初中数学重点梳理:一元二次方程根与系数关系

合集下载

学生版一元二次方程根与系数的关系—知识讲解(基础)

学生版一元二次方程根与系数的关系—知识讲解(基础)

一元二次方程根与系数的关系—知识讲解(基础)【学习目标】1. 理解并掌握一元二次方程的根与系数的关系;2. 能应用一元二次方程的根与系数的关系解决以下问题:已知方程的一根,不解方程求另一根及参数系数;已知方程,求含有两根对称式的代数式的值及有关未知数系数;已知方程两根,求作以方程两根或其代数式为根的一元二次方程.【要点梳理】要点一、一元二次方程的根与系数的关系1.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根;(2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①222121212()2x x x x x x +=+-; ②12121211x x x x x x ++=; ③2212121212()x x x x x x x x +=+;④2221121212x x x x x x x x ++=2121212()2x x x x x x +-=; ⑤22121212()()4x x x x x x -=+-;⑥12()()x k x k ++21212()x x k xx k =+++;⑦12||x x -==⑧22212121222222121212()211()x x x x x x xx x x x x++-+==; ⑨12x x-==;⑩122|||||x x x +==2|x =.(4)已知方程的两根,求作一个一元二次方程;以两个数为根的一元二次方程是.(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围;(6)利用一元二次方程根与系数的关系可以进一步讨论根的符号.设一元二次方程20(0)ax bx c a ++=≠的两根为1x 、2x ,则①当△≥0且120x x >时,两根同号.当△≥0且120x x >,120x x +>时,两根同为正数;当△≥0且120x x >,120x x +<时,两根同为负数.②当△>0且120x x <时,两根异号.当△>0且120x x <,120x x +>时,两根异号且正根的绝对值较大;当△>0且120x x <,120x x +<时,两根异号且负根的绝对值较大.要点诠释:(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根a b +,则必有一根a b -(a ,b 为有理数).【典型例题】类型一、一元二次方程的根与系数的关系的应用(1)1.(定陶县期末)已知方程x 2+5x ﹣3=0,不解方程,求作一个一元二次方程使它的根分别是已知方程各根的2倍.举一反三:【变式】已知方程2x 2-3x-3=0的两个根分别为a ,b ,利用根与系数的关系,求一个一元二次方程,使它的两个根分别是a+1,b+1.2.(江西校级模拟)已知关于x 的方程mx 2+2x ﹣1=0有实数根.(1)求m 的取值范围;(2)若方程有两个实数根x 1,x 2,求+的值.举一反三:【变式】设一元二次方程2x 2-5x+1=0的两根分别为x 1,x 2,不解方程,求2112x x x x + 的值.类型二、一元二次方程的根与系数的关系的应用(2)3.已知方程2560x kx +-=的一个根是2,求另一个根及k 的值.举一反三:【变式】(泉州校级期中)若关于x 的一元二次方程x 2+9k+3x+k=0的一个根是﹣2,求方程另一个根和k 的值.4.求作一个一元二次方程,使它的两根分别是133-,122.一元二次方程根与系数的关系—巩固练习(基础) 【巩固练习】 一、选择题1. 下列方程,有实数根的是( )A .2x 2+x+1=0B .x 2+3x+21=0C .x 2-0.1x-1=0D .22230x x -+= 2.一元二次方程20(0)ax bc c a ++=≠有两个不相等的实数根,则24b ac -满足的条件是( ) A .240b ac -= B .240b ac -> C .240b ac -< D .240b ac -≥3.(烟台)若x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两个根,则x 12﹣x 1+x 2的值为( )A .﹣1B .0C .2D .34.关于方程2230x x ++=的两根12,x x 的说法正确的是( )A. 122x x +=B.123x x +=-C. 122x x +=-D.无实数根5.(广西)已知实数x 1,x 2满足x 1+x 2=7,x 1x 2=12,则以x 1,x 2为根的一元二次方程是( )A .x 2﹣7x+12=0B .x 2+7x+12=0C .x 2+7x ﹣12=0D .x 2﹣7x ﹣12=06.一元二次方程22630x x -+=的两根为α、β,则2()αβ-的值为( ). A .3 B .6 C .18 D .24二、填空题7.已知关于x 的方程x 2-2x+k =0有实数根,则k 的取值范围是________.8.已知3x 2-2x-1=0的二根为x 1,x 2,则x 1+x 2=______,x 1x 2=______,1211x x +=••_______,• x 12+x 22=_______,x 1-x 2=________. 9.若方程的两根是x 1、x 2,则代数式的值是 。

一元二次方程根与系数的关系公式

一元二次方程根与系数的关系公式

一元二次方程根与系数的关系公式
一元二次方程根与系数的关系公式:ax²+bx+c=(a≠0),当判别式=b²-4ac>=0时。

设两根为x₁,x₂,则根与系数的关系(韦达定理):x₁+x₂=-b/a;x₁x₂=c/a。

一元二次方程必须同时满足三个条件:
①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。

②只含有一个未知数。

③未知数项的最高次数是2。

用因式分解法解一元二次方程的步骤:
(1)将方程右边化为0。

(2)将方程左边分解为两个一次式的积。

(3)令这两个一次式分别为0,得到两个一元一次方程。

(4)解这两个一元一次方程,它们的解就是原方程的解。

《一元二次方程根与系数的关系》 知识清单

《一元二次方程根与系数的关系》 知识清单

《一元二次方程根与系数的关系》知识清单一元二次方程是初中数学中的重要内容,其中根与系数的关系(韦达定理)更是有着广泛的应用。

让我们一起来深入了解一下这个重要的知识点。

一、什么是一元二次方程形如$ax^2 + bx + c = 0$($a \neq 0$)的方程叫做一元二次方程。

其中$a$是二次项系数,$b$是一次项系数,$c$是常数项。

二、一元二次方程的求根公式对于一元二次方程$ax^2 + bx + c = 0$($a \neq 0$),其求根公式为:$x =\frac{b \pm \sqrt{b^2 4ac}}{2a}$。

当$b^2 4ac \gt 0$时,方程有两个不相等的实数根;当$b^2 4ac =0$时,方程有两个相等的实数根;当$b^2 4ac \lt 0$时,方程没有实数根。

三、根与系数的关系(韦达定理)若一元二次方程$ax^2 + bx + c = 0$($a \neq 0$)的两根为$x_1$,$x_2$,则有:$x_1 + x_2 =\frac{b}{a}$$x_1 \cdot x_2 =\frac{c}{a}$这就是一元二次方程根与系数的关系,也称为韦达定理。

四、韦达定理的推导设方程$ax^2 + bx + c = 0$($a \neq 0$)的两根为$x_1$,$x_2$,由求根公式可得:$x_1 =\frac{b +\sqrt{b^2 4ac}}{2a}$,$x_2 =\frac{b \sqrt{b^2 4ac}}{2a}$则:$x_1 + x_2 =\frac{b +\sqrt{b^2 4ac}}{2a} +\frac{b \sqrt{b^2 4ac}}{2a}$$=\frac{b +\sqrt{b^2 4ac} b \sqrt{b^2 4ac}}{2a}$$=\frac{-2b}{2a} =\frac{b}{a}$$x_1 \cdot x_2 =\frac{b +\sqrt{b^2 4ac}}{2a} \cdot \frac{b \sqrt{b^2 4ac}}{2a}$$=\frac{(b)^2 (\sqrt{b^2 4ac})^2}{4a^2}$$=\frac{b^2 (b^2 4ac)}{4a^2}$$=\frac{4ac}{4a^2} =\frac{c}{a}$五、韦达定理的应用1、已知方程的一根,求另一根及未知系数例如:已知方程$x^2 5x + 6 = 0$的一个根为 2,求另一个根及常数项。

一元二次方程的根与系数的关系(知识点考点)-九年级数学上册知识点考点(解析版)

一元二次方程的根与系数的关系(知识点考点)-九年级数学上册知识点考点(解析版)

一元二次方程的根与系数的关系(知识点考点一站到底)知识点☀笔记韦达定理:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则12b x x a +=-,12c x x a⋅= 考点☀梳理考点1:韦达定理必备知识点:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则12b x x a +=-,12c x x a⋅= 解题指导:适用题型:(1)已知一根求另一根及未知系数;(2)求与方程的根有关的代数式的值;(3)已知两根求作方程;(4)已知两数的和与积,求这两个数;(5)确定根的符号:(12,x x 是方程两根);(6)题目给出两根之间的关系,如两根互为相反数、互为倒数、两根的平方和或平方差是多少、两根是Rt ∆的两直角边求斜边等情况.注意:(1)韦达定理拓展公式 ①x 12+x 22=(x 1+x 2)2−2x 1∙x 2②1x 1+1x 2=x 2+x 1x 1∙x 2x 2x 1+x1x 2=x 12+x 22x 1∙x 2=(x 1+x 2)2−2x 1∙x 2x 1∙x 2③(x 1−x 2)2=(x 1+x 2)2−4x 1∙x 2④|x 1−x 2|=√(x 1+x 2)2−4x 1∙x 2 ;(2)①方程有两正根,则1212000x x x x ∆≥⎧⎪+>⎨⎪⋅>⎩;②方程有两负根,则1212000x x x x ∆≥⎧⎪+<⎨⎪⋅>⎩ ;③方程有一正一负两根,则120x x ∆>⎧⎨⋅<⎩;(3)应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时,一般把所求作得方程的二次项系数设为1,即以12,x x 为根的一元二次方程为21212()0x x x x x x -++⋅=;求字母系数的值时,需使二次项系数0a ≠,同时满足∆≥0;求代数式的值,常用整体思想,把所求代数式变形成为含有两根之和12x x +,•两根之积12x x ⋅的代数式的形式,整体代入。

