进程的描述与控制讲解

合集下载

第二讲 进程管理(1)--进程控制

第二讲 进程管理(1)--进程控制

N=account;
N=N+200; account=N;
建立一个能够描述程序的执行过程并且能用来共享资 源的基本单位。
2.1.5 进程的定义和特征
一、进程(Process) 进程是程序在一个数据集上的运行过程,是系统 进行资源分配和调度的一个独立单位。
其它定义:

进程是程序的一次执行。 进程是一个程序及其数据在处理机上顺序执行时所 发生的活动。 进程是进程实体的运行过程,是系统进行资源分配 和调度的一个独立单位”。
2.2 进程的描述
系统中需要有描述进程存在和能够反映其变化的物理实体,即进程的静态 描述。进程的静态描述由三部分组成:进程控制块PCB,有关程序段和该 程序段对其进行操作的数据结构集。
进程控制块PCB包含了有关进程的描述信息、控制信息以及资源信息,是 进程动态特征的集中反映。 系统根据PCB感知进程的存在和通过PCB中所包含的各项变量的变化,掌 握进程所处的状态以达到控制进程活动的目的。
21
2.2.1 进程控制块
4)进程控制信息:
程序和数据的地址——指程序和数据所在的内存或外存首地址; 进程同步和通信机制——如信号量、消息队列指针等,它们可能全 部或部分地存放在PCB中; 资源清单——是一张列出了除CPU外的、进程所需的全部资源及已 经分配到该进程的资源的清单; 链接指针——它给出本进程(PCB)所在队列中下一个进程的PCB的 首址。
27
2.3.1 进程的基本状态
进程的挂起/解挂状态
一、设臵原因
1、用户需要 :中间结果与预期不符; 2、操作系统需要:系统某些功能故障; 3、系统负荷过重 4、父进程需要 5、对换的需要
二、设臵挂起状态后进程状态的转换

信息技术教案:进程的描述与控制

信息技术教案:进程的描述与控制

信息技术教案:进程的描述与控制进程的描述与控制一、前驱图和程序执行1.前驱图的定义。

(略)2.程序顺序执行⑴程序顺序执行概念⑵程序顺序执行的特征:顺序性、封闭性、可再现性封闭性:所谓封闭性是指程序一旦开始执行,其执行过程不受任何外界因素影响。

顺序性:当程序在处理机上执行时,处理机的操作严格按照程序所规定的顺序执行。

确定性:其程序执行结果与执行速度、时间的无关性。

可再现性:指程序对一组数据的重复执行必得到相同的结果。

3.程序并发执行⑴程序并发执行使一个程序分成若干个可同时执行的程序模块的方法成为并发程序设计,能够并发执行的程序成为并发程序。

⑵程序顺序执行的特征:间断性、失去封闭性、不可再现性(举例说明)4.并发程序与顺序程序的比较顺序程序并发程序执行过程顺序执行并发执行程序与执行对应一一对应一个程序可对应多个执行封闭性独占资源,具有封闭性共享资源,不具有封闭性确定性具有无可再现性具有无程序间关系无有间接制约或直接制约关系5.程序并发执行的条件(保持可再现性)两段程序间无共享变量或对共享变量仅有读操作。

二、进程的描述1.进程的引入和定义⑴进程引入的原因进程:操作系统中最基本、最重要的概念多道程序设计出现以后,为了刻划系统内部出现的情况,描述系统内部各作业的活动规律引入的。

多到系统的特点:并行性、程序间的制约、动态特征程序是静态的,不能并行⑵进程的定义通用定义:(举例解释)⑶进程的特征:动态性、并发性、独立性、异步性、结构特征⑷进程和程序的区别与联系区别:进程是一动态概念,而程序则是一静态概念。

程序是指令的有序集合,永远存在,进程强调的是执行,是程序在数据集上的一次执行,有创建有撤销,存在是暂时的;进程具有并发性,而程序没有;进程是竞争计算机资源的基本单位,程序不是。

联系:进程是程序在数据集上的一次执行;一个程序可对应多个进程,一个进程可包括多个程序。

2.进程的基本状态:⑴进程的三种基本状态:(引入状态的原因)等待态:就绪态:运行态:进程的状态不断发生变化,但任何时候都要处于某种状态。

第4章 进程控制

第4章 进程控制

通信信息
进程间进行通信时所记录的有关信息
家族联系
指明本进程与家族的联系 占有资源清单
进程的特征
结构特征:进程除了程序段、数据段还 包括PCB 动态性:进程是一个程序的执行,是动 态的,是有生命周期的。 并发性:多个进程实体能同存于内存中, 且在一段时间内同时运行。 独立性:独立运行,独立申请资源,独 立接受调度。 异步性:进程按各自独立的、不可预知 的速度向前前进。 动态性和并发性是进程的最基本特征。
进程等待原语的实现
入口
保护进程的CPU现场到PCB结构中
置该进程为”等待”状态
将该进程PCB结构插入到等待队列中
转进程调度
5. 进程唤醒 进程唤醒原语的形式 当处于等待状态的进程所期待的事件来到时, 由发现者进程使用唤醒原语叫唤醒它。 wakeup(chan) 入口参数chan:进程等待的原因。 进程唤醒原语的功能 当进程等待的事件发生时,唤醒等待该事件的 进程。
响了程序速度。
程序的并发执行使得程序失去了顺序 性,封闭性和可再现性,用“程序” 无法描述这些特征,因此引入了“进 程这个概念”。
4.2 进程的概念 4.2.1进程的定义
1. 进程定义
什么是进程 所谓进程,就是一个程序在给定活动空间和初始环 境下, 在一个处理机上的执行过程。
进程与程序的区别
程序是静态的概念;进程是动态的概念
进程是一个独立运行的活动单位
进程是竞争系统资源的基本单位
一个程序可以对应多个进程;一个进程至少包含一
个程序。
2. 进程的状态
进程的基本状态
运行状态(running)
该进程已获得运行所必需的资源,它的程序正在处理机 上执行。
等待状态(wait)

