乙醇和水的平衡关系图

合集下载

化工原理乙醇精馏塔设计

化工原理乙醇精馏塔设计

目录乙醇——水溶液连续精馏塔优化设计 (2)前言 (4)精馏塔优化设计计算 (5)一精馏流程的确定 (5)二塔的物料衡算 (5)三塔板数的确定 (7)四、塔的工艺条件及物性数据计算 (10)五、精馏塔的塔体工艺尺寸计算 (13)六、塔板主要工艺尺寸的计算 (14)七、塔版流体力学验算 (17)浮阀塔板工艺设计计算结果 (22)心得体会 (23)参考文献 (24)精馏塔优化设计任务书一、设计题目乙醇—水溶液连续精馏塔优化设计二、设计条件1.处理量:17500 (吨/年)2.料液浓度: 35 (wt%)3.产品浓度: 93 (wt%)4.易挥发组分回收率: 99%5.每年实际生产时间:7200小时/年6. 操作条件:①间接蒸汽加热;②塔顶压强:101.3kpa(绝对压强)③进料热状况:泡点进料;三、设计任务a) 流程的确定与说明;b) 塔板和塔径计算;c) 塔盘结构设计i. 浮阀塔盘工艺尺寸及布置简图;ii. 流体力学验算;iii. 塔板负荷性能图。

d) 其它i. 加热蒸汽消耗量;ii. 冷凝器的传热面积及冷却水的消耗量e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书。

乙醇——水溶液连续精馏塔优化设计(南华大学化学化工学院,湖南衡阳 421001)摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主要尺寸的计算,工艺设计和附属设备结果选型设计,完成对乙醇-水精馏工艺流程和主体设备设计。

关键词:精馏塔浮阀塔精馏塔的附属设备(Department of Chemistry,University of South China,Hengyang 421001)Abstract: The design of a continuous distillation valve column, in the material, product requirements and the main physical parameters and to determine the size, process design and selection of equipment and design results, completion of the ethanol-water distillation process and equipment design theme.Keywords: rectification column, valve tower, accessory equipment of the rectification column.前言精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工、炼油、石油化工等工业中得到广泛应用。

物理化学-相平衡

物理化学-相平衡
(2) 温度平衡: T相1 = T相2 = … = T相P 仅需1个温度表示,即应扣 (P – 1) 个
= = =
p1 T1 m1 p2 T2 m2
(3) 相平衡:任一物质B各相化学势相等
m相1(B)=m相2(B) = ···=m相P(B) (P–1)等式
S 种物质存在 S(P-1) 关系,应扣 S(P-1)
恒 p 时,知 pA*(T) 和 pB*(T),可算 xB, yB
相平衡
典型相图 与p-x(y)图相比,形状相当于上下倒转
点: 单相区:如点a ,
相点与系统点一致
两相区:如点b,相
点与系统点不一致
线:气相线称露点线 液相线称泡点线
区域: 单相: P=1,F=2 两相: P=2,F=1
t/℃
110 C 100 90
形成固溶体时与液相类似。
注意: 某相存在的量很少可忽略时,则可不算。 如:凝聚系统不考虑气相。
相平衡
5. 相律F=C-P+2中的 2 表示系统T , p 可变
若T 或 p 之一不变时,只有1个强度量 可变,相律式变为
F = C-P + 1
二组分系统相图分析或凝聚系统 压力影响小可略时,常用此式。
相平衡
相平衡
本章要点
掌握:相律,单组分、双组分系统的典型 相图,杠杆规则的应用
相图:会分析,能画(稍难)
应用:多组分系统的分离、提纯 均匀性(多相性) 控制产品的质量
相平衡
5.1 相 律
问题:封闭 系统中影响相态的因素有哪些? 例如:盐与水系统达相平衡时存在多少相?
什么时候出现固相(盐析出)?为什么?

t
l+g 泡
点 线

精馏实验实验报告

精馏实验实验报告

精馏实验实验报告姓名班级学号1.实验前,请想象并尝试描述气速与整塔压降的关系?依照教材P228页,当液体喷淋量为零时,压降与空塔气速呈直线关系,与气体以湍流形式流过管道的关系类似;有一定喷淋量时,压降因管道变窄增大,但几乎与无喷淋量时平行;过截点以后,气体对液体产生阻滞作用,填料表面持液量增多,压降随气速较快增长;过了泛点之后,液体变为连续相而气体变为分散相,阻力猛增。

2.实验前,请同学们回顾精馏塔的塔板与填料的发展历程?舌形塔板斜孔塔板鼓泡式塔板散堆填料规整填料3.实验前,请尝试回答精馏操作过程中,使混合物较彻底分离的基本条件?1、相对挥发度差异较大;2、每一块板能使气液充分接触;3、塔高足够高;4、再沸器与冷凝器温度稳定;5、混合物不形成共沸物;6、运行规范稳定,不出现漏液、烨沫夹带、气泡夹带、液泛等非规范操作;7、加料不反混;二、实验记录包括操作条件、实验现象、原始数据表,要求数据的有效数字、单位格式规范。