中学数学《一元二次方程根与系数的关系》知识点精讲

中学数学《一元二次方程根与系数的关系》知识点精讲

知识点总结一、一元二次方程根与系数的关系(1)若方程ax2 bx c 0 (a≠0)的两个实数根是x1,x2,则x1+x2= -bc,x1x2= aa(2)若一个方程的两个根为x1,,x2,那么这个一元二次方程为ax2 x1 x2 x x1x2 0 (a≠0)(3)根与系数的关系的应用:① 验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;② 求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数系数.③ 求代数式的值:在不解方程的情况下,可利用根与系数的关系求关于x1和x2的代数式的值,如;④ 求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次方程的一般式.二、解一元二次方程应用题:它是列一元一次方程解应用题的拓展,解题方法是相同的。

其一般步骤为:1.设:即适当设未知数(直接设未知数,间接设未知数),不要漏写单位名称,会用含未知数的代数式表示题目中涉及的量;2.列:根据题意,列出含有未知数的等式,注意等号两边量的单位必须一致;3.解:解所列方程,求出解来;4.验:一是检验是否为方程的解,二是检验是否为应用题的解;5.答:怎么问就怎么答,注意不要漏写单位名称。

一元二次方程的练习题1、若关于x的二次方程(m+1)x-3x+2=0有两个相等的实数根,则m=__________22、设方程x 3x 4 0的两根分别为x1,x2,则x1+x2=________,x1·x2=__________ 2x1+x2=_________,(x1-x2)=__________,x1+x1x2+3x1=____________23、若方程x-5x+m=0的一个根是1,则m=____________24、两根之和等于-3,两根之积等于-7的最简系数的一元二次方程是_____________25、若关于x的一元二次方程mx+3x-4=0有实数根,则m的值为______________226、方程kx+1=x-x无实根,则k___________导学案【学习目标】1、学会用韦达定理求代数式的值。

一元二次方程的根与系数之间的关系

一元二次方程的根与系数之间的关系

一元二次方程的根与系数之间的关系一元二次方程是数学中经常遇到的一类方程,它由一个未知数的二次多项式等于一个常数构成,通常的一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为常数,而x为未知数。

解一元二次方程的根是求出使得方程成立的未知数的值。

在研究一元二次方程的根之前,我们先来了解一下一元二次方程的系数。

系数是指方程中各个项的系数,即a、b和c。

在一元二次方程中,系数与根之间存在着一些规律和关系。

首先,我们来探讨一元二次方程的两个根与系数之间的关系。

根据求根公式,一元二次方程的根可以通过以下公式求得:x = (-b ± √(b^2 - 4ac)) / (2a)。

从该公式中可以看出,根的值与方程的系数a、b和c有关。

具体来说,b^2 - 4ac称为判别式,它决定了方程有多少个根以及根的性质。

1. 当判别式大于0时(b^2 - 4ac > 0),方程有两个不相等的实根。

这意味着方程在坐标系中图像与x轴交于两个点。

此时,判别式的平方根√(b^2 - 4ac)为实数,且有两个解分别为x1和x2。

可以推导出,这两个解与系数的关系为:x1 + x2 = -b/ax1 * x2 = c/a2. 当判别式等于0时(b^2 - 4ac = 0),方程有两个相等的实根。