【操作系统】《计算机操作系统》汤小丹第2章进程的描述和控制

【操作系统】《计算机操作系统》汤小丹第2章进程的描述和控制

【操作系统】《计算机操作系统》汤⼩丹第2章进程的描述和控制博主:海底淤泥1.什么是前趋图?为什么要引⼊前趋图? 前趋图:⼀个有向⽆循环图,它⽤于描述进程之间的先后顺序 作⽤:更好描述程序的顺序和并发执⾏情况2.试画出下⾯四条语句的前趋图S1:a=x+y S2:b=z+1 S3:c=a-b S4:w=c+1 S1->S3 S2->S3 S3->S43.为什么程序并发执⾏会产⽣间断特征? 程序在并发执⾏时,由于它们共享系统资源,以及为完成同⼀项任务相互合作,⾄使在这些并发程序之间形成了相互制约的关系4.程序并发执⾏时为什么会失去封闭性和可再现性? 失去封闭性:当系统存在着多个可以并发执⾏的程序时,系统中的各种资源将为它们所共享,⽽这些资源的状态也由这些程序来改变,导致其中任意程序运⾏时,其环境都必然会受到其他程序的影响。

失去可再现性:程序并发执⾏时,由于失去了封闭性,其计算结果必然将与并发程序的执⾏速度有关,从⽽使程序的执⾏失去了可再现性5.在操作系统中为什么要引⼊进程的概念?它会产⽣什么影响? 为了使程序并发执⾏,并且可以对并发执⾏的程序加以描述和控制,⼈们引⼊了“进程”的概念。

影响:使程序并发执⾏,进程实体和其他进程实体并发执⾏6.试从动态性、并发性、和独⽴性上⽐较进程和线程 动态性:进程实体有⼀定⽣命期,是动态的;⽽程序是⼀组有序指令集合,并存放在某种介质上,其本⾝不具有活动意义,是静态的 并发性:进程可以并发执⾏,没有PCB的程序是不能并发执⾏的 独⽴性:进程实体是⼀个能独⽴运⾏,独⽴获得资源和独⽴接受调度的基本单位。

未建⽴PCB的程序不能作为⼀个独⽴的单位参与运⾏7.试说明PCB的作⽤具体表现在什么⽅⾯,为什么说PCB是进程存在的唯⼀标志? PCB描述进程是基本情况和活动过程,进⽽控制和管理进程。

创建进程:创建进程实体的PCB 撤销进程:撤销进程实体的PCB8.PCB提供了进程管理和进程调度所需要的哪些信息?1.进程标识符2.处理机状态3.进程调度信息4.进程控制信息9.进程控制块的组织⽅式有哪⼏种?1.线性⽅式2.连接⽅式3.索引⽅式10.何谓操作系统内核?内核的主要功能是什么? 通常将⼀些硬件紧密相关的模块、各种常⽤设备的驱动程序以及运⾏频率较⾼的模块,都安排在紧靠硬件的软件层次中,将它们常驻内存,被称为操作系统内核 功能:1.对重要软件进⾏保护,防⽌遭到其他程序的破坏 2.提⾼OS的运⾏效率11.试说明进程在三个基本状态之间转换的经典原因 就绪->执⾏:进程调度 执⾏->就绪:时间⽚完 执⾏->阻塞:I/O请求 阻塞->就绪:I/O完成12.为什么要引⼊挂起状态?该状态有哪些性质? 原因:1.终端⽤户的需要 2.⽗进程的请求 3.负荷调节的需要 4.操作系统的需要 性质:1.若程序正在执⾏,将暂停执⾏ 2.若原本处于就绪状态,则该程序不接受调度13.在进⾏进程切换时,所要保存的处理机状态信息有哪些?1.通⽤寄存器2.指令计数器3.程序状态字PSW4.⽤户栈指针14.试说明引起进程创建的主要事件。

第二章、进程的描述与控制

第二章、进程的描述与控制

第⼆章、进程的描述与控制第⼆章、进程的描述与控制2.1 前趋图和程序执⾏2.1.1 前趋图概念:所谓前趋图:指⼀个有向⽆循环图(DAG),它⽤于描述进程之间执⾏的先后顺序。

2.1.2 程序顺序执⾏特征:顺序性封闭性:指程序在封闭的环境中运⾏,程序运⾏时独占全机资源,资源的状态只有本程序才能改变,程序⼀旦开始执⾏,其执⾏结果不受外界因素影响可再现性:只要条件相同还会得到相同的执⾏结果。

2.1.3 程序并发执⾏特征:间断性失去封闭性不可在现性2.2进程的描述2.2.1 进程的定义和特征定义为了使程序并发执⾏,并且可以对并发执⾏的程序加以描述和控制,⼈们引⼊了进程的概念。

为了使参与并发执⾏的每个程序都能独⽴运⾏,在操作系统中必须为之分配⼀个专门的数据结构,称为进程控制块(PCB)。

系统利⽤PCB 来描述进程的基本情况和活动过程,进⽽控制和管理进程。

因此进程的定义为:由程序段、相关的数据段和由程序段、相关的数据段和PCB三部分构成的进程实体。

⽐较典型的定义有:进程是程序的⼀次执⾏进程是⼀个程序及其数据在处理机上顺序执⾏时所发⽣的活动进程是具有独⽴功能的程序在⼀个数据结合上运⾏的过程,它是系统进⾏资源分配和调度的⼀个独⽴单位。