【原始数据表】6 77.9 87.8 35.1 24.0 127瓦数/kw 次数塔顶组成/% 塔釜组成/%3 1 18.75 81.25 86.30 13.702 15.53 84.47 88.83 13.175 1 12.52 88.48 88.20 11.802 13.12 86.88 89.10 10.906 1 11.91 88.09 88.35 11.652 11.71 88.29 88.14 11.86【数据处理】※空塔气速首先根据测得的回流液流量求空塔气速。

由于实验中采取全回流的方式,回流液质量流量与蒸气质量流量相同。

实验中转子流量计已经将实际溶液的流量转换为水的流量,由公式21s s V V = (1)将读数转换为实际回流夜的流量。

其中:f ρ取转子密度,近似为铁质,取密度7900kg/m3,1ρ取20 o C 水的密度,2ρ取回流温度下混合液体的密度。

水取998kg/m 3,乙醇取789 kg/m 3。

精馏实验

精馏实验

精馏实验装置一.实验目的1).了解连续精馏塔的基本结构及流程。

2).掌握连续精馏塔的操作方法。

3).学会填料精馏塔等板高度的测定方法。

4).确定部分回流时不同回流比对精馏塔效率的影响。

二.基本原理(1).等板高度在精馏过程计算中,一般都用理论板数来表达分离的效果,因此习惯用等板高度法计算填料精馏塔的填料层高度。

式中:Z——填料层高度,m;——理论塔板数;NTHETP——等板高度,m。

等板高度HETP,表示分离效果相当于一块理论板的填料层高度,又称为当量高度,单位为m。

进行填料塔设计时,若选定填料的HETP无从查找,可通过实验直接测定。

对于二元组分的混合液,在全回流操作条件下,待精馏过程达到稳定后,从塔顶、塔釜分别取样测得样品的组成,用芬斯克方程或在x~y图上作全回流时的理论板数。

芬斯克方程:式中:-——全回流时的理论板数;——塔顶易挥发组分与难挥发组分的摩尔比;——塔底难挥发组分与易挥发组分的摩尔比;——全塔的平均相对挥发度,当α变化不大时,在部分回流的精馏操作中,可由芬斯克方程和吉利兰图,或在x~y图上作梯级求出理论板数。

理论板数确定后,根据实测的填料层高度,求出填料的等板高度,即:(2).全回流全回流操作时,可以通过作图法或逐板计算法求得全回流理论板数Nmin,从而求得全塔效率ET:在全回流时,正因为操作线与对角线重合,yn+1=xn 。

由此,只要分别测得流入、流出该板的液相组成xn-1、xn,既可求算出该板的默伏里单板效率EMV:(3).部分回流可以测出以下数据:温度[℃]: tD、tF、tW组成[mol/mol]:xD、xF、xW流量: F[l/h]、D和L[ml/min]回流比: R=L/D精馏段操作线:进料热状况q:q线方程:根据以上计算结果,可作出右图:根据作图法或逐板计算法可求算出部分回流下的理论板数Nmin。

部分回流下的全塔效率ET:三.实验装置与流程本实验装置为填料精馏塔,特征数据如下:=32mm,塔内填料层高度Z=0.8m(乱堆),填料为不锈钢θ环散装塔内径D内置填料,尺寸3mm ×3mm 。

蒸馏

蒸馏

• 2.双组分非理想溶液汽液相平衡 • 蒸馏中所处理的混合物,除理想溶液外,很多是非理 想溶液,即对拉乌尔定律有偏差的溶液。对拉乌尔定律有 正偏差的溶液,将出现最低恒沸点,对拉乌尔定律有负偏 差的溶液,将出现最高恒沸点。恒沸点在y-x图上的反映 是平衡曲线y-x与对角线相交。其交点说明,处于恒沸点 的气液两相,其组成是相同的,即恒沸点处气、液相组成 相同,因而达不到分离的目的。如图8-4为常压下乙醇- 水溶液相图,乙醇-水溶液的恒沸点为78.15℃,恒沸点 处气、液相组成均为0.8943(摩尔分数)。
• • • • • •
提问: 1.湿球温度? 2.露点? 3.东北小烧(白酒)的制作? ↓ 蒸馏
项目八 蒸馏
• 任务一 概述 • 蒸馏是利用互溶液体混合物中各组分沸点的 不同,将液体混合物分离成为较纯组分的一种单 元操作。蒸馏操作所以能够分离互溶的液体混合 物,是由于溶液中各组分的沸点不同,沸点低的 组分容易气化,称为易挥发组分,而沸点高的组 分不易气化,称为难挥发组分。因此,蒸馏所得 的蒸汽中,与其冷凝后形成的液体(简称馏出液) 中,低沸点组分的含量较多;而残留的液体(简 称残液)中,高沸点组分的含量较多。故用蒸馏 方法处理液体混合物,可以得到较纯的馏出液和 较纯的残液,达到混合物分离的目的。