这意味着方程在坐标系中图像与x轴有且只有一个交点。

此时,判别式的平方根√(b^2 - 4ac)为0,解的公式变为:x = -b/(2a)。

可以看出,根与系数的关系为:x1 = x2 = -b/(2a)3. 当判别式小于0时(b^2 - 4ac < 0),方程没有实根,而是有两个共轭复根。

也就是说,方程在坐标系中与x轴没有交点。

此时,判别式的平方根√(b^2 - 4ac)为纯虚数,解的公式可以写成:x = (-b ± i√(|b^2 - 4ac|)) / (2a),其中i为虚数单位。

因此,系数与根的关系可以表示为: x1 + x2 = -b/ax1 * x2 = -c/a由上述关系可知,一元二次方程的根与系数之间确实存在一些规律。

一元二次方程根与系数关系(知识讲解)九年级数学上册基础知识讲与练

一元二次方程根与系数关系(知识讲解)九年级数学上册基础知识讲与练

专题2.14 一元二次方程根与系数关系(知识讲解)【学习目标】掌握一元二次方程的根与系数的关系以及在各类问题中的运用. 【要点梳理】一元二次方程的根与系数的关系 1.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是, 那么,. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2. 一元二次方程的根与系数的关系的应用⎧⎪⎪⎪→→⎨⎪⎪⎪⎩知识框图:1、求代数式的值2、求待定系数一元二次方程求根公式根与系数关系应用3、构造方程4、解特殊的二元二次方程组5、二次三项式的因式分解【典型例题】类型一、由根与系数关系直接求值1.已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值:(1)2211+x x (2)1211+x x 【答案】(1)11;(2) -3. 【分析】由一元二次方程的根与系数的关系可得12123,1x x x x +=⋅=-;(1)将所求式子变形为(x 1+x 2)2-2x 1x 2 ,然后整体代入上面两个式子计算即可; (2)将所求式子变形为1212x x x x +⋅,然后整体代入上面两个式子计算即可.解:∵x 1,x 2是一元二次方程x 2-3x -1=0的两根,∵12123,1x x x x +=⋅=-,(1)2211+x x = (x 1+x 2)2-2x 1x 2 =32-2×(-1)=11;)0(02≠=++a c bx ax 21x x ,a b x x -=+21ac x x =21(2)12121211331x x x x x x ++===-⋅-. 【点拨】本题考查了一元二次方程的根与系数的关系,属于基本题目,熟练掌握一元二次方程的两根之和与两根之积与系数的关系是解题关键.举一反三:【变式1】利用根与系数的关系,求下列方程的两根之和、两根之积: (1)2760x x ++=; (2)22320x x --=.【答案】(1)12127,6x x x x +=-=;(2)12123,12x x x x +==-【分析】直接运用一元二次方程根与系数的关系求解即可. 解:(1)这里1,7,6a b c ===.22Δ474164924250b ac =-=-⨯⨯=-=>,∵方程有两个实数根. 设方程的两个实数根是12,x x , 那么12127,6x x x x +=-=. (2)这里2,3,2a b c ==-=-.22Δ4(3)42(2)916250b ac =-=--⨯⨯-=+=>,∵方程有两个实数根.设方程的两个实数根是12,x x ,那么12123,12x x x x +==-.【点拨】本题考查了一元二次方程根与系数的关系,熟知1212,b cx x x x a a+=-=是解题的关键.【变式2】 甲、乙两人同解一个二次项系数为1的一元二次方程,甲抄错了常数项,解得两根分别为3和2,乙抄错了一次项系数,解得两根分别为-5和-1,求原来的方程.【答案】2550x x -+= 【分析】解法一:利用甲乙解出的根,可以得出两个一元二次方程,取甲方程的一次项系数,取乙方程的常数项,即可重新组合出原来正确的方程.解法二:利用根与系数的关系,取甲方程的一次项系数,取乙方程的常数项,即可重新组合出原来正确的方程.解:解法一:设原一元二次方程为2+a b 0+=x x ,代入甲解出的两根3、2得9+3a+b=04+2a+b=0⎧⎨⎩,解得a=5b=6-⎧⎨⎩,因为甲抄错常数项,所以取a=5-同理,代入乙解出的两根-5和-1,可得a=6b=5⎧⎨⎩,而乙抄错了常数项,所以取b=5,综上可得原方程为2550x x -+=解法二:甲抄错常数项,解得两个为3和2,两根之和正确;乙抄错了一次项系数,解得两根为-5和-1,则两根之积正确.设原方程的两根分别为1x 、2x ,可得12+=5x x ,12=5x x ,所以原方程就是2550x x -+=.【点拨】在没有学习根与系数关系之前,可用方程的解的性质,代入两根求出方程系数,学习之后可直接利用根与系数关系得出方程系数,更为简单.类型二、由根与系数关系求参数的值2.关于x 的一元二次方程22(21)0x m x m --+=的两根为,a b ,且4a b ab +=-,求m 的值.嘉佳的解题过程如下: 解:221,a b m ab m +=-=,2214m m ∴-=-, 整理,得2230m m --=, 解得121,3m m =-=.嘉佳的解题过程漏了考虑哪个条件?请写出正确的解题过程. 【答案】m 的值为1-. 【分析】根据一元二次方程根的判别式结合根与系数的关系解答.解:嘉佳的解题过程漏了考虑0∆这一条件.正确的解题过程如下:根据题意得22(21)40m m ∆=--,解得14m. 221,a b m ab m +=-=,2214m m ∴-=-,整理得2230m m --=,解得121,3m m =-=(舍去), m ∴的值为1-.【点拨】本题中忽略0∆这一条件导致错解针对这一类题,我们一定要看清题目中所给的条件,考虑一元二次方程有解的条件是“0∆”,才能得出正确结果.举一反三:【变式1】已知1x 、2x 是方程2220x kx k k -+-=的两个实根,是否存在常数k ,使122132x x x x +=成立?若存在,请求出k 的值;若不存在,请说明理由. 【答案】不存在.理由见分析【分析】根据根与系数关系列出关于k 的方程,根据方程有实数根列出关于k 的不等式,求解即可.解:不存在.∵1x 、2x 是方程2220x kx k k -+-=的两个实根, ∵240b ac -≥,即22(2)4()0k k k ---≥, 解得,0k ≥;由题意可知122x x k +=,212x x k k =-,∵12121212122221122()232x x x x x x x x x x x x x x +=+-=+=, ∵222(2)32)2(k k k k k --=-,解得120,7k k ==-,经检验,27k =-是原方程的解,∵0k ≥,∵不存在常数k ,使122132x x x x +=成立. 【点拨】本题考查了一元二次方程根与系数关系和解方程,解题关键是根据根与系数关系列出方程并求解,注意:根的判别式要大于或等于0.【变式2】 已知方程2 420x x m +-=的一个根比另一个根小4,求这两个根和m 的值.【答案】10x =,24x =-,0m =【分析】设两根为x 1和x 2,根据根与系数的关系得x 1+x 2,x 1·x 2,由|x 2-x 1|=4两边平方,得(x 1+x 2)2-4x 1·x 2=16,代入解得m ,此时方程为x 2+4x=0,解出两根 .解:x 2+4x -2m=0设两根为x 1和x 2,则∵=16+8m>0, 且x 1+x 2=-4,x 1·x 2=-2m 由于|x 2-x 1|=4两边平方得x 12-2x 1·x 2+x 22=16 即(x 1+x 2)2-4x 1·x 2=16 所以16+8m=16 解得:m=0此时方程为x 2+4x=0, 解得 x 1=0 , x 2=−4 .【点拨】本题考查一元二次方程的根与系数的关系,解题的关键是灵活利用一元二次方程根与系数的关系,以及完全平方公式进行变形,求出两根.类型三、根的判断别与根与系数关系综合3、已知一元二次方程220x x m -+=. (1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为12x x 、,且1233x x +=,求m 的值. 【答案】(1)1m ≤;(2)34m = 【分析】(1)一元二次方程220x x m -+=有两个实数根,∵≥0,把系数代入可求m 的范围; (2)利用根与系数的关系,已知122x x +=结合1233x x +=,先求12x x 、,再求m . 解:(1)∵方程220x x m -+=有两个实数根,∵()22424440b ac m m =-=--=-≥, 解得1m ≤;(2)由根与系数的关系可知,122x x +=,12x x m =,解方程组1212233x x x x +=⎧⎨+=⎩,解得123212x x ⎧=⎪⎪⎨⎪=⎪⎩,∵12313224m x x ==⨯=.【点拨】本题考查了一元二次方程根的判别式以及根与系数的关系,熟练掌握根的判别式、根与系数的关系是解题的关键.【变式1】已知关于x 的一元二次方程2(8)80x k x k -++=. (1)证明:无论k 取任何实数,方程总有实数根.(2)若221268x x +=,求k 的值.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.【答案】(1)证明见分析;(2)2k =±;(3)这个等腰三角形的周长为21或18. 【分析】(1)根据根的判别式即可得到结论;(2)先计算∵=(8+k )2−4×8k ,整理得到∵=(k−8)2,根据非负数的性质得到∵≥0,然后根据∵的意义即可得到结论;(3)先解出原方程的解为x 1=k ,x 2=8,然后分类讨论:腰长为8时,则k =8;当底边为8时,则得到k =5,然后分别计算三角形的周长.解:(1)22(8)48(8)k k k ∆=+-⨯=-.2(8)0k -,0∴∆,∴无论k 取任何实数,方程总有实数根;(2)221212128,8,68x x k x x k x x +=+=+=,()2221212122x x x x x x +=++,2(8)6816k k ∴+=+,解得2k =±;(3)解方程2(8)80x k x k -++=得12,8x k x ==.∵当腰长为8时,8k . 85138+=>,能构成三角形,∴周长为88521++=.∵当底边长为8时,5k =.55108+=>∴能构成三角形,周长为55818++=.综上,这个等腰三角形的周长为21或18.【点拨】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=−b a ,x 1•x 2=ca.也考查了一元二次方程的判别式和等腰三角形的性质,掌握这些知识点是解题关键.【变式2】 已知关于x 的一元二次方程()22121202x k x k -++-=.(1)求证:无论k 为何实数,方程总有两个不相等的实数根; (2)若方程的两个实数根1x ,2x 满足123x x -=,求k 的值. 【答案】(1)见分析 (2)0,-2 【分析】(1)根据根的判别式即可求证出答案;(2)可以根据一元二次方程根与系数的关系得k 与的1x 、2x 的关系式,进一步可以求出答案.解:(1)证明:∵()222121422492k k k k ⎛⎫∆=+-⨯-=++ ⎪⎝⎭()2217k =++,∵无论k 为何实数,()2210k +≥, ∵()22170k +∆=+>,∵无论k 为何实数,方程总有两个不相等的实数根;(2)由一元二次方程根与系数的关系得: 1221x x k +=+,212122x x k =-, ∵123x x -=, ∵()2129x x -=, ∵()2121249x x x x +-=,∵()221214292k k ⎛⎫+-⨯-= ⎪⎝⎭,化简得:220k k +=,解得0k =,2-.【点拨】本题主要考查根的判别式和根与系数的关系,熟练掌握概念和运算技巧即可解题.类型四、根与系数关系拓展应用14、已知m ,n 是方程x 2﹣2x ﹣1=0的两个根,是否存在实数a 使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8?若存在,求出a 的值;若不存在,请说明理由.【答案】存在,a =-6 【分析】根据方程的解的定义得出m 2-2m =1,n 2-2n =1,m +n =2,再整体代入即可得出a 的值. 