进程的特征动态性并发性独⽴性异步性2.2.2 进程的基本状态以及转换进程三种基本状态由于多个进程在并发执⾏时共享系统资源,致使他们在运⾏过程中呈现间断性的运⾏规律,所以进程在⽣命周期内可能具有不同状态。

⼀般⽽⾔,每个进程⾄少应处于以下三种基本状态:就绪(Ready)状态指进程已处于准备好运⾏的状态,即进程已分配到除CPU以外的所有必要资源后,只要再获得CPU就可以⽴即执⾏。

如果有多个就绪状态的进程。

就绪队列通常按照⼀定的策略排成⼀个队列,称该队列为就绪队列执⾏(Running)状态指进程已经获得CPU,其程序正在执⾏的状态。

在单处理机系统中,只有⼀个进程处于执⾏状态,⽽多处理机系统则有多个进程处于阻塞(Block)状态指正在执⾏的进程由于发⽣某事件(如I/O请求、申请缓冲区失败等)暂时⽆法继续执⾏时的状态,即进程的执⾏受到了阻塞。

操作系统-进程管理

操作系统-进程管理

02
最短作业优先(SJF):优先调度预计运行时 间最短的进程。
03
最短剩余时间优先(SRTF):优先调度剩余 时间最短的进程。
04
优先级调度:根据进程的优先级进行调度。
死锁的产生与预防
死锁的产生
死锁是指两个或多个进程在无限期地等待对方释放资源的现象。产生死锁的原因包括资源分配不当、 请求和保持、环路等待等。
操作系统-进程管理
• 进程管理概述 • 进程的同步与通信 • 进程调度与死锁 • 进程的并发控制 • 进程管理的发ห้องสมุดไป่ตู้趋势与挑战
01
进程管理概述
进程的定义与特点
01
进程是程序的一次执行,具有动态性、并发性、独立性和制 约性。
02
进程拥有独立的内存空间,执行过程中不受其他进程干扰。
03
进程是系统资源分配和调度的基本单位,能够充分利用系统 资源进行高效计算。
进程同步的机制
进程同步的机制主要包括信号量机制、消息传递机制和共享内存机制等。这些 机制通过不同的方式协调进程的执行顺序,以实现进程间的有效协作。
信号量机制
信号量的概念
信号量是一个整数值,用于表示系统资源或临界资源的数量 。信号量可以用来控制对共享资源的访问,以避免多个进程 同时访问导致的数据不一致问题。
消息传递的机制
消息传递的机制包括发送和接收操作。发送操作将消息发送给目标进程,接收操 作从消息队列中获取消息并进行处理。通过这种方式,多个进程可以通过发送和 接收消息来协调执行顺序和交换数据。
共享内存机制
共享内存的概念
共享内存是一种实现进程间通信的有效方式,通过共享一段内存空间来实现不同进程之间的数据交换和共享。
预防死锁的方法

计算机操作系统原理 第二章 进程描述与控制

计算机操作系统原理 第二章 进程描述与控制

13
两个并发程序方案

设有一台标准输入设备(键盘),和一台标准 输出设备(显示器或打印机),输入程序负责 从标准设备中读取一个字符,送缓冲区中。输 出程序从缓冲区中取数据,送标准设备输出。
14
两个并发程序方案
f
标准输入 (键盘)
输入程序 缓冲区 输出程序
g
标准输出 (打印机)
15
两个并发程序方案
6
前趋图
前趋图(Precedence Graph)是一个有向无循环图,记 为DAG(Directed Acyclic Graph),用于描述进程之间执行 的前后关系。 结点:一个程序段或进程,乃至一条语句
有向边:偏序或前趋关系
把没有前趋的结点称为初始结点(Initial Node) 没有后继的结点称为终止结点(Final Node) 每个结点还具有一个重量(Weight),用于表示该结点 所含有的程序量或结点的执行时间。
38
进程状态模型
进程状态转换
原状态 创建 OS根据作业控制请求; 分时系统用户登录; 进程产生子进程而创 建进程 转换后状态 运行 × 就绪 × 阻塞 × 终止 ×
创建
×
×
OS准备运 行新的进 程
×
×
(转下表)
39
进程状态模型
原状态 创建 运行 × 运行 × 转换后状态 就绪 超时;OS服务 请求;OS响应 具有更高优先 级的进程;进 程释放控制 阻塞 OS服务 请求; 资源请 求;事 件请求 终止 进程完 成,进 程夭折
2.5 进程同步 2.6 经典进程的同步问题 2.7 管程机制 2.8 进程通信
3
2.1 进程描述

