.2C.±2 D.不能确定3.(2014•聊城)在如图所示的数轴上,点B与点C关于点A对称,A、B两点-1,则点C所对应的实数是()A.1B.2+C.1D.14.(2014•烟台)的值是()A.4 B.2C.﹣2 D.5.(2014•日照)据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109 6.(2014•济南)2014年伦敦奥运会火炬传递路线全长约为12800公里,数字12800用科学记数法表示为()A.1.28×103B.12.8×103C.1.28×104D.0.128×105 7.(2014•泰安)已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为()A.21×10-4千克B.2.1×10-6千克C.2.1×10-5千克D.21×10-4千克二、填空题8.(2014•德州)﹣1,0,0.2,17,3中正数一共有个.8.39.(2014•青岛)为改善学生的营养状况,中央财政从2011年秋季学期起,为试点地区在校生提供营养膳食补助,一年所需资金约为160亿元,用科学记数法表示为元.【备考真题过关】一、选择题1.(2014•陕西)如果零上5℃记作+5℃,那么零下7℃可记作()A.﹣7℃B.+7℃C.+12℃D.﹣12℃2.(2014•河北)下列各数中,为负数的是()A.0 B.﹣2 C.1D.1 23.(2014•义乌市)﹣2的相反数是()A.2 B.﹣2 C.±2 D.12-[来源:学科网]4.(2014•江西)﹣1的绝对值是()A.1 B.0C.﹣1 D.±15.(2014•襄阳)一个数的绝对值等于3,这个数是()A.3 B.﹣3 C.±3 D.1 36.(2014•宜昌)如图,数轴上表示数-2的相反数的点是()A.点P B.点QC.点M D.点N7.(2014•攀枝花)﹣3的倒数是()A.3 B.﹣3 C.13D.13-8.(2014•黄冈)下列实数中是无理数的是()A.B C.0πD9.(2014•丽水)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是()A.﹣4 B.﹣2C.0 D.410.(2014•毕节地区)实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b|C.-a<-b D.b-a>011.(2014•遵义)据有关资料显示,2011年遵义市全年财政总收入202亿元,将202亿用科学记数法可表示()A.2.02×102B.202×108C.2.02×109D.2.02×1010 12.(2014•南京)PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10-5B.0.25×10-6C.2.5×10-5D.2.5×10-6 13.(2014•恩施州)恩施生态旅游初步形成,2011年全年实现旅游综合收入908600000元.数908600000用科学记数法表示(保留三个有效数字),正确的是()A.9.09×109B.9.087×1010C.9.08×109D.9.09×108 14.(2014•达州)今年我市参加中考的学生人数约为6.01×104人.对于这个近似数,下列说法正确的是()A.精确到百分位,有3个有效数字B.精确到百位,有3个有效数字C.精确到十位,有4个有效数字D.精确到个位,有5个有效数字15.(2014•台湾)如图,数在线的A、B、C、D四点所表示的数分别为a、b、c、d,且O为原点.根据图中各点位置,判断|a-c|之值与下列何者不同?()A.|a|+|b|+|c| B.|a-b|+|c-b|C.|a-d|-|d-c| D.|a|+|d|-|c-d|二.填空题16.(2014•连云港)某药品说明书上标明药品保存的温度是(20±2)℃,该药品在℃范围内保存才合适.17.(2014•上海)计算1|1|2-==.18.(2014•湘潭)5月4日下午,胡锦涛总书记在纪念中国共产主义青年团成立90周年大会上指出:希望广大青年坚持远大理想、坚持刻苦学习、坚持艰苦奋斗、坚持开拓创新、坚持高尚品行.我国现有约78000000名共青团员,用科学记数法表示为名.19.(2014•绥化)已知1纳米=0.000000001米,则2014纳米用科学记数法表示为米.20.(2014•玉林)某种原子直径为 1.2×10-2纳米,把这个数化为小数是纳米.21.(2014•资阳)为了保护人类居住环境,我国的火电企业积极做好节能环保工作.2011年,我国火电企业的平均煤耗继续降低,仅为330000毫克/千瓦时,用科学记数法表示并保留三个有效数字为毫克/千瓦时.22.(2014•泰州)如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是.23.(2014•广安)实数m、n在数轴上的位置如图所示,则|n-m|= .24.(2014•娄底)写出一个x的值,使|x﹣1|=x﹣1成立,你写出的x的值是.25.(2014•=.26.(2014•张家界)已知2(3)0x y-+=,则x+y=.。

相关文档
最新文档