解:存在,理由如下:∵m ,n 是方程x 2﹣2x ﹣1=0的两个根, ∵m 2﹣2m =1,n 2﹣2n =1,m +n =2, ∵﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7) =﹣(m +n )[7(m 2﹣2m )+a ][3(n 2﹣2n )﹣7] =﹣2×(7+a )(3﹣7) =8(7+a ),由8(7+a )=8得a =﹣6,∵存在实数a =﹣6,使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8. 【点拨】本题考查了一元二次方程的解、根与系数的关系,解题的关键是得出m 2-2m =1,n 2-2n =1,m +n =2,注意解题中的整体代入思想.【变式1】阅读材料:已知方程p 2﹣p ﹣1=0,1﹣q ﹣q 2=0且pq ≠1,求1pq q+的值. 解:由p 2﹣p ﹣1=0,及1﹣q ﹣q 2=0可知p ≠0, 又∵pq ≠1,∵p ≠1q.∵1﹣q ﹣q 2=0可变形为211()-q q ﹣1=0,根据p 2﹣p ﹣1=0和211()-q q﹣1=0的特征,∵p 、1q 是方程x 2﹣x ﹣1=0的两个不相等的实数根,则p +1q,即11pq q +=. 根据阅读材料所提供的方法,完成下面的解答. 已知:2m 2﹣5m ﹣1=0,21520n n+-=,且m ≠n ,求: (1)mn 的值; (2)2211m n +. 【答案】(1)12-;29.【分析】(1)由题意可知:可以将方程22510m m --=化简为21520m m+-=的形式,根据根与系数的关系直接得:11m n的值; (2)将2211m n +变形为2112m n mn ⎛⎫=+- ⎪⎝⎭求解.解:由22m 5m 10--=知m≠0,∵21520m m+-=, ∵21520n n+-=,m ≠n , ∵11m n≠, ∵1m 和1n是方程2520x x +-=的两个根, (1)由1m 和1n 是方程2520x x +-=的两个根得112m n⋅=-, ∵12mn =-;经检验:12mn =-是原方程的根,且符合题意.(2)由1m和1n是方程2520x x+-=的两个根得115m n+=-,112m n⋅=-,∵2221111225429 m n m n mn⎛⎫+=+-=+=⎪⎝⎭.【点拨】本题考查一元二次方程根与系数关系,代数式的值,乘法公式,掌握一元二次方程根与系数关系与乘法公式恒等变形是解题关键.【变式2】定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M,过点M向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M始终在直线y=kx﹣2(k﹣2)的图象上,若有请直接写出b,c的值,若没有说明理由.【答案】(1)衍生点为M(0,2);(2)12-;(3)存在,b=﹣6,c=8;【分析】(1)求出方程的两根,根据一元二次方程的衍生点即可解决问题;(2)求出方程的两根,根据一元二次方程的衍生点的定义,再利用正方形的性质构建方程即可解决问题;(3)求出定点,利用根与系数的关系解决问题即可;解:(1)∵x2﹣2x=0,∵x(x﹣2)=0,解得:x1=0,x2=2故方程x2﹣2x=0的衍生点为M(0,2).(2)x2﹣(2m+1)x+2m=0(m<0)∵m<0∵2m<0解得:x1=2m,x2=1,方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M(2m,1).点M在第二象限内且纵坐标为1,由于过点M向两坐标轴做垂线,两条垂线与x 轴y轴恰好围城一个正方形,所以2m =﹣1,解得12m =-.(3)存在.直线y =kx ﹣2(k ﹣2)=k (x ﹣2)+4,过定点M (2,4), ∵x 2+bx+c =0两个根为x 1=2,x 2=4, ∵2+4=﹣b ,2×4=c , ∵b =﹣6,c =8.【点拨】本题考查一元二次方程的解法及根与系数的关系、正方形的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题.类型五、根与系数关系拓展应用25、如图,在平面直角坐标系中,∵ABC 的BC 边与x 轴重合,顶点A 在y 轴的正半轴上,线段OB ,OC (OB OC <)的长是关于x 的方程2760x x -+=的两个根,且满足CO =2AO .(1)求直线AC 的解析式;(2)若P 为直线AC 上一个动点,过点P 作PD ∵x 轴,垂足为D ,PD 与直线AB 交于点Q ,设∵CPQ 的面积为S (0S ≠),点P 的横坐标为a ,求S 与a 的函数关系式;(3)点M 的坐标为()m,2,当∵MAB 为直角三角形时,直接写出m 的值.【答案】(1)132y x =+; (2)22721,6042721,6042a a a a S a a a ⎧+-⎪⎪=⎨⎪---<<⎪⎩或;(3)m 的值为-3或-1或2或7;【分析】(1)根据一元二次方程的解求出OB 和OC 的长度,然后得到点B ,点C 坐标和OA 的长度,进而得到点A 坐标,最后使用待定系数法即可求出直线AC 的解析式;(2)根据点A ,点B 坐标使用待定系数法求出直线AB 的解析式,根据直线AB 解析式和直线AC 解析式求出点P ,Q ,D 坐标,进而求出PQ 和CD 的长度,然后根据三角形面积公式求出S ,最后对a 的值进行分类讨论即可;(3)根据∵MAB 的直角顶点进行分类讨论,然后根据勾股定理求解即可.(1)解:解方程2760x x -+=得16x =,21x =,∵线段OB ,OC (OB OC <)的长是关于x 的方程2760x x -+=的两个根,∵OB =1,OC =6,∵()10B ,,()6,0C -, ∵CO =2AO ,∵OA =3,∵()0,3A ,设直线AC 的解析式为()0y kx b k =+≠,把点()0,3A ,()6,0C -代入得603k b b -+=⎧⎨=⎩, 解得123k b ⎧=⎪⎨⎪=⎩, ∵直线AC 的解析式为132y x =+; (2)解:设直线AB 的解析式为y =px +q ,把()0,3A ,()10B ,代入直线AB 解析式得30q p q=⎧⎨=+⎩, 解得33p q =-⎧⎨=⎩, ∵直线AB 的解析式为33y x =-+,∵PD ∵x 轴,垂足为D ,PD 与直线AB 交于点Q ,点P 的横坐标为a , ∵1,32P a a ⎛⎫+ ⎪⎝⎭,(),33Q a a -+,(),0D a , ∵()1733322PQ a a a ⎛⎫=-+-+= ⎪⎝⎭,6CD a =+, ∵1176222S PQ CD a a =⋅=⨯⋅+,当点P 与点A 或点C 重合时,即当a =0或6a =-时,此时S =0,不符合题意,当6a <-时,()21772162242S a a a a ⎛⎫⎡⎤=⨯--+=+ ⎪⎣⎦⎝⎭, 当60a -<<时,()21772162242S a a a a ⎛⎫=⨯-+=-- ⎪⎝⎭, 当0a >时,()21772162242S a a a a =⨯+=+, ∵22721,6042721,6042a a a a S a a a ⎧+-⎪⎪=⎨⎪---<<⎪⎩或; (3)解:∵()0,3A ,()10B ,,(),2M m , ∵AB ==AM ==,BM =当∵MAB =90°时,222AM AB BM +=,∵222+=, 解得3m =-,当∵ABM =90°时,222AB BM AM+=,∵222+=, 解得m =7, 当∵AMB =90°时,222AM BM AB +=,∵222+=, 解得11m =-,22m =,∵m 的值为-3或-1或2或7.【点拨】本题考查解一元二次方程、待定系数法求一次函数解析式、三角形面积公式、勾股定理,正确应用分类讨论思想是解题关键.【变式1】PAC △在平面直角坐标系中的位置如图所示,AP 与y 轴交于点(0,2)B ,点P 的坐标为(1,3)-,线段OA ,OC 的长分别是方程29140x x -+=的两根,OC OA >.(1)求线段AC 的长;(2)动点D 从点O 出发,以每秒1个单位长度的速度沿x 轴负半轴向终点C 运动,过点D 作直线l 与x 轴垂直,设点D 运动的时间为t 秒,直线l 扫过四边形OBPC 的面积为S ,求S 与t 的关系式;(3)M 为直线l 上一点,在平面内是否存在点N ,使以A ,P ,M ,N 为顶点的四边形为正方形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)9 (2)()()221201217317424t t t S t t t ⎧+<≤⎪⎪=⎨⎪-+-<≤⎪⎩ (3)存在满足条件的N 点,其坐标为(2,3)或(-4,0)或(-1,-3).【分析】(1)解方程可求得OA 、OC 的长,则可求得A 、C 的坐标,从而可得AC 长;(2)分两种情况:∵当0<t ≤1时;∵当1<t ≤7时,利用梯形的面积公式即可求解; (3)分两种情况:∵AP 为正方形的对角线时,∵AP 为正方形的边时,根据正方形以及等腰直角三角形的性质,可求得N 点坐标.(1)解:解方程x 2﹣9x +14=0可得x =2或x =7,∵线段OA ,OC 的长分别是方程x 2﹣9x +14=0的两根,且OC >OA ,∵OA =2,OC =7,∵A (2,0),C (﹣7,0),279.AC(2) 解:过点P 作PH ∵OC 于H ,而()1,3P - ,1OH ∴=,3PH = ,6CH =设直线AB 解析式为y =kx +b ,而点B (0,2),∵32k b b -+=⎧⎨=⎩, 解得12k b =-⎧⎨=⎩, ∵直线AB 解析式为y =﹣x +2,∵如图1所示,当0<t ≤1时,点E (﹣t ,t +2),∵S =S 梯形OBED =21122222t t t t (0<t ≤1); ∵如图2所示,当1<t ≤7时,设直线CP 解析式为y =mx +n ,∵C (﹣7,0),点P 的坐标为(﹣1,3),∵703m n m n -+=⎧⎨-+=⎩ ,解得1272m n ⎧=⎪⎪⎨⎪=⎪⎩, ∵直线CP 解析式为1722y x =+, 设17,22E t t , ∵DE =1722t , ∵S =S 梯形OBPH +S 梯形HPED =11172+31+132222t t 217317424t t t ;综上,()()221201217317424t t t S t t t ⎧+<≤⎪⎪=⎨⎪-+-<≤⎪⎩;图1 图2(3) 分两种情况:∵AP 为正方形的对角线时,如图3所示,∵A (2,0),B (0,2),∵∵OAB =45°,∵四边形AMPN 是正方形,∵∵P AN =45°,∵NAM =90°,∵∵OAB +∵P AN =90°,∵点M 在x 轴上,NA ∵x 轴,NP x ∥轴,∵N (2,3);∵AP 为正方形的边时,如图4所示,∵∵OAB =45°,四边形AMNP 是正方形,∵∵NAM =∵OAB =45°,AP =AM ,∵HN =PH =3,∵N (-4,0);如图5所示,四边形ANMP 是正方形,∵PH =NH =3,∵()1,3N --;∵N (-4,0)或(-1,-3),综上可知,存在满足条件的N 点,其坐标为(2,3)或(-4,0)或(-1,-3).图3 图4 图5【点拨】本题为四边形的综合题,考查了一元二次方程、勾股定理、待定系数法、正方形的性质、等腰直角三角形的性质等知识.在(1)中求得OA 、OC 的长是解题的关键,在(2)中分类讨论是解题的关键,在(3)中分类思想的运用是解题的关键.本题考查知识点较多,综合性较强,难度适中.【变式2】 菱形ABCD 的边长为5,两条对角线AC 、BD 相交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,求m 的值.【答案】3m =-.【分析】由题意可知:菱形ABCD 的边长是5,则AO 2+BO 2=25,则再根据根与系数的关系可得:AO +BO =−(2m −1),AO ∙BO =m 2+3;代入AO 2+BO 2中,得到关于m 的方程后,即可求得m 的值.解:∵AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,设方程的两根为1x 和2x ,可令1OA x =,2OB x =,∵四边形ABCD 是菱形,∵AC BD ⊥,在Rt AOB 中:由勾股定理得:222OA OB AB +=,∵222125+=x x ,则()21212225x x x x +-=,由根与系数的关系得:12(21)x x m +=--,2123x x m ⋅=+,∵[]()22(21)2325m m ---+=, 整理得:22150m m --=,解得:15m =,23m =-又∵0∆>,∵()22(21)430--+>m m ,解得114m <-, ∵3m =-.【点拨】此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.。