2.1.1 程序的顺序执行 2.1.2 程序的并发执行 2.1.3 进程的定义

实验一进程控制与描述

实验一进程控制与描述

死锁检测
死锁检测是通过检测系统状态是否满足死锁条件来确定系 统是否处于死锁状态。
死锁解除
死锁解除是当系统检测到死锁状态时采取措施来解除死锁 的过程。
资源有序分配法
资源有序分配法是一种预防死锁的方法,通过为每个资源 分配一个唯一的序号,并要求进程按照序号递增的顺序请 求资源来避免产生循环等待条件。
03 进程描述
实验一:进程控制与描述
目录
• 进程控制概述 • 进程控制机制 • 进程描述 • 实验步骤与操作 • 实验结果与分析
01 进程控制概述
进程的定义与特性
总结词
进程是程序的一次执行,具有动态性、 并发性、制约性、独立性和制约性等特 性。
VS
详细描述
进程是程序在计算机上的一次执行过程, 它具有动态性,即进程的状态可以在运行 过程中改变;并发性,即进程可以同时存 在于多个状态;制约性,即进程间的相互 制约关系;独立性,即进程是独立的,不 受其他进程的影响;制约性,即进程间的 相互制约关系。
04 实验步骤与操作
实验环境搭建
准备实验所需的操作 系统环境,如Linux 或Windows。
配置网络连接,确保 实验过程中能够访问 外部资源。
安装必要的软件工具, 如任务管理器、终端 等。
进程创建与终止实验
01 打开任务管理器或终端,
查看当前运行的进程。
观察并记录进程的创建 过程和结果,包括进程
PCB中包含了进程标识符、进 程状态、内存指针、文件描述 符表等信息。
通过PCB,操作系统可以对进 程进行创建、切换、终止等操 作,实现对进程的统一管理。
进程状态信息
1
进程状态信息是指描述进程当前状态的变量和数 据结构。

进程概念、进程控制

进程概念、进程控制
15
3.1 进程的概念
进程的概念是60年代初首先由麻省理工学院 进程的概念是60年代初首先由麻省理工学院 60 MULTICS系统和IBM公司的CTSS/360系统 系统和IBM公司的CTSS/360 的MULTICS系统和IBM公司的CTSS/360系统 引入的。进程有很多各式各样的定义, 引入的。进程有很多各式各样的定义,如: 进程是一个可以并行执行的计算部分 进程是一个抽象实体,当它执行某个任务时, 进程是一个抽象实体,当它执行某个任务时, 将要分配和释放各种资源 进程是一个独立的可以调度的活动 等等
2.进程控制信息: 2.进程控制信息: 进程控制信息
当前状态(就绪态、执行态、等待态) 当前状态(就绪态、执行态、等待态) 进程优先级(priority) 进程优先级(priority) 进程开始地址 运行统计信息, 运行统计信息,进程占有和利用资源的情况 通信信息
27
ห้องสมุดไป่ตู้
3.资源管理信息: 3.资源管理信息: 资源管理信息 有关存储器的信息 使用输入输出设备的信息 有关文件系统的信息等 4.CPU现场保护信息 现场保护信息: 4.CPU现场保护信息: 存储退出执行时的进程现场数据, 存储退出执行时的进程现场数据,当该进 程重新恢复运行时恢复处理器现场。 程重新恢复运行时恢复处理器现场。 •包括通用寄存器内容、控制寄存器内容、 包括通用寄存器内容、控制寄存器内容、 包括通用寄存器内容 用户堆栈指针、系统堆栈指针等。 用户堆栈指针、系统堆栈指针等。
25
PCB的内容 不同系统不尽相同) PCB的内容 (不同系统不尽相同)
26
PCB的内容 PCB的内容
1.进程描述信息: 1.进程描述信息: 进程描述信息
进程标识符(process ID,唯一, 进程标识符(process ID,唯一,通常是一个整 数)或进程名 用户名或用户标识符(user 用户名或用户标识符(user ID) 家族关系

进程的控制方法

进程的控制方法

进程的控制方法进程是计算机中最基本的资源单位,它是程序在执行过程中分配和管理资源的基本单位。

为了合理有效地控制进程,提高计算机系统的性能和可靠性,我们常常需要采取一些控制方法。

本文将介绍几种常见的进程控制方法。

一、进程的创建和终止控制1. 进程的创建进程的创建是指在系统中生成一个新的进程。

常见的进程创建方法有:(1)父进程创建子进程:父进程通过调用系统调用(如fork())创建一个新的子进程,子进程会继承父进程的资源和状态,然后可以执行不同的程序段。