可见,液体混合物中各组分的沸点相差愈大、 汽液两相的组成差别愈大,愈有利于蒸馏分离。 有关混合物中汽液两相共存时组分间汽液相平衡 关系是蒸馏操作的基础,将在第二节中讨论。
根据蒸馏时混合液中的组分数,可分为双组 分蒸馏和多组分蒸馏,但双组分蒸馏是多组分蒸 馏的基础,而且很多多组分蒸馏问题,可以作为 双组分蒸馏来处理。故本章主要讨论双组分连续 蒸馏的原理、方法和计算。
• 1.3.双组分理想溶液汽液相平衡关系相图

《化工原理》气液平衡 _液体精馏

《化工原理》气液平衡 _液体精馏
15
第7章 液体精馏
7.4.2 物料衡算-操作线方程
1.全塔的物料衡算 对图7-8所示的间接 蒸汽加热的连续精馏塔 作全塔物料衡算,并以 单位时间为基准,源自图7-7 精馏塔的物料衡算
16
第7章 液体精馏
则总物料 易挥发组分 F=D+W FxF=DxD+WxW (7-12) (7-12a)
式中 F-原料液流量(kmol/s); D-塔顶产品(馏出液)流量(kmol/s); W-塔底产品(釜残液)流量(kmol/s); xF-原料液中易挥发组分的摩尔分率; xD-馏出液中易挥发组分的摩尔分率; xW-釜残液中易挥发组分的摩尔分率。
18
第7章 液体精馏
图7-8 精馏段操作线方程的推导
19
第7章 液体精馏
将式7-15代入式7-15a,并整理得:
y n +1 L D = xn + xD L+D L+D
(7-16)
若将上式等号右边的两项的分子和分母同时除以D,可得:
y n +1 = L/D 1 xn + xD L / D +1 L / D +1
13
第7章 液体精馏
7.4 双组分连续精馏的计算
精馏过程的计算可分为设计型和操作型两类。本章重点 讨论板式塔的设计型计算。精馏过程设计型计算,通常已知 原料液流量、组成及分离程度,需要计算和确定的内容有: ①选定操作压强和进料热状态等; ②确定产品流量和组成; ③确定精馏塔的理论板数和加料位置; ④选择精馏塔的类型,确定塔径、塔高和塔板结构尺寸,并 进行流体力学验算; ⑤计算冷凝器和再沸器的热负荷,并确定两者的类型和尺寸。
14
第7章 液体精馏
7.4.1 理论板的概念及恒摩尔流的假定

二元气液相平衡数据测定处理结果

二元气液相平衡数据测定处理结果

实验数据处理(1) 乙醇浓度的计算利用实验参考书提供的乙醇标准曲线数据,由折光率和乙醇摩尔百分率关系用内插法得到乙醇摩尔分率如表1. 计算示例:以第一组气相为例第一组的气相折光率为1.3595落在折光率1.3594-1.3599之间,对应的乙醇摩尔分率为0.9379-0.8810.插值法计算如下:1.3599−1.35950.8810−x =1.3599−1.35940.8810−0.9379解出x=0.9265,水的气相摩尔分率=1-x-=0.0735.(2) 温度计暴露温度校正n=t 观-(50-1.6*6.7),t 室=25℃,t 实际=t 观+0.00016n(t 观-t 室);tp=t 实际+0.000125(t 室+273)(P-760),因为本小组实验的P 大于标准大气压,所以用P-760。

计算示例:以第一组为例;n=t 观-39.28=77.81-39.28=38.53,t 实际=77.81+0.00016*38.53*(77.81-25)=78.14℃ 平衡温度计算:tp=t 实际+0.000125(t 室+273)(P-760)=78.18+0.000125(25+273)(761.313-760)=78.19℃(3) 实验测得的温度和压强以及摩尔分率如表1、表二。

(4) 由所得的二元气液平衡数据表记录如表二。

活度计算示例:以第一组气相为例根据安托尼(Antoine)公式,lg(Ps)=A-B/(C + t/℃),求出不同平衡温度下乙醇和水的饱和气压,乙醇的安托尼(Antoine)参数:A=8.21330,B=1652.050,C=231.480,水的安托尼(Antoine)参数:A=7.96681,B=1668.21,C=228。

计算乙醇的饱和蒸汽压:lgP=8.2133-1652.05/(231.48+78.19),得P=755.879mmHg; 计算水的饱和蒸汽压:lgP=7.96681-1668.21/(228+78.19),得P=330.029mmHg; 计算活度系数: 由简化后的公式:0i p x py i ii =γ 乙醇的活度系数:γA=(P*yA)/(xA*P0)=(761.313*0.9265)/(0.8718*755.879)=1.0704水的活度系数:γB=(P*yB)/(xB*P0)=(761.313*0.0735)/(0.1282*330.029)=1.3225(5) 由二元气液平衡数据绘制的相图如图2。