初三人教版数学上册一元二次方程的根与系数的关系重点

初三人教版数学上册一元二次方程的根与系数的关系重点

初三人教版数学上册一元二次方程的根与系数的关系重点知识点中学数学里的根与系数之间的关系又称韦达定理,指的是如果方程ax平方+bx+c=0(a不等于0)的两根为x1、x2,那么x1+x2=-b/a,x1x2=c/a.需要说明的是,必须保证满足:(1)a不等于0(2)判别式大于等于0.韦达定理通常解决一些已知方程求两根的某种运算,如方程x平方+5x-10=0的两个根分别是x1、x2,不解方程求1/x1+1/x2;x1平方+x2平方;x1立方+x2立方等;已知方程两个根的某种关系求方程中的待定系数;解决直线与圆锥曲线的交点问题,弦长问题等,是中学数学中一个非常重要的关系.它的一般结论是一元n次方程中根与系数的关系,大学里才学习.例题解析课后练习1.若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1+x2的值是( )A.1B.5C.-5D.62.一元二次方程x2+4x-3=0的两根为x1,x2,则x1x2的值是( )A.4B.-4C.3D.-33.已知方程x2-2x-1=0,则此方程( )A.无实数根B.两根之和为-2C.两根之积为-1D.有一根为-1+24.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,则m+n的值是( )A.-10B.10C.-6D.25.已知实数x1,x2满足x1+x2=11,x1x2=30,则以x1,x2为根的一元二次方程是( )A.x2-11x+30=0B.x2+11x+30=0C.x2+11x-30=0D.x2-11x-30=0答案:1.B 2.D 3.C 4.A 5.A一元二次方程的根与系数的关系重点的全部内容就是这些,更多的精彩内容请点击初三数学知识点栏目了解详情,预祝大家在新学期可以更好的学习。

初三数学一元二次方程根与系数的关系及其应用知识精讲

初三数学一元二次方程根与系数的关系及其应用知识精讲

初三数学一元二次方程根与系数的关系及其应用知识精讲一元二次方程根与系数的关系及其应用一元二次方程ax bx c a 200++=≠()的根x x 12、是由系数a 、b 、c 决定的,它们之间有密切的关系。

x x b a x x c a1212+=-=, 这就是根与系数的关系,也称为韦达定理。

反之,一元二次方程的两根也制约着这个方程的系数,当a =1时,有()b x x =-+12,c x x =12,从而有以两个数x x 12、为根的二次项系数为1的一元二次方程是()x x x x x x 212120-++=。

需要指出,韦达定理应该是在判别式大于等于零的前提下使用,即在保证一元二次方程有实数根的条件下使用。

一元二次方程的韦达定理,揭示了根与系数的一种必然联系,利用这个关系,我们可以解决诸如已知一根求另一根,求根的代数式的值,构造方程,确定系数等问题,它是中学数学中的一个有用的工具。

例(2002·南京)已知:关于x 的方程x kx 220--= (1)求证:方程有两个不相等的实数根;(2)设方程的两根为x x 12、,如果()21212x x x x +>,求k 的取值范围。

解:(1)证明: ∆=-=+>b ac k 22480 ∴原方程有两个不相等的实数根 (2) x x k x x 12122+==-, 又() 21212x x x x +>∴>-∴>-221k k说明:本题侧重考察对基本知识点的掌握,难度不大,可以说是中考中的送分题,同学们应该把这类题的分数拿到手。

例(2000上海)已知关于x 的一元二次方程()mx m x m m 221200--+-=>()(1)求证:这个方程有两个不相等的实数根;(2)如果这个方程的两个实数根分别为x x 12、,且()()x x m 12335--=,求m 的值。

解:(1)证明:()[]()∆=----21422m m m=-+-+=+441484122m m m m mm m >∴4+>010, ∴方程有两个不相等的实数根 (2)由()()x x m 12335--= ()x x x x m 12123950-++-=x x m mx x m m1212212+=-=-()∴---+-=m m m mm 2321950 解得:m m 12115==-,经检验m m 12、都是方程的根。

一元二次根和系数的关系

一元二次根和系数的关系

一元二次根和系数的关系
一元二次方程的标准形式为:
ax^2 + bx + c = 0
其中,a、b、c分别为方程的系数。

一元二次方程的根可以通过判别式来确定:
Δ = b^2 - 4ac
根的情况和系数之间的关系如下:
1. 当Δ > 0时,方程有两个不相等的实根,且它们的关系为:根1 = (-b + √Δ) / (2a)
根2 = (-b - √Δ) / (2a)
2. 当Δ = 0时,方程有两个相等的实根,且它们的值相等:
根1 = 根2 = -b / (2a)
3. 当Δ < 0时,方程没有实根,而是有两个共轭复根,它们的关系为:
根1 = (-b + i√(-Δ)) / (2a)
根2 = (-b - i√(-Δ)) / (2a)
综上所述,一元二次方程的根和系数之间的关系主要通过判别式Δ来确定。

对一元二次方程来说,根与系数的关系可以通过Viète定理来描述。

假设一元二次方程的两个根分别为α和β,根据Viète定理可以得到以下关系:
1. 根的和与系数的关系:
α + β = -b / a
2. 根的积与系数的关系:
α * β = c / a
简而言之,一元二次方程的两个根的和等于系数 b 的相反数除以系数 a,而两个根的积等于常数项 c 除以系数 a。

这是一元二次方程的基本性质,可以通过Viète定理进行推导和验证。

一元二次方程的根与系数的关系知识点

一元二次方程的根与系数的关系知识点

一元二次方程的根与系数的关系知识点嘿,小伙伴们!今天咱来聊聊一元二次方程的根与系数的关系,这可有意思啦!
比如说方程$x^2 - 5x + 6 = 0$,它的两个根是$2$和$3$。

那根与系
数有啥关系呢?嘿嘿,它们之间的关系可神奇啦!
咱先来看,如果一个一元二次方程是$ax^2 + bx + c = 0$($a \neq
0$),那两根之和$x_1 + x_2$就等于$-\frac{b}{a}$呀!就像上面那个例子,$a=1$,$b=-5$,那两根之和$2+3$不就等于$-\frac{-5}{1}=5$嘛,神奇吧!比如再举个例子,方程$x^2 + 3x - 4 = 0$,根据这个关系,两根之和不就得$-3$嘛。

然后呢,两根之积$x_1 x_2$就等于$\frac{c}{a}$呀!还是上面那例子,$c=6$,$a=1$,那两根之积$2 \times 3$不就是$\frac{6}{1}=6$嘛!像方程$2x^2 - 5x - 3 = 0$,两根之积就应该是$-\frac{3}{2}$呀。

这关系多奇妙呀,就好像是方程里隐藏的小秘密!小伙伴们,你们说是不是很有趣呢?
我的观点结论就是:一元二次方程的根与系数的关系真的太神奇啦,能让我们更深入地理解方程,快好好去探索发现吧!。

一元二次方程根与系数关系

一元二次方程根与系数关系

一元二次方程根与系数关系一元二次方程是指形如 $ax^2 + bx + c = 0$ 的方程,其中$a,b,c$ 是已知的实数常数,而 $x$ 是未知数。

求解一元二次方程的根是代数学中的一个重要问题。

在本篇文章中,我们将探讨一元二次方程的根与系数之间的关系。

首先,我们来回顾一下求解一元二次方程的一般方法。

常用的方法有因式分解法、配方法、求根公式等。

其中,求根公式是最常用的方法之一、根据求根公式:$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$方程的根取决于参数$a,b,c$的值。

现在让我们来仔细研究一下根与系数之间的关系。

首先,让我们来考虑一下参数 $b$ 和 $c$ 对根的影响。

从求根公式中可以看出,根的值是由 $b^2 - 4ac$ 开方得到的。

因此,我们可以得到以下结论:1. 当 $b^2 - 4ac > 0$ 时,方程有两个不相等的实根。

此时,根的值由 $b$ 和 $c$ 的值共同决定,具体的数值可以通过求根公式计算出来。

2. 当 $b^2 - 4ac = 0$ 时,方程有两个相等的实根。

此时,根的值由 $b$ 和 $c$ 的值共同决定,具体的数值也可以通过求根公式计算出来。

3. 当 $b^2 - 4ac < 0$ 时,方程没有实数根。

此时,根的值是复数,无法用实数表示。

接下来,我们考虑参数$a$对根的影响。

从求根公式中可以看出,根的值与参数$a$的倒数有关,即$x$的倒数与$a$成正比。

因此,我们可以得到以下结论:1.当$a>0$时,方程的图像开口向上,称为正定二次方程。

此时,方程的根存在,并且根的数值随着$a$的增加而减小。

2.当$a<0$时,方程的图像开口向下,称为负定二次方程。

此时,方程的根存在,并且根的数值随着$a$的减小而增加。

3.当$a=0$时,方程退化为一次方程。

此时,方程只有一个根,不能称为二次方程。

最后,我们来讨论参数$c$对根的影响。

一元二次方程根与系数的关系—知识讲解(提高)

一元二次方程根与系数的关系—知识讲解(提高)