(2)系统初始化创建进程:系统启动时,会自动创建一些特殊的进程,如init进程(在Linux系统中)。

2. 进程的终止进程的终止是指进程执行完毕或被强制终止。

常见的进程终止方法有:(1)正常终止:进程执行完毕后,会自动终止,并释放占用的资源。

(2)异常终止:进程在执行过程中遇到错误或异常情况,导致无法继续执行,会被强制终止。

二、进程的切换控制进程的切换是指在多道程序环境下,由于资源有限,系统需要在多个进程之间进行切换,以实现并发执行。

常见的进程切换方法有:1. 抢占式调度抢占式调度是指操作系统通过时钟中断等方式,强制挂起正在执行的进程,并将CPU分配给其他可执行的进程。

这种调度方式可以实现公平性和高效性,但需要考虑进程切换的开销。

2. 非抢占式调度非抢占式调度是指进程只有在主动放弃CPU时,才会被操作系统挂起。

这种调度方式可以减少进程切换的开销,但可能导致某些进程长时间占用CPU,影响其他进程的执行。

三、进程的同步和通信控制进程的同步和通信是指多个进程之间通过共享资源或消息传递等方式进行合作和协调。

常见的进程同步和通信方法有:1. 互斥锁互斥锁是一种用于实现进程互斥访问共享资源的机制。

当一个进程需要访问共享资源时,它必须先获得互斥锁,其他进程则需要等待锁的释放。

2. 信号量信号量是一种用于实现进程同步和互斥的机制。

通过对信号量的P 操作和V操作,进程可以实现对临界资源的互斥访问和同步执行。

汤小丹计算机操作系统官方课件课件

汤小丹计算机操作系统官方课件课件
24
第二章 进程的描述与控制
图2-6 进程的五种基本状态及转换
25
第二章 进程的描述与控制
2.2.3 挂起操作和进程状态的转换 1. 挂起操作的引入 引入挂起操作的原因,是基于系统和用户的如下需要: (1) 终端用户的需要。 (2) 父进程请求。 (3) 负荷调节的需要。 (4) 操作系统的需要。
21
第二章 进程的描述与控制
图2-5 进程的三种基本状态及其转换
22
第二章 进程的描述与控制
3. 创建状态和终止状态 1) 创建状态 如前所述,进程是由创建而产生。创建一个进程是个很 复杂的过程,一般要通过多个步骤才能完成:如首先由进程 申请一个空白PCB,并向PCB中填写用于控制和管理进程的 信息;然后为该进程分配运行时所必须的资源;最后,把该 进程转入就绪状态并插入就绪队列之中。但如果进程所需的 资源尚不能得到满足,比如系统尚无足够的内存使进程无法 装入其中,此时创建工作尚未完成,进程不能被调度运行, 于是把此时进程所处的状态称为创建状态。
27
第二章 进程的描述与控制
3. 引入挂起操作后五个进程状态的转换 如图2-8示出了增加了创创建和终止状态后,在进程状态转 换时,与图2-7所示的进程五状态转换相比较,要增加考虑 下面的几种情况: (1) NULL→创建: (2) 创建→活动就绪: (3) 创建→静止就绪: (4) 执行→终止:
23
第二章 进程的描述与控制
2) 终止状态 进程的终止也要通过两个步骤:首先,是等待操作系统 进行善后处理,最后将其PCB清零,并将PCB空间返还系统。 当一个进程到达了自然结束点,或是出现了无法克服的错误, 或是被操作系统所终结,或是被其他有终止权的进程所终结, 它将进入终止状态。进入终止态的进程以后不能再执行,但 在操作系统中依然保留一个记录,其中保存状态码和一些计 时统计数据,供其他进程收集。一旦其他进程完成了对其信 息的提取之后,操作系统将删除该进程,即将其PCB清零, 并将该空白PCB返还系统。图2-6示出了增加了创建状态和终 止状态后进程的五种状态及转换关系图。

操作系统第二章_dsf

操作系统第二章_dsf


如何协调各程序的执行顺序?
多个执行程序共享系统资源,程序之 间可能会相互影响,甚至影响输出结 果。 选择哪些、多少个程序进入内存执行? 内存中的执行程序谁先执行? 内存如何有效分配?
• • •
操作系统
第二章 进程的描述与控制
2.2 进程的描述
• 通常的程序不能参与并发执行,为了让程序 能并发执行,人们引入进程的概念对并发执行 的程序加以描述和控制。
操作系统
第二章 进程的描述与控制
顺序执行与并发执行特征对比
I1 I2
输入1
C2
输入2 计算1
输入3 计算2 输出2
输入4 计算3 输出3
C1
P1
P2
输出1
• 1. 2. 3.
操作系统
程序的顺序执行 顺序性 封闭性 可再现性
程序的并发执行 间断性 失去封闭性 不可再现性
第二章 进程的描述与控制
程序的并发执行引发的问题
应当注意,前趋图中必须不存在循环,但在图 2-2(b)中却有
着下述的前趋关系:S2→S3, S3→S2
操作பைடு நூலகம்统
第二章 进程的描述与控制
2.1.2 程序的顺序执行及其特征
– 程序:源代码程序、目标程序和可执行程序; 例如:sample.cpp sample.obj sample.exe – 程序执行:编辑、编译、链接、执行
I1 I2 I3 I4
C1
C2
C3
C4
P1
P2
P3
P4
•图 2-3 并发执行时的前趋图
操作系统 第二章 进程的描述与控制
在该例中存在下述前趋关系:
Ii→Ci,Ii→Ii+1, Ci→Pi, Ci→Ci+1,Pi→Pi+1 而Ii+1和Ci及Pi-1是重迭的,亦即在Pi-1和Ci以及Ii+1之间, 可以并发执行。 对于具有下述四条语句的程序段: • • • •

实验一进程控制描述与控制

实验一进程控制描述与控制

实验一:进程控制描述与控制[1] Windows“任务管理器”的进程管理一、实验名称Windows“任务管理器”的进程管理二、实验目的通过在Windows 任务管理器中对程序进程进行响应的管理操作,熟悉操作系统进程管理的概念,学习观察操作系统运行的动态性能。

三、实验内容与步骤1. 使用任务管理器终止进程2. 显示其他进程计数器3. 更改正在运行的程序的优先级启动并进入Windows环境,单击Ctrl + Alt + Del键,或者右键单击任务栏,在快捷菜单中单击“任务管理器”命令,打开“任务管理器”窗口。

在本次实验中,你使用的操作系统版本是:_______Windows_XP______________________当前机器中由你打开,正在运行的应用程序有:1) _______ ________2) ___________实验一___3) _________操作系统_____________4) ___________百度首页 ________5) ____________ftp://172.16.20.168_______Windows“任务管理器”的窗口由____4__个选项卡组成,分别是:1) _______应用程序______________2) _进程__________________3) ______ 性能___________________4) ________联网__________________当前“进程”选项卡显示的栏目分别是 (可移动窗口下方的游标/箭头,或使窗口最大化进行观察) :1. 使用任务管理器终止进程步骤1:单击“进程”选项卡,一共显示了__40___个进程。