化工原理课程设计 乙醇-水精馏塔设计

化工原理课程设计 乙醇-水精馏塔设计

大连民族学院化工原理课程设计说明书题目: 乙醇-水连续精馏塔的设计设计人: 1104系别:生物工程班级:生物工程121班指导教师: 老师设计日期:2014 年10 月21 日~11月3日温馨提示:本设计有一小部分计算存在错误,但步骤应该没问题化工原理课程设计任务书一、设计题目乙醇—水精馏塔的设计。

二、设计任务及操作条件1.进精馏塔的料液含乙醇30%(质量),其余为水。

2.产品的乙醇含量不得低于92。

5%(质量)。

3。

残液中乙醇含量不得高于0.1%(质量).4.处理量为17500t/a,年生产时间为7200h。

5.操作条件(1)精馏塔顶端压强 4kPa(表压)。

(2)进料热状态泡点进料。

(3)回流比R=2R min。

(4)加热蒸汽低压蒸汽.(5)单板压降≯0。

7kPa.三、设备型式设备型式为筛板塔。

四、厂址厂址为大连地区。

五、设计内容1.设计方案的确定及流程说明2.塔的工艺计算3.塔和塔板主要工艺尺寸的设计(1)塔高、塔径及塔板结构尺寸的确定。

(2)塔板的流体力学验算.(3)塔板的负荷性能图。

4.设计结果概要或设计一览表5.辅助设备选型与计算6。

生产工艺流程图及精馏塔的工艺条件图7.对本设计的评述或有关问题的分析讨论目录前言 (1)第一章概述 (1)1。

1塔型选择 (1)1.2操作压强选择 (1)1.3进料热状态选择 (1)1。

4加热方式 (2)1。

5回流比的选择 (2)1.6精馏流程的确定 (2)第二章主要基础数据 (2)2。

1水和乙醇的物理性质 (2)2.2常压下乙醇—水的气液平衡数据 (3)2。

3 A,B,C—Antoine常数 (4)第三章设计计算 (4)3.1塔的物料衡算 (4)3.1。

1 料液及塔顶、塔底产品含乙醇摩尔分率 (4)3.1.2 平均分子量 (4)3。

1。

3 物料衡算 (4)3。

2塔板数的确定 (4)的求取 (4)3。

2。

1 理论塔板数NT3.2。

2 全塔效率E的求取 (5)T3.2.3 实际塔板数N (6)3。

化工原理课程设计-(乙醇水筛板塔)

化工原理课程设计-(乙醇水筛板塔)

化工原理课程设计设计题目乙醇-水筛板精馏塔设计学生学号班级指导教师设计时间2021年5月1日~6月22日完成时间2021年6月23日于徐州目录一、总论 (4)1.1概述 (4)1.2文献综述 (4)1.2.1板式塔类型 (4)1.2.2筛板塔 (4)1.3设计任务书 (5)1.3.1设计题目 (5)1.3.2设计条件 (5)1.3.3设计任务 (5)二、设计思路 (5)三、工艺计算 (6)3.1 平均相对挥发度的计算 (6)3.2绘制t-x-y图及x-y图 (7)3.3 全塔物料衡算 (8)3.3.1进料液及塔顶、塔底产品的摩尔分数 (8)3.3.2 平均摩尔质量 (9)3.3.3全塔物料衡算: (9)进料量: (9)3.4最小回流比的计算和适宜回流比确实定 (9)3.4.1最小回流比 (9)3.4.2 确定最适操作回流比R (10)3.5 图解法求理论板数及加料板位置 (11)3.5.1精馏段和提馏段操作线方程确实定 (11)3.5.2 理论板数及加料板位置 (12)3.6 实际板数及加料板位置确定 (13)四、塔板结构设计 (13)4.1气液体积流量 (13)4.1.1 精馏段的气液体积流量 (13)4.1.2 提馏段的气液体积流量 (15)4.2 塔径计算 (16)4.2.1 塔径初步估算 (16)4.2.2校核HT与D的范围 (18)4.3 塔高的计算 (18)4.4 塔板结构设计 (19)4.4.1塔板结构尺寸确实定 (19)4.4.2 弓形降液管 (20)4.4.3 塔盘布置 (21)4.4.4开孔面积计算 (21)4.4.5筛板的筛孔和开孔率 (22)4.5塔板流体力学校核 (22)4.5.1 塔板阻力 (22)4.5.2液面落差 (24)4.5.3 液沫夹带量校核 (25)4.5.4严重漏液校核 (25)4.5.6降液管溢流液泛校核 (25)4.6 塔板性能负荷图 (26)4.6.1漏液线 (27)4.6.2 液沫夹带线 (27)4.6.3液相负荷下限线 (27)4.6..4液相负荷上限线 (28)4.6.5液泛线 (28)五、换热器 (29)5.1 换热器的初步选型 (29)5.1.1塔顶冷凝器 (29)5.1.2塔底再沸器 (29)5.2 塔顶冷凝器的设计 (29)六、精馏塔工艺条件 (31)6.1塔体总高 (31)6.2 精馏塔配管尺寸的计算 (32)6.2.1塔顶汽相管径dp (32)6.2.2回流液管径dR (32)6.2.3 加料管径dF (33)6.2.4釜液排出管径dw (33)6.2.5再沸器返塔蒸汽管径dv’ (33)6.3精馏塔工艺尺寸 (34)七、塔板结构设计结果 (35)八、符号说明 (35)九、结束语 (36)一、总论1.1概述化工生产中所处理的原料中间产品几乎都是由假设干组分组成的混合物。