一元二次方程根与系数的关系—知识讲解(提高)【学习目标】1. 理解并掌握一元二次方程的根与系数的关系;2. 能应用一元二次方程的根与系数的关系解决以下问题:已知方程的一根,不解方程求另一根及参数系数;已知方程,求含有两根对称式的代数式的值及有关未知数系数;已知方程两根,求作以方程两根或其代数式为根的一元二次方程.【要点梳理】要点一、一元二次方程的根与系数的关系1.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根; (2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①222121212()2x x x x x x +=+-;②12121211x x x x x x ++=; ③2212121212()x x x x x x x x +=+;④2221121212x x x x x x x x ++=2121212()2x x x x x x +-=; ⑤22121212()()4x x x x x x -=+-;⑥12()()x k x k ++21212()x x k xx k =+++;⑦12||x x -==⑧22212121222222121212()211()x x x x x x xx x x x x++-+==; ⑨12x x -==⑩22212121212||||(||||)+2||x x x x x x x x +=+=+2121212()22||x x x x x x =+-+.(4)已知方程的两根,求作一个一元二次方程; 以两个数为根的一元二次方程是.(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围;(6)利用一元二次方程根与系数的关系可以进一步讨论根的符号. 设一元二次方程20(0)ax bx c a ++=≠的两根为1x 、2x ,则 ①当△≥0且120x x >时,两根同号.当△≥0且120x x >,120x x +>时,两根同为正数; 当△≥0且120x x >,120x x +<时,两根同为负数. ②当△>0且120x x <时,两根异号.当△>0且120x x <,120x x +>时,两根异号且正根的绝对值较大;当△>0且120x x <,120x x +<时,两根异号且负根的绝对值较大.要点诠释:(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根a b +,则必有一根a b -(a ,b 为有理数).【典型例题】类型一、一元二次方程的根与系数的关系的应用(1)1. 阅读材料:若一元二次方程ax 2+bx+c=0(a≠0)的两个实根为x 1、x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1x 2=ca. 根据上述材料解决下列问题:已知关于x 的一元二次方程x 2=2(1-m )x-m 2;有两个实数根:x 1,x 2. (1)求m 的取值范围;(2)设y=x 1+x 2,当y 取得最小值时,求相应m 的值,并求出最小值. 【思路点拨】(1)首先将原方程化为一般式,由关于x 的一元二次方程x 2=2(1-m )x-m 2有两个实数根,则可知△≥0,解不等式即可求得m 的取值范围; (2)由y=x 1+x 2=-ba,代入即可求得:y=2-2m ,根据(1)中m 的取值范围,即可求得最小值. 【答案与解析】【总结升华】此题考查了根与系数的关系,以及判别式的应用.此题比较简单,注意将方程化为一般形式.举一反三:【变式】(杭州校级月考)已知x1、x2是关于x的一元二次方程x2﹣2(m+2)x+m2=0的两个实数根.(1)当m=0时,求方程的根;(2)若(x1﹣2)(x2﹣2)=41,求m的值;(3)已知等腰三角形ABC的一边长为9,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.【答案】解:(1)当m=0时,方程即为x2﹣4x=0,解得x1=0,x2=4;(2)∵x1、x2是关于x的一元二次方程x2﹣2(m+2)x+m2=0的两个实数根,∴x1+x2=2(m+2),x1x2=m2,∴(x1﹣2)(x2﹣2)=x1x2﹣2(x1+x2)+4=m2﹣4(m+2)+4=m2﹣4m﹣4=41,∴m2﹣4m﹣45=0,解得m1=9,m2=﹣5.当m1=9时,方程为x2﹣22x+81=0,△=(﹣22)2﹣4×81=160>0,符合题意;当m1=﹣5时,方程为x2+6x+25=0,△=62﹣4×25=﹣64<0,不符合题意;故m的值为9;(3)①当9为底边时,此时方程x2﹣2(m+2)x+m2=0有两个相等的实数根,∴△=4(m+2)2﹣4m2=0,解得:m=﹣1,∴方程变为x2﹣2x+1=0,解得:x1=x2=1,∵1+1<9,∴不能构成三角形;②当9为腰时,设x1=9,代入方程得:81﹣18(m+2)+m2=0,解得:m=15或3,当m=15时方程变为x2﹣34x+225=0,解得:x=9或25,∵9+9<25,不能组成三角形;当m=3时方程变为x2﹣10x+9=0,解得:x=1或9,此时三角形的周长为9+9+1=19.2.(肇庆二模)设x 1、x 2是方程2x 2+4x ﹣3=0的两个根,利用根与系数关系,求下列各式的值: (1)(x 1﹣x 2)2;(2)122111x x x x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭. 【思路点拨】欲求(x 1﹣x 2)2与的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.【答案与解析】解:根据根与系数的关系可得:x 1+x 2=﹣2,x 1•x 2=.(1)(x 1﹣x 2)2=x 12+x 22﹣2x 1x 2=x 12+x 22+2x 1x 2﹣4x 1x 2=(x 1+x 2)2﹣4x 1x 2==10. (2)122111x x x x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=x 1x 2+1+1+==.【总结升华】将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.举一反三:【高清ID 号:388522 关联的位置名称(播放点名称):根与系数的关系---例3】 【变式】不解方程,求方程22310x x +-=的两个根的(1)平方和;(2)倒数和. 【答案】(1)134; (2)3.类型二、一元二次方程的根与系数的关系的应用(2)3.(灌云县期末)已知关于x 的方程x 2+ax ﹣2=0.(1)求证:不论a 取何实数,该方程都有两个不相等的实数根; (2)若该方程的一个根为2,求a 的值及该方程的另一根.【思路点拨】(1)根据方程的系数结合根的判别式即可得出△=a 2+8≥8,由此即可证出不论a 取何实数,该方程都有两个不相等的实数根;(2)将x=2代入原方程求出a 值,设方程的另一个根为m ,根据根与系数的关系即可得出2m=﹣2,解之即可得出结论.【答案与解析】解:(1)在方程x 2+ax ﹣2=0中,△=a 2﹣4×1×(﹣2)=a 2+8,∵a 2+8≥8,∴不论a 取何实数,该方程都有两个不相等的实数根. (2)将x=2代入原方程,4+2a ﹣2=0,解得:a=﹣1.设方程的另一个根为m , 由根与系数的关系得:2m=﹣2, 解得:m=﹣1.∴a 的值为﹣1,方程的另一根为﹣1.【总结升华】本题考查了根的判别式以及根与系数的关系,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.4. 求作一个一元二次方程,使它的两根分别是方程25230x x +-=各根的负倒数. 【答案与解析】设方程25230x x +-=的两根分别为x 1、x 2,由一元二次方程根与系数的关系, 得1225x x +=-,1235x x =-.设所求方程为20y py q ++=,它的两根为y 1、y 2, 由一元二次方程根与系数的关系得111y x =-,221y x =-, 从而12121212122111125()335x x p y y x x x x x x -⎛⎫+=-+=---=+=== ⎪⎝⎭-,12121211153q y y x x x x ⎛⎫⎛⎫==--==- ⎪ ⎪⎝⎭⎝⎭.故所求作的方程为225033y y +-=,即23250y y +-=. 【总结升华】所求作的方程中的未知数与已知方程中的未知数要用不同的字母加以区别.同时“以两个数为根的一元二次方程是.”可以用这种语言形式记忆“2x -和x +积=0”,或“减和加积”,此处的一次项系数最容易出现符号上的错误.一元二次方程根与系数的关系—巩固练习(提高)【巩固练习】 一、选择题1. 关于x 的方程2210mx x ++=无实数根,则m 的取值范围为( ). A .m ≠0 B .m >1 C .m <1且m ≠0 D .m >-12.已知a 、b 、c 是△ABC 的三条边,且方程2222cx bx a bx ax b ++=++有两个相等的实数根,那么这个三角形是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 3.(曲靖一模)已知一元二次方程x 2﹣3x ﹣3=0的两根为α与β,则的值为( )A .﹣1B .1C .﹣2D .24.设a ,b 是方程220130x x +-=的两个实数根,则22a a b ++的值为( ). A .2010 B .2011 C .2012 D .20135.若ab ≠1,且有25201290a a ++=,及29201250b b ++=,则ab的值是( ). A .95 B .59 C .20125- D .20129-6.(芦溪县模拟)设x 1,x 2是方程2x 2﹣6x+3=0的两根,则x 12+x 22的值是( ) A .15 B .12 C .6 D .3二、填空题7.已知关于x 的方程221(3)04x m x m --+=有两个不相等的实数根,那么m 的最大整数值是________. 8.(凉山州)已知实数m ,n 满足3m 2+6m ﹣5=0,3n 2+6n ﹣5=0,且m≠n,则n m m n+= .9.(濮阳校级自主招生)求一个一元二次方程 ,使它的两根分别是方程x 2﹣7x ﹣1=0各根的倒数.10.在Rt △ABC 中,∠C=900,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程的两根,那么AB 边上的中线长是 .11.已知方程2(k+1)x 2+4kx+3k-2=0 ,(1)当k 为 时,两根互为相反数;(2)当k 为 时,有一根为零,另一根不为零. 12.(仁寿县一模)关于x 的一元二次方程x 2﹣mx+2m ﹣1=0的两个实数根分别是x 1、x 2,且x 12+x 22=7,则m 的值是 .三、解答题13. 已知关于x 的方程22210x mx m --+=的两根的平方和等于294,求m 的值.14.已知关于x 的方程 kx 2-2 (k +1) x +k -1=0 有两个不相等的实数根,(1) 求k 的取值范围;(2) 是否存在实数k ,使此方程的两个实数根的倒数和等于0 ?若存在,求出k 的值;若不存在,说明理由.15.(杭州校级期中)如果方程x 2+px+q=0的两个根是x 1,x 2,那么x 1+x 2=﹣p ,x 1•x 2=q ,请根据以上结论,解决下列问题:(1)若p=﹣4,q=3,求方程x 2+px+q=0的两根.(2)已知实数a 、b 满足a 2﹣15a ﹣5=0,b 2﹣15b ﹣5=0,求+的值;(3)已知关于x 的方程x 2+mx+n=0,(n ≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.【答案与解析】 一、选择题 1.【答案】B ;【解析】当m =0时,原方程的解是12x =-;当m ≠0时,由题意知△=22-4·m ×1<0,所以m >1. 2.【答案】A ;【解析】方程化为(c-b)x 2+2(b-a)x+(a-b)=0,∴ △=4(b-a)2-4(c-b)(a-b)=0 即4(a-b)(a-c)=0,∴ a =b 或a =c ,∴ △ABC 为等腰三角形.3.【答案】A ;【解析】解:根据题意得α+β=3,αβ=﹣3,所以===﹣1.故选A .4.【答案】C ; 【解析】依题意有22013a a +=,1a b +=-,∴222()()201312012a a b a a a b ++=+++=-=.5.【答案】A ;【解析】因为25201290a a ++=及29201250b b ++=,于是有25201290a a ++=及2115()201290bb+•+=,又因为1ab ≠,所以1a b ≠,故a 和1b 可看成方程25201290x x ++=的两根, 再运用根与系数的关系得195a b •=,即95a b =.6.【答案】C ;【解析】解:∵x 1,x 2是方程2x 2﹣6x+3=0的两根,∴x 1+x 2=3,x 1x 2=,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=32﹣2×=6. 故选:C .二、填空题 7.【答案】1;【解析】由题意知△=221[(3)]404m m ---⨯⨯>,所以32m <,因此m 的最大整数值是1. 8.【答案】﹣;【解析】解:∵m≠n 时,则m ,n 是方程3x 2+6x ﹣5=0的两个不相等的根,∴m+n=﹣2,mn=﹣.∴原式====﹣,故答案为:﹣.9.【答案】x 2+7x ﹣1=0;【解析】解:设方程x 2﹣7x ﹣1=0的两根为α、β,则有:α+β=7,α•β=﹣1. ∴==﹣7,=﹣1,∴以、为根的方程为x 2+7x ﹣1=0.故答案为:x 2+7x ﹣1=0.10.【答案】;【解析】因直角三角形两直角边a 、b 是方程的二根,∴有a+b=7①a·b=c+7②,由勾股定理知c 2=a 2+b 2③,联立①②③组成方程组求得c=5, ∴斜边上的中线为斜边的一半,故答案为.11.【答案】(1)k=0;(2)k=.【解析】解:设方程的两根为x 1, x 2,则x 1+x 2=-=-;x 1x 2= .(1)要使方程两根互为相反数,必须两根的和是零, 即x 1+x 2=-=0,∴k=0,当k=0时,△=(4k)2-4×2(k+1)(3k -2)=16>0 ∴当k=0时,方程两根互为相反数.(2)要使方程只有一个根为零,必须二根的积为零,且二根的和不是零, 即x 1x 2==0,解得k=.又当k=时,x 1+x 2=-≠0,当k=时,△=(4k)2-4×2(k+1)(3k -2)=>0,∴k=时,原方程有一根是零,另一根不是零.12.【答案】-1.【解析】解:根据题意得x 1+x 2=m ,x 1x 2=2m ﹣1,∵x 12+x 22=7,∴(x 1+x 2)2﹣2x 1x 2=7,∴m 2﹣2(2m ﹣1)=7,解得m 1=﹣1,m 2=5,当m=﹣1时,原方程变形为x 2+x ﹣3=0,△=1﹣4×(﹣3)>0,方程有两个不等实数根;当m=5时,原方程变形为x 2﹣5x+9=0,△=25﹣4×9<0,方程没有实数根; ∴m 的值为﹣1. 故答案为﹣1.三、解答题13. 【答案与解析】设方程的两根为x 1、x 2,则由根与系数关系,得122m x x +=,12122m x x -=. 由题意,得 2212294x x +=,即2121229()24x x x x +-=,∴ 212292224m m -⎛⎫-=⎪⎝⎭, 整理,得28330m m +-=.解得13m =,211m =-.当m =3时,△=28(21)490m m +-=>;当m =-11时,△=28(21)630m m +-=-<,方程无实数根. ∴ m =-11不合题意,应舍去. ∴ m 的值为3.14. 【答案与解析】(1) ∵方程有两个不相等的实数根,∴Δ=[-2(k +1)]2-4k (k -1)>0,且k ≠0,解得k >-13,且k ≠0 .即k 的取值范围是k >-13,且k ≠0 . (2) 假设存在实数k ,使得方程的两个实数根x 1 , x 2的倒数和为0.则x 1 ,x 2不为0,且01121=+x x ,即01≠-kk ,且01)1(2=-+kk k k ,解得k =-1 . 而k =-1 与方程有两个不相等实根的条件k >-13,且k ≠0矛盾, 故使方程的两个实数根的倒数和为0的实数k 不存在 .15.【答案与解析】解:(1)当p=﹣4,q=3,则方程为x 2﹣4x+3=0,解得:x 1=3,x 2=1.(2)∵a 、b 满足a 2﹣15a ﹣5=0,b 2﹣15b ﹣5=0,∴a 、b 是x 2﹣15x ﹣5=0的解, 当a ≠b 时,a+b=15,a ﹣b=﹣5, +====﹣47;当a=b 时,原式=2.(3)设方程x 2+mx+n=0,(n ≠0),的两个根分别是x 1,x 2,则+==﹣,•==,则方程x 2+x+=0的两个根分别是已知方程两根的倒数.。