请试着区分一下,其中:系统 (SYSTEM) 进程有____25__个,填入表3-1中。

表3-1 实验记录服务 (SERVICE) 进程有_____5_个,填入表3-2中。

表3-2 实验记录用户进程有___10___个,填入表3-3中。

进程描述、状态转换和控制实验

进程描述、状态转换和控制实验
1/6
计算机操作系统实验报告
PCB(){PID=-1;} }PCB,*PCBP; 5. 函数设计 5.1 用户选择菜单: 我们采用两级菜单显示: char menu()//用户选择菜单 char menu1()//进程操作菜单
0915257 吴龙龙
图 3-2 5.2 创建进程 void creat(int i,PCB a[]); 5.3 显示进程信息 void show(PCB a[]);
图 3-3 5.4 进程操作 1)io 请求 void iost(PCBP a,int i); 2)io 完成 void ioe(PCBP a,int i); 3)销毁进程 dest(PCBP a,int i);
2/6
计算机操作系统实验报告
0915257 吴龙龙
图 3-3 6. 数据测试 输入: 1\n2” ”3\n1\n3” ”4\n2\n3\n2\n1\n0\n2\n1\n4” ”5\n2\n\3\n2\n2\n0\n2 输出:
图 3-1 2.3 进程控制块 操作系统采用 PCB 块描述一个进程和其它进程以及系统资源的关系,刻 画一个进程在各个不同时期所处的状态. PCB 是系统感知进程存在的唯一标志, 进程与 PCB 是一一对应的. 3. 实验分析 根据实验要求,我们需要做的是模拟进程管理程序,其具体功能如下: 1) 进程创建 2) 进程显示 3) 对某进程操作: 1.io 请求 2.io 完成 3.销毁进程 4. 数据结构 typedef class PCB{ public: int PID; char name[10];//进程名 char state;//状态,R,W,G int pri;//priority 优先级 friend istream& operator >>(istream& ins,PCB& a);//重载>> friend ostream& operator <<(ostream& outs,PCB& a);//重载<<

第2章 进程的描述和控制

第2章 进程的描述和控制

引 起 阻 塞 和 唤 醒 的 事 件
请求系统服务
启动某种操作
新数据尚未到 无新工作可做
• 进程阻塞过程 –正在执行的进程,发生上述事件时, 自身调用有关阻塞原语,进入等待队 列。进程的主动性行为。 –进程由运行态变为阻塞态 –引起处理机调度。 –例如UNIX:暂停一段时间sleep;暂停 并等待信号pause;等待子进程暂停或 终止wait。
1 2 3
• 顺序执行的特征: – 顺序性:按照程序结构所指定的次序 执行(可能有分支或循环) – 封闭性:独占全部资源,计算机的状 态只由于该程序的控制逻辑所决定, 结果不受外界因素的影响 – 可再现性:初始条件相同则结果相同。
2)程序的并发执行
• 引入并发执行的目的是为了提高资源利用率。 • 并发执行的特征(在不加入任何系统控制情况 下): – 间断性:表现为“走走停停”,一个程序可 能走到中途停下来,失去原有的时序关系; – 失去封闭性:共享资源,受其他程序的控制 逻辑的影响。如:一个程序写到存储器中的 数据可能被另一个程序修改,失去原有的不 变特征。 – 失去可再现性:失去封闭性 ->失去可再现 性;外界环境在程序的两次执行期间发生变 化,失去原有的可重复特征。
执行指针 就绪队列指针
PCB1 PCB2 PCB3 PCB4 PCB5 PCB6 PCB7 PCB8 PCB9 4 3 0 8
阻塞队列指针 空闲队列指针
7 9 0 0
索引方式
执行指针
PCB1 PCB2
PCB3
就绪表指针
PCB4 PCB5 PCB6
阻塞表指针
PCB7
2.2
进程控制
• 进程管理中最基本功能是进程控制 • 进程控制任务: – 进程的创建、终止、进程状态的转变等 • 进程控制一般由OS内核的原语(primitive)来 实现。 – 原语:由若干条指令构成的“原子操作 (atomic operation)”过程,作为一个整 体而不可分割--要么全都完成,要么全 都不做。 – 许多系统调用是原语。但并不是所有的系 统调用都是原语

3.1进程描述与状态

3.1进程描述与状态

1.进程定义 进程:是有独立功能的程序关于某个数据集合 的一次运行活动。 特点: •动态性:可动态创建,结束,也可是精灵进程 •并发性:可以被调度,轮流占用处理机运行 •独立性:有独立空间 •制约性:因访问共享数据或进程间同步而产 生制约. 组成:操作系统表示/管理进程的PCB表以及 •执行程序及处理数据; •一片存放程序和数据的空间; •一个栈区(用户栈及核心栈); •进程使用的其他系统资源.*
5.用进程运行输入参数等设置处理 机现场保护区。造一个进程运行 栈帧。 6.置好父进程等关系域。 7.将进程置成就绪状态。 8.将PCB表挂入就绪队列,等待时机 被调度运行。*
二.进程结束大致处理过程如下: 1.将进程状态改到结束状态 2.关闭所有打开文件,设备 3.释放进程程序文件和其他资源 4.进行相关信息统计 5.清理其相关进程的链接关系,如在 Linux中,将该结束进程的所有子进程链 到1号进程,作为1号进程的子进程,并通 知父进程自己已结束。 6.释放进程映像空间 7.释放进程控制块(PCB)。 8.调进程调度与切换程序。*
• 进程控制信息 调度和状态信息,用于操作系统调度进 程占用处理机。 进程间通讯信息,为支持进程间的通讯 相关的各种标识,信号,信件等,这些 信息存在接收方的进程控制块中。 存储管理信息。包含有指向本进程映像 存储空间的数据结构。 进程所用资源。说明由进程打开,使用 的系统资源,如打开的文件等。 有关数据结构链接信息,进程可以链接 到一个进程队列中,或链接到相关的其 它进程PCB. *
运行→阻塞:当进程请求某样东西且必须 等待时,如,当进程请求操作系统服务, 而操作系统得不到所需的资源,或进程请 求一个输入/输出操作,操作系统已启动外 设,但输入/输出尚未完成,或进程要与其 它进程通讯,要接收对方还未发出的信件 时进程都会被阻塞。 阻塞→就绪:当进程要等待事件到来时, 它从阻塞变到就绪。*