双液系的气—液平衡相图

双液系的气—液平衡相图

一、目的要求1.绘制在标准)(p 下乙酸乙酯—乙醇双液系双液系相图。

了解相图和相律的基本概念2.掌握测定双组分液体的沸点及正常沸点的测定方法。

3.掌握用折光率确定二元液体组成的方法二、实验原理1.两种在常温时为液态的物质混合起来而组成的二组分体系称为双液系。

两种液体若能按任意比例互相溶解,称为完全互溶的双液系;若只能在一定比例范围内互相溶解,则称部分互双液系。

两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,则混合物的组成与平衡时气相的组成不同。

当压力保持一定,混合物沸点与两组分的相对含量有关。

根据相率,自由度=独立组分数-相数+2。

因此,一个以气-液共存的二组分体系,其自由度为2。

只要任意再确定一个变量,整个体系的存在状态就可以用二维图来描述。

例如,在一定的温度下,可以画出体系的压力和组分x 的关系图,这就是相图。

在T-x 相图上,还有温度、液相组成和气相组成三个变量,但只有一个自由度。

一旦设定某个变量,则其他的两个变量必有相应的确定值。

为了测定双液系的T -x 相图,需在气-液平衡后,同时测定双液系的沸点和液相、气相的平衡组成。

绝大多数实际体系与拉乌尔定律有一定的偏差,即有偏差不大时,混合溶液的沸点介于两种纯物质的沸点之间。

但是,有些体系的偏差很大,将出现极值。

正偏差很大的体系在T-x 图上呈现极小值,负偏差很大时则会有极大值。

这样的极值称为恒沸点,其气-液两相的组成相同。

通常,测定一系列不同配比溶液的沸点及气、液两相的组成,就可绘制气-液体系的相图。

压力不同时,双液系相图将略有差异。

2.沸点测定仪各种沸点仪的具体构造虽各有特点,但其设计思想都集中于如何正确测定沸点、便于样分析、防止过热及避免分馏等方面。

本实验所用的沸点仪如图(a )所示。

这是一只带回流冷凝管的长颈圆底烧瓶。

冷凝管底部有一半球星小室,用于收集冷凝下来的气相样品。

电流经变压器和粗导线通过浸于溶液中的电热丝。

这样既可减少溶液沸腾时的过热现象,还能防止暴沸。

物理化学 第四章 第三节 完全互溶双液体系

物理化学 第四章 第三节 完全互溶双液体系

若将P=P*A+(P*B-P*A) xB 代入PyB=P*BxB 可得
Px yB * PA ( P P ) xB
理想溶液的 p-x-y 图
* B B * * B A
(xA= 1-xB) (yA =1-yB)
据此可以分别求得气相和液相的组成。
如果要全面描述溶液蒸气压与气、液两相 平衡组成的关系,可根据在P-x图上画出液相线, 然后从液相线上取不同的xB值代入上式求出相应 的气相组成yB值,把它们连接起来即构成气相线。 气相线总是在液相线的下面(见图)
四、蒸馏、分馏与精馏
x t
8
y8 x7 x6 x5
y7 y6
y5 x4
x3 x2 x1 y4 y3 y2
x0
y1 y0
B
A
x xB
根据上面讨论,对于完全互溶的二组分液液体系,把气相不断地部分冷凝,或将液相不 断地部分气化,都能在气相中浓集易挥发组 分,在液相中浓集难挥发组分。这样进行一连 串的部分气化和冷凝,可将混合液A、B完全 分离,这就是精馏原理。 工业上和实验室中这种部分气化和冷凝是在 精馏塔和精馏柱中进行的。精馏实际上是简单 蒸馏的多次组合。所以塔板数越多,蒸馏的次 数亦越多,分离的效果亦就越好(见下图所示)。
塔板上气-液两项重新分配
精馏塔中,塔顶得低沸点物, 塔底得高沸点物。
四、蒸馏、分馏与精馏
如果溶液介于A和C之 间,假定为x1,则经 精馏后,从塔顶蒸出 组成 的是具有最低恒沸 x1 x2 B A C 点的恒沸物C,流入 塔釜的是沸点高的纯组分A。如果溶液组成介于C和B之间, 设为x2 ,则经分离后得到的馏出液为C与残液为纯B。
四、蒸馏、分馏与精馏
进料
加 热 棒 精馏塔示意图