一元二次方程的根与系数的关系

一元二次方程的根与系数的关系

一元二次方程的根与系数的关系解一元二次方程的根可以通过求根公式得到,即 x = (-b ± √(b^2 - 4ac)) / 2a。

根据这个公式,我们可以看到根与系数之间有以下几个关系。

1.一元二次方程的根与a的关系:系数a出现在求根公式的分母位置,因此当a为0时,求根公式中将出现分母为零的情况,方程则不再是二次方程。

而当a不为0时,方程为一元二次方程,并且a的绝对值越大,求根公式的分母则越大,从而根的倒数也越大,因此a的变化会影响根的大小。

2.一元二次方程的根与b的关系:系数b出现在求根公式的分子位置,因此b的变化将直接影响根的值。

当b为正数时,根的值有两种可能:一种是两个实数根都为正数,另一种是两个实数根中一个为正数,另一个为负数。

当b为负数时,根的值也有两种可能:一种是两个实数根都为负数,另一种是两个实数根中一个为负数,另一个为正数。

3.一元二次方程的根与c的关系:系数 c 出现在求根公式中的平方根部分,从而 c 的变化对根的值起到重要的影响。

当 c 为正数时,根的值可能为两个实数,也可能为两个虚数。

当 c 为负数时,根的值为两个虚数。

而当 c 为零时,即方程为ax^2 + bx = 0,其中 a 和 b 不同时为零,方程则简化为 bx = 0,解为x = 0。

根据以上的分析,我们可以得出一些结论:-当a和b的值都相同时,方程的根的形态也相同。

例如,方程x^2+x+1=0和2x^2+2x+2=0都是只有虚根的方程。

-当a的绝对值很小时,方程的根的绝对值也较小;当a的绝对值很大时,方程的根的绝对值也较大。

-当b的绝对值很小时,方程的根的绝对值也较小;当b的绝对值很大时,方程的根的绝对值也较大。

-当c的绝对值很小时,方程的根的绝对值也较小;当c的绝对值很大时,方程的根的绝对值也较大。

综上所述,一元二次方程的根与系数之间存在着一定的关系,系数的变化会对根的大小、正负以及虚实等性质产生影响。

8.5 一元二次方程的 根与系数的关系

8.5 一元二次方程的      根与系数的关系

东平县初中数学
根与系数关系 如果关于x的方程 的两根是
x px q 0
2
x
1
,
x
2
,则 :
如果方程二次项系数不为1呢?
东平县初中数学
数 学 活 动 三
方 程
2x2-3x-2=0 3x2-4x+1=0
x1,, x2
x1,+ x2
x 1. x 2
问题:上面发现的结论在这里成立吗?请完善规律; ①用语言叙述发现的规律; ② ax2+bx+c=0的两根x1,, x2用式子表示你发现的规 律:
=
=
1、 x2 - 2x - 1=0
2、 2x2 - 3x +
3、 2x2 - 6x =0 4、 3x2 = 4
东平县初中数学
1 =0 2
利用根与系数的关系,求下列方程的两根之 和、两根之积: 2 (1)x +7x+6=0
2(2)2x 3x-2=0
东平县初中数学
1、下列方程中,两根的和与两根 的积各是多少?
东平县初中数学
达标测试
见导学案
东平县初中数学
作业:
• 课本P72 习题8.10 第1.2.3. 题。
东平县初中数学
东平县初中数学
1.x
2
3x 1 0
2
2.3x
2
2x 2 1 2x
3.2x
3x 0
4.4x
2
东平县初中数学
2.设x1,x2是方程2x2+4x- 3=0的两个根, 利用根与系 x1 1)(x2 1)
x2 x1 x1 x2
(3)(x1- x2)2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程根与系数关系知识定位设一元二次方程有二实数根,则,。