计算机进程的描述与控制思维导图

计算机进程的描述与控制思维导图

软件同步机制:都没有解决让权等待,而且部分方 法还会产生死锁的情况
关中断
利用Tes - n -Se 指令实现互斥
硬件同步机制
利用 w 指令实现进程互斥
整型信号量
由于整型信号量没有遵循让权等待原则,记录型 允许负数,即阻塞链表
记录型信号量
进程同步机制
进程同步
D型信号量
进程控制
理解: D型号量的w i 和 i n 仅能对信号施 以加1或减1操作,意味着每次只能对某类临界 资源进行一个单位的申请或释放。当一次需要N 个单位时,便要进行N次w i 操作,这显然是低 效的,甚至会增加死锁的概率。此外,在有些情
进程是竞争计算机资源的基本单位,程序不是 进程是程序在数据集上的一次执行
程序是构成进程的组成部分,一个程序可对应多 个进程,一个进程可包括多个程序
进程的运行目标是执行所对应的程序
从静态看,进程由程序、数据和进程控制块( P B)组成
就绪状态 ea
进程的三种基本状态
执行状态 n n
阻塞状态 lo
进程的基本状态及转换
进程的阻塞与唤醒
互斥——竞争 同步——协作
间接相互制约关系 直接相互制约关系
un ac
进程的挂起与激活
两种形式的制约关系
临界资源
进入区 n ec i
临界区 i ic ec i 退出区 i ec i
分区
剩余区 m n
ec i
1.空闲让进
2.忙则等待 3.有限等待
同步机制应遵循的规则
4.让权等待
基本概念
三种基本状态的转换 创建状态和终止状态
五状态进程模型
注意
阻塞态->运行态和就绪态->阻塞态这二种状态 转换不可能发生

对进程的管理和控制使用

对进程的管理和控制使用

之前已经介绍了操作系统的各个模块,现在来具体深入学习操作系统中的进程管理。

二、进程的基本概念在未配置OS的系统中,程序的执行方式是顺序执行,即必须在一个程序执行完成后,才允许另外一个程序执行;在多道程序环境下,则允许多个程序并发执行。

也正是程序的并发执行,才导致引入进程。

2.1 程序的顺序执行通常可以把一个应用程序分成若干个程序段,在各程序段之间,必须按照某种先后次序顺序执行,仅当前一操作(程序段)执行完后,才能执行后继操作。

如典型的输入->计算->打印任务就是顺序执行。

程序顺序执行时的特征如下① 顺序性,处理机的操作严格按照程序锁规定的顺序执行,即每一操作必须在上一个操作结束之后开始。

② 封闭性,程序是在封闭的环境下执行的,即程序运行时独占全机资源,资源的状态(除初始状态外)只有本程序才能改变它,程序一旦开始执行,其执行结果不受外界因素影响。

③ 可再现性,只要程序执行时的环境和初始条件相同,当程序重复执行时,无论它是从头到尾不停顿地执行,还是走走停停地执行,都将获得相同的结果。

在程序顺序执行时的特征,为程序员检测和校正程序的错误带来了很大的方便。

2.2 程序的并发执行多个程序可以并发执行,并发执行可以提高CPU的效率和系统吞吐率。

其特征如下① 间断性,程序在并发执行时,由于它们共享系统资源,以及为完成同一项任务而相互合作,致使在这些并发执行的程序之间,形成了相互制约的关系。

如计算操作必须在输入操作之后。

② 失去封闭性,程序在并发执行时,是多个程序共享系统中的各种资源,因而这些资源的状态将由多个程序来改变,只是程序的运行失去了封闭性,这样,某程序在运行时,必然会收到其他程序的影响。