精馏实验报告范例

精馏实验报告范例

精馏实验报告示范第一步:大家的实验数据如下(以全回流为例)第二步:大家翻到化工实验书第148-149.页。

表4,由于是在20℃测得,与室温T=19.8校正。

校正关系为:=⨯⨯--=-420T 10420n n )((标)室℃室T D D 。

校正后假设乙醇与水的折射率与质量分数的关系如下:乙醇与水在T=19.8℃时折射率关系如下:质量分数折射率 0 1.333 5 1.3336 10 1.3395 20 1.3469 30 1.3535 40 1.3583 50 1.3616 60 1.3638 70 1.3652 80 1.3658 90 1.365 1001.3614然后导入origin 画图:并拟合出图形如下:BA第三步:有实验测得的数据,以塔顶折射率nD=1.3624为例,在拟合中的图形中找到当折射率为1.3264时乙醇的质量分数;步骤如下,在拟合出的图形中有个绿色“锁型”图标,鼠标左键单击出来change parameters在setting中选advanced,然后在右边你可以看到有个对话框;findX fromY,打开加号,并,选中,然后点拟合。

图形如下,此时在原来的book1中,出现变化,在下角的滚动条中会出现一行,如下,此时在y中输相应的值,然后按enter,就会出来对应的x值注意:你会发现当y=1.3624时,x=52.44!结合拟合出的图形,你会发现一个此时的y对应2个x.但他默认取第一个的,因为在塔顶乙醇质量分数很高,接近100%。

要舍去。

此时,在下拉框中找到fit nl curve,找到接近的y值,然后查出x.第四步:用质量分数换算成摩尔分数。

计算方法参考《化工基础》第166页。

算出xD=92.6%,Xw=22.9%。

第五步:画乙醇与水的气液平衡图,翻到《化工实验》第149页,表5,把数:导入origin画图。

然后再横坐标找到对应的xD=92.6%,Xw=22.9%。

拉两根虚线与y=x相交,根据在y=x的交点,求理论塔板数。

常考化学反应速率和化学平衡图像的分析

常考化学反应速率和化学平衡图像的分析

最高的是___A___。
A.t0~t1 C.t3~t4
B.t2~t3 D.t5~t6
根据图示知,t1~t2、t4~t5时间段内平衡均向逆反应方向移动,则NH3的含量均 比t0~t1时间段内的低,所以t0~t1时间段内NH3的百分含量最高。
(4)如果在t6时刻,从反应体系中分离出部分氨,t7时刻反应达到平衡状态,请在图中 画出反应速率的变化曲线。
2.向一容积不变的密闭容器中充入一定量 A 和 B , 发 生 如 下 反 应 : xA(g) + 2B(s) yC(g) ΔH<0。在一定条件下,容器中 A、C 的物质的 量浓度随时间变化的曲线如图所示。请回答下 列问题: (1)用A的浓度变化表示该反应在0~10 min内的 平均反应速率v(A)=__0_.0_2__m_o_l_·L_-__1·_m__in_-__1 _。
t1时,v正、v逆同时增大,且v逆增大的更快,平衡向逆反应方向移动,所以t1时 改变的条件是升温;t3时,v正、v逆同时增大且增大程度相同,平衡不移动,所 以t3时改变的条件是加催化剂;t4时,v正、v逆同时减小,且v正减小的更快,平 衡向逆反应方向移动,所以t4时改变的条件是减小压强。
(3)依据(2)中的结论,下列时间段中,氨的百分含量
常考化学反应速率和化学平衡图像的分析
复习目标
学会分析与化学反应速率和化学平衡相关的图像,能解答化学反应原理的相关问题。
内容索引
类型一 速率-时间图像 类型二 反应进程折线图 类型三 恒压(或恒温)线 类型四 投料比—转化率相关图像 真题演练 明确考向
<
>
速率-时间图像
必备知识
1.常见含“断点”的速率—时间图像
A.维持温度、反应体系容积不变,t1时充入SO3(g)

《化工原理》气液平衡 _液体精馏

《化工原理》气液平衡 _液体精馏

图7-2 苯-甲苯混合液的y-x图
7第7章 液体ຫໍສະໝຸດ 馏2.双组分非理想溶液的气液平衡关系 非理想溶液可分为与理想溶液发生正偏差的溶液和负偏差 的溶液。例如,乙醇-水物系是具有正偏差的非理想溶液;硝 酸-水物系是具有负偏差的非理想溶液。它们的y-x图分别如图 7-3和7-4所示。
图7-3 乙醇-水溶液的y-x图
24
第7章 液体精馏
2.进料热状态参数 ⑴ 进料板的物料衡算与热量衡算 对图7-11所示的进料板分别作物料衡算及热量衡算,即 F+ V′+L=V+ L′ (7-20) FIF+ V′IV′+LIL=VIV+ L′IL′ (7-20a) 式中 IF——原料液的焓(kJ/kmol); IV , IV′—— 分 别 为 进 料 板 上 、 下 处 饱 和 蒸 气 的 焓 (kJ/kmol); IL , IL′—— 分 别 为 进 料 板 上 、 下 处 饱 和 液 体 的 焓 (kJ/kmol)。 由于与进料板相邻的上下板的温度及气液相组成各自都 很相近,故有: IV≈IV′ IL≈IL′
7.2.1双组分溶液的气液相平衡
1.双组分理想溶液的气液相平衡关系 气液相平衡关系,是指溶液与其上方的蒸气达到平衡时, 系统的总压、温度及各组分在气液两相中组成间的关系。 ⑴ 理想溶液及拉乌尔定律 实验表明,理想溶液的气液平衡关系遵循拉乌尔定律。 拉乌尔定律表示:当气液呈平衡时,溶液上方组分的蒸气 分压与溶液中该组分的摩尔分率成正比。 在一定压强下,液体混合物开始沸腾产生第一个气泡的温 度,称为泡点温度(简称泡点)。 严格而言,实际上理想溶液是不存在的,仅对于那些由性 质极相近、分子结构相似的组分所组成的溶液,例如苯-甲苯、 甲醇-乙醇、烃类同系物等可视为理想溶液。