如当某个程序占用了处理机资源后,另外一个程序必须等待。

③ 不可再现性,程序在并发执行时,由于失去了封闭性,也将导致其再失去可再现性。

可能由于不同的操作顺序产生不同的结果。

2.3 进程的特征由于程序并发执行时,它们失去了封闭性,间断性和不可再现性,这决定了一般的程序是不能参与并发执行的,因为程序执行的结果是不可再现的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年9月30日3时55分
15
进程的挂起(3)
挂起的原则
(3)定期执行的进程(如审计、监控、记账 程序)对换出去,以减轻系统负荷
(4)用户要求挂起自己的进程,以便进行某 些调试、检查和改正。如父进程要求挂 起子进程,以进行某些检查和改正
2020年9月30日3时55分
16
进程的挂起(4)
挂起的原则
• 进程进入挂起状态是由于操作系统、 父进程或进程本身阻止它的运行,但结 束进程挂起状态的命令只能通过操作 系统或父进程发出
2020年9月30日3时55分
18
具有挂起功能的进程状态
进程增加了两个新状态:
❖ 挂起就绪态(ready suspend)表 明进程具备运行条件但目前在辅存 储器中,当它被对换到主存才能被 调度执行;
5
三态模型(1)
一个进程从创建而产生至撤销而 消亡的整个生命周期,可用一组 状态加以刻划,按进程在执行过 程中的状况至少定义三种不同的 进程状态:
2020年9月30日3时55分
6
三态模型(2)
三种不同的进程状态
❖ 运行态(running): ❖ 就绪态(ready): ❖ 等待态(wait):又称阻塞态 (blocked)
2020年9月30日3时55分
10
五态模型(2)
进程五态模型及其转换
新状 态
运行 态
终止 态
选 • 已构造了进中程标识符中;
出现等待事件
• 已创建了管理进程所断需的表格;
• 还没有允许执行该进程 (尚未同意) ;
• OS所需的就关绪于该进程的信息保存在等主待存中的 进 数程据控分制配表空态间中,,程但等序还待还没事保有件留为结在与辅这束存个中程态序相关的
2020年9月30日3时55分
11
五态模型(3)
进程状态转换的具体原因(1)
• NULL→新建态:创建一个进程;
• 新建态→就绪态:系统完成了进程创 建操作,且当前系统的资源、性能和 内存的容量均允许;
• 运行态→终止态:一个进程到达自然 结束点,或出现了无法克服的错误、 被操作系统所终结
2020年9月30日3时55分
2020年9月30日3时55分
7
三态模型(3)
进程三态模型及其状态转换
运行态




出现等待事件
就绪态
等待态
等待事件发生
2020年9月30日3时55分
8
三态模型(4)
引起进程状态转换的具体原因
• 运行态→等待态:等待使用资源或某事件发生 • 等待态→就绪态:资源得到满足或事件发生 • 运行态→就绪态:运行时间片到或有更高优先权
进程到来 • 就绪态→运行态:CPU空闲时选择一个就绪进程
2020年9月30日3时55分
9
五态模型(1)
•新建态:对应进程刚被创建但还未将 它送入就绪队列的状态;
•终止态:பைடு நூலகம்一个进程已经正常结束或 异常结束,OS已将它从队列中移出, 但尚未将它撤消时的状态;
进入终止态的进程不再执行,但依然 临时保留在系统中等待善后。一旦其他 进程完成了对终止态进程的信息抽取之 后,系统将删除该进程。
挂 起

等待 态
2020年9月30日3时55分
20
具有挂起进程状态转换的具体原因(1)
• 等待态→挂起等待态:因为内存资 源紧张,至少一个等待态进程将被 对换出去成为挂起等待态;
• 挂起等待态→挂起就绪态:引起进 程等待的事件发生之后,相应的挂 起等待态进程可被转换为挂起就绪 态
(5)操作系统需要挂起某些进程,检查 运行中资源使用情况,以改善系统性能, 或当系统出现故障或某些功能受到破坏 时,需要挂起某些进程以排除故障
2020年9月30日3时55分
17
挂起进程具有如下特征
• 该进程不能立即被调度执行
• 挂起进程可能会等待事件,但所等待 事件结束并不能导致进程具备调度执 行的条件
每个进程都必须与某一个程序相对应;
同一个程序可以对应多个进程。
(即多个进程可以含有相同的程序)
进程的定义和属性(2)
进程的属性 • 动态性: • 独立性: • 并发性: • 异步性:
2020年9月30日3时55分
4
进程的状态和转换
❖三态模型 ❖五态模型 ❖进程的挂起状态
2020年9月30日3时55分
进程是操作系统中最基本、重要的概念
进程与程序的区别?
2020年9月30日3时55分
2
程序与进程的区别与联系 进程与程序的区别:
程序
进程
————————————————————————
指令的有序集合
程序的一次执行
静态、无生命期
动态、有生命期
可长期保存
因创建而产生,撤消而消亡
———————————————————————— 进程与程序的联系:
起到平滑系统操作负荷的目的。此时,
进程状态也称“静止状态”。
2020年9月30日3时55分
14
进程的挂起(2)
挂起的原则
(1)把一些阻塞进程先对换出去,对换到磁 盘镜像区中,释放它所占有的某些资源, 腾出足够内存装入就绪进程运行
(2)就绪队列中部分不重要或不紧迫的进程 以调整系统负荷,保证系统的实时性或让 系统正常运行
12
五态模型(4)
进程状态转换的具体原因(2)
• 终止态→NULL:完成善后操作; • 就绪态→终止态:某些操作系统允许父进
程终结子进程;
2020年9月30日3时55分
13
进程的挂起(1)
挂起的含义:内存的进程“挂”到外存镜像区
为什么要有“挂起”状态?
由于进程的不断创建,系统资源特别是内存 资源已不能满足进程运行的要求,就必须把 某些进程挂起(suspend)——对换到磁盘镜 像区中,释放它所占有的某些资源,暂时不 参与进程调度。
❖ 挂起等待态(blocked suspend) 表明进程正在等待某一个事件且在 辅存储器中;
2020年9月30日3时55分
19
具有挂起功能的进程状态及其转换
提 交
新建 态 提 交
挂起 就绪态
等待事件结束
挂 起
挂起 等待态
解挂
运行
除起




中落
出现 终 等待
选 止 事件

就绪
态 等待事件结束
解 除 挂
2.3 进程的描述与控制
2.3.1 进程的定义和属性 2.3.2 进程的状态和转换 2.3.3 进程的组成要素 2.3.4 操作系统的控制结构 2.3.5 进程管理 2.3.6 进程的控制
2020年9月30日3时55分
1
进程的定义和属性(1)
进程的定义
进程是可并发执行的、具有独立功 能的程序关于某个数据集合的一次执 行过程,也是操作系统进行资源分配 和保护的基本单位
相关文档
最新文档