水与乙醇饱和蒸汽表

水与乙醇饱和蒸汽表

水、酒精的饱和蒸汽压水、酒精的饱和蒸汽压 (1)一,乙醇 (1)一: (2)二:采用多项式拟合: (3)二,水 (4)1、按温度排列: (4)2. 按压强排列 (6)采用多项式拟合关系, (9)一,乙醇温度与压力关系如下:(参考资料:化工手册,溶剂手册,物理化学(天津大学四版)温度饱和蒸气压(kPa)-31.5 0.13-12.0 0.67-2.3 1.338.0 2.6719.0 5.3320 5.67126.0 8.0034.9 13.3340 17.39548.4 26.6660 46.0163.5 53.3378.3 101.32580 108.3290 158.27100 225.75110 314.82120 429.92130 576.03140 758.52150 982.85160 1255.40170 1581.70180 1969.85190 2425.70200 2958.72210 3577.49220 4294.15230 5109.82240 6071.39243.1 6394.62(此为手册的准确值。

但是,列出的以外的值缺乏,可以由下面的拟合来补充)乙醇的临界温度为243℃,临界压力为6.395MPa,沸点(一标准大气压下):78.3 ℃。

上述数据,有些整点值没有数据,故可以采用拟合的方式予以补充。

一:采用多项式拟合关系,如下:(Y为压力:kPa, X为温度℃)Y = A*EXP(B*X) ------------------------------------------------------------ 如下图示,R2=0.9963,准确度较高。

但经验证,在135℃以上时,按拟合较佳。

135℃以下时,有超过10%的误差。

在下表格中输入温度,可以直接计算任一值:(输入温度值,回车即可)1801872.526221二:采用多项式拟合:采用多项式拟合关系,如下:(Y为压力:kPa, X为温度℃)Equation: y = A0 + A1*x + A2*x^2 + A3*x^3 + A4*x^4 + A5*x^5 R^2=1A0=3.27574 A1=0.09631 A2=0.0001 A3=0.00009A4=1.0308E-6 A5=1.663E-9R2=1,准确度更高。

粘度法测乙醇和水的相容性

粘度法测乙醇和水的相容性

科研训练报告学院:化学工程学院专业班级:应化08-1班姓名:张艳时间:2011年6月26日地点:应化实验室指导教师:邢宏龙二O一一年六月训练目的:通过科研训练课程,使高年级本科生初步了解并亲历科研工作的基本过程,以小组为单位,在“接受研究项目→查阅文献资料→总结文献→拟定实验方案→实施实验→分析结果→撰写报告,汇报”训练中,发挥自主学习精神和团队协助精神,培养学生理论联系实际、分析问题和解决问题的能力,提高实践能力和综合素质。

主要内容:1、学会使用网络工具查阅资料,以“乙醇、相容性、粘度法”为关键词进行资料的查询;2、对查得的资料进行总结;3、拟定粘度法测定乙醇与水的相容性的实验流程和具体的操作步骤;4、实验;5、对产物的典型特性进行表征和分析;6、撰写科研训练报告。

指导教师评语:成绩评定指导教师签字年月日粘度法测乙醇和水的相容性张艳应化08-1班指导老师:邢宏龙1 绪论乙醇作为一种试剂被广泛的应用于化工、医药、农药、化妆品等各个领域。

由于其与水、醚、氯仿等溶剂混溶,在化学中经常作为一种溶剂使用。

相容性是两种或两种以上物质混合时,不产生相斥分离现象的能力。

平常人们只研究高分子聚合物之间的相容性问题,采取很多方法来确定,如动力学测定,热分析,电子显微镜,光散射等[1]。

但是与这些方法相比,液体的粘度是液体中大分子问微观作用的宏观表现,测此通过测定液体粘度以反映大分子问作用力的相关信息[2],而且粘度法操作简单方便,仪器简单,于是我们也采用同样的方法研究乙醇与水的相容性问题。

但是乙醇与水的相容性如何,它随温度、配比不同如何变化仍需要进一步进行探讨。

本次科研训练就是通过粘度法对乙醇水溶液粘度的测定,从化学热力学的角度探讨乙醇与水相容性的问题[3-4]。

通过本次科研训练,目的是让我们能初步了解并亲历科研工作的基本过程,在训练中培养独立思考,自主学习,理论联系实际,分析问题解决问题的能力,从而提高实践能力和综合素质。

乙醇-水溶液连续精馏板式塔设计说明书

乙醇-水溶液连续精馏板式塔设计说明书

目录第一章绪论 .............................................................................................................................. 错误!未定义书签。

一、设计题目:................................................................................................................. 错误!未定义书签。

二、设计任务及操作条件: (2)三、设计任务: (2)第二章课程设计报告内容 (3)一、设计方案的确定 (3)二、精馏塔的物料衡算 (3)三、塔板数的确定 (4)四、精馏塔的工艺条件及有关物性数据的计算............................................................. 错误!未定义书签。

五、精馏塔的塔体工艺尺寸计算..................................................................................... 错误!未定义书签。

六、塔板主要工艺尺寸的计算 (12)七、筛板的流体力学验算................................................................................................. 错误!未定义书签。

八、塔板负荷性能图......................................................................................................... 错误!未定义书签。

物理化学-第六章,相平衡-164

物理化学-第六章,相平衡-164

pC
A
临界点
647.30K

22.09MPa
ed c b a 冰
D O三相点 气
273.16K
B
610.62Pa
水的相图 T
OA、OB、OC三条线即两相平 衡线,可用克拉佩龙方程描述。
O:三相点 triple point(水在它 自身蒸气压力下的凝固点)。 通常所说的水的凝固点或冰点 (273.15 K)则是在101.325 kPa 下被空气所饱和的水的凝固点。
2020/9/7
相平衡
15
例4:某一纯理想气体的自由度为零,它必处于( )。 (A) 气液平衡共存; (B) 临界点; (C) 三相点; (D) 气相区
相律只能对系统作定性的描述,它只讨论“数目”而不 讨论“数值”:
根据相律可以确定有几个因素能对相平衡发生影响;在 一定条件下系统有几个相;等等。
但相律不能告诉我们这些数目具体代表哪些变量或哪些 相,也不知道各相的量之间的关系
2020/9/7
相平衡
29
第四节 理想的完全互溶双液系的相图
二组分系统: F = C – P + 2 = 4 – P
F最少为0,P最多为4; P最少为1,F最多为3——其相 图要用 p-T-x 三维立体图表示。
二组分系统相图的类型很多。
2020/9/7
相平衡
5
物种数 S:系统中所含化学物质的种数。 独立组分数 C:确定相平衡系统中所有各相组成所需的 最少物种数。
如:由 HI、H2、I2 三种气体组成的单相系统,S = 3。
① 如果各物质间没有任何化学反应,则组分数也是 3,即需要三 种物质才能确定气相的组成;
② 如果存在反应 2HI == H2 + I2,则组分数为 2,只需两种即可; ③ 如果还存在浓度限制如[H2]:[I2]=1:1,则组分数为1,只需一种

液平衡相图

液平衡相图
使用折光仪时,棱镜上不能触及硬物(如滴 管)。
数据处理
沸点温度校正 (1)正常沸点。在标准大气压下测得的沸点 称为正常沸点。通常外界压力并不恰好等 于101.325KPa,因此,应对实验测得值作 压力校正。应用特鲁顿规则及克劳修斯- 克拉见龙公式校正。
△t压=(273.15+ t测)/10·(101325-P)/101325
校正后溶液的正常沸点为 t沸=t测+△t压+△t露
作出折光率-组成标准曲线。根据所得蒸 出液和蒸馏液的折光率,在标准曲线上找 出对应的成分。
作环己烷-乙醇的T-x图。并从图中确定 出最低恒沸点和恒沸物组成。
思考问题
闪蒸现象、分馏现象及暴沸现象是指什么? 如何消除?
如出现闪蒸现象、分馏现象及暴沸现象, 将使绘出的相图图形会产生什么变化?
连接冷凝和圆底烧瓶之间的连接管过短或 位置过低,沸腾的液体就有可能溅入小球 内;相反,则易导致沸点较高的组分先被 冷凝下来,这样一来,气相样品组成将有 偏差。
本实验所用沸点仪如图所示:这是 一只带回流凝管的长颈园底烧瓶。 冷凝管底部有一半球形小室,用于 收集冷凝下来的气相样品。电流经 变压器和粗导线通过浸于溶液中的 电热丝。这样既可减少溶液沸腾时 的过热现象,还能防止暴沸。
安装沸点仪
将烘干的沸点仪按装好,检查带有温度 计的软木塞是否塞紧,电热丝要靠近烧瓶 底部的中心,温度计银球的位置应处在支 管之下,但和加热丝之间要有一定距离。
测定沸点
在已洗净烘干的蒸馏瓶内加入30cm3环 己烷,向蒸馏瓶内加入0.5cm3乙醇,其液面 应在温度用调 压变压器调节电压,由零开始逐渐加大电压 使溶液缓慢加热,观查电热丝上是否有小气 泡逸出。
记录完毕后,再向蒸馏瓶内再加入0.5cm3乙 醇,按前述方法测定沸点及气液两相的折射率。 再依次加入2,3cm3乙醇,作同样实验。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档