这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。

其逆命题也成立。

韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。

而且这部分内容题型多样,方法灵活,触及知识面广。

知识梳理知识梳理1:求代数式的值应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。

知识梳理2:构造一元二次方程如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。

知识梳理3:证明等式或不等式根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式知识梳理4:研究方程根的情况将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。

关于方程的实根符号判定有下述定理:⑴方程有二正根,ab<0,ac>0;⑵方程有二负根,ab>0,ac>0;⑶方程有异号二根,ac<0;⑷方程两根均为“0”,b=c=0,;知识梳理4:求参数的值与解方程韦达定理及其逆定理在确定参数取值及解方程(组)中也有着许多巧妙的应用。

例题精讲【试题来源】【题目】已知a 2+2a=3,b 2+2b=3, a b +ba= . 【答案】83- 【解析】【知识点】一元二次方程根与系数的关系 【适用场合】当堂练习题 【难度系数】2【试题来源】【题目】已知关于x 的一元二次方程 x 2-2x -a 2-a=0﹙a >0﹚. (1) 证明:这个方程的一个跟比2大,另一个根比2小.(2) 若对于a=1,2…,,2011,相应的一元二次方程的两个根分别为α1,β1,α2,β2,,,α2011,β2011,求【答案】(1)见解析 (2)20111006- 【解析】【知识点】一元二次方程根与系数的关系【适用场合】当堂例题【难度系数】4【试题来源】【题目】已知关于x的方程x2+2px+1=0的两个实数根一个小于1,另一个大于1,则实数p 的取值范围是.p<-【答案】1【解析】【知识点】一元二次方程根与系数的关系【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】设a、b是方程x2+68x+1=0两根,c、d是方程x2 86x+1=0两根,则﹙a+c﹚﹙b+c﹚﹙a-d﹚﹙b-d﹚的﹜值为。

【答案】2464【解析】【知识点】一元二次方程根与系数的关系【适用场合】当堂例题【难度系数】3【试题来源】【题目】已知关于x的一元二次方程a2x2+b2x+c2=0的两根之和是一元二次方程ax2+bx+c=0的两根的平方和,则a、b、c的关系是()A.a2=bcB.b2=acC.c2=abD.abc=1【答案】B【解析】【知识点】一元二次方程根与系数的关系 【适用场合】随堂课后练习 【难度系数】3【试题来源】【题目】设方程x 2+x -1=0 的两个实根是x 1,x 2,求5312410x x 的值。

【答案】-42 【解析】【知识点】一元二次方程根与系数的关系【适用场合】课后两周练习【难度系数】4【试题来源】【题目】设x1,x2是关于x的方程x2+px+q=0的两根,x1+1,x2+1是关于x的方程x2+qx+p=0A.1,﹣3 B.1,3 C.﹣1,﹣3 D.﹣1,3【答案】C【解析】【知识点】一元二次方程根与系数的关系【适用场合】课后两周练习【难度系数】3【试题来源】【题目】方程x2+px+1997=0恰有两个正整数根x1、x2,则的值是A.1B.﹣l C.D.【答案】C【解析】【知识点】一元二次方程根与系数的关系【适用场合】课后一个月练习【难度系数】4【试题来源】【题目】两个不同质数a、b恰好是整系数方程x2﹣99x+m=0的两个根,则的值是()A.9413 B.C.D.【答案】【解析】【知识点】一元二次方程根与系数的关系【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】已知α、β是关于x的方程x2+px+q=0的两个不相等的实数根,且α3﹣α2β﹣αβ2+β3=0,求证:p=0,q<0.【答案】见解析【解析】【知识点】一元二次方程根与系数的关系【适用场合】当堂练习题【难度系数】3【试题来源】【题目】CD是Rt△ABC斜边上的高线,AD、BD是方程x2﹣6x+4=0的两根,则△ABC的面积为_________.【答案】6【解析】【知识点】一元二次方程根与系数的关系【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】已知α、β是方程x2﹣x﹣1=0的两个根,则α4+3β的值为_________.【答案】【解析】【知识点】一元二次方程根与系数的关系 【适用场合】当堂例题 【难度系数】4【试题来源】【题目】已知整数p,q 满足,2010=+q p 且关于x 的一元二次方程0672=++q px x 的两个根均为正整数,则p= . 【答案】-2278 【解析】【知识点】一元二次方程根与系数的关系 【适用场合】当堂例题 【难度系数】4【试题来源】【题目】对于一切不小于2的自然数n,关于x 的一元二次方程02)2(22=-+-n x n x 的两根记为),2(,≥n b a n n 则.________)2)(2(1.....)2)(2(1)2(21200720073322=--+--+--b a b a b a )(【答案】【解析】【知识点】一元二次方程根与系数的关系 【适用场合】阶段测验 【难度系数】5【试题来源】【题目】若1≠ab ,且有bab b a a 则及,0520019092001522=++=++的值为( ) A .59 B .95 C .52001- D .92001-【答案】A 【解析】【知识点】一元二次方程根与系数的关系 【适用场合】当堂练习题【难度系数】3【试题来源】【题目】设a ,b 为整数,并且一元二次方程x 2+(2a+b+3)x+(a 2+ab+6)=0有等根α,而一元二次方程2ax 2+(4a-2b-2)x+(2a-2b-1)=0有等根β;那么,以α,β为根的整系数一元二次方程是( )A .2x 2+7x+6=0B .2x 2+x-6=0C .x 2+4x+4=0D .x 2+(a+b )x+ab=0 【答案】A 【解析】【知识点】一元二次方程根与系数的关系 【适用场合】课后一个月练习 【难度系数】4【试题来源】【题目】已知关于x 的一元二次方程x 2+(2k-1)x+k 2=0的两根x 1,x 2满足x 12-x 22=0,双曲线y=xk4(x >0)经过Rt △OAB 斜边OB 的中点D ,与直角边AB 交于C ,求S △OBC .【答案】【解析】【知识点】一元二次方程根与系数的关系【适用场合】当堂例题【难度系数】3【试题来源】【题目】已知关于x的方程(1)求证:无论m取什么实数,这个方程总有两个相异的实数根;(2)若这个方程的两个实数根x1,x2满足|x2|=|x1|+2,求m的值及相应的x1、x2.【答案】(1)见解析(2)【解析】【知识点】一元二次方程根与系数的关系【适用场合】阶段测验【难度系数】4【试题来源】【题目】设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2,(1)若x12+x22=6,求m值;(2)求的最大值.【答案】(1)(2)10【解析】【知识点】一元二次方程根与系数的关系【适用场合】当堂例题【难度系数】4【试题来源】【题目】设a、b、c为三个不同的实数,使得方程x2+ax+1=0和x2+bx+c=0有一个相同的实数根,并且使方程x2+x+a=0和x2+cx+b=0也有一个相同的实数根,试求a+b+c的值.【答案】-3【解析】【知识点】一元二次方程根与系数的关系【适用场合】课后一个月练习【难度系数】5【试题来源】【题目】若,且,试求代数式的值。

【答案】29 【解析】因为,由根的定义知m ,n 为方程的二不等实根,再由韦达定理,得 ,∴【知识点】一元二次方程根与系数的关系 【适用场合】阶段测验 【难度系数】5【试题来源】【题目】设一元二次方程的二实根为和。

(1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。

求所有这样的一元二次方程。

【答案】(1)(2),,,,01x 2x 2=++,01x 2=-【解析】(1)由韦达定理知,。

,。

所以,所求方程为。

(2)由已知条件可得解之可得由②得,分别讨论 (p,q )=(0,0),(1,0),(1-,0),(0,1),(2,1),(2-,1)或(0, 1-)。

于是,得以下七个方程,,,,,01x 2x 2=++,01x 2=-,其中01x 2=+无实数根,舍去。

其余六个方程均为所求。

【知识点】一元二次方程根与系数的关系【适用场合】阶段测验【难度系数】5【试题来源】【题目】已知a ,b ,c 为实数,且满足条件:,,求证a=b 。

【答案】见解析【解析】证明 由已知得,。

根据韦达定理的逆定理知,以a ,b 为根的关于x 的实系数一元二次方程为 ①由a ,b 为实数知此方程有实根。

∴0c 2=,故c=0,从而。

这表明①有两个相等实根,即有a=b 。

说明 由“不等导出相等”是一种独特的解题技巧。

另外在求得c=0后,由恒等式可得,即a=b 。

此方法较第一种烦琐,且需一定的跳跃性思维。

【知识点】一元二次方程根与系数的关系【适用场合】当堂练习题【难度系数】4【试题来源】 【题目】设一元二次方程的根分别满足下列条件,试求实数a 的范围。

⑴二根均大于1;⑵一根大于1,另一根小于1。

思路 设方程二根分别为,,则二根均大于1等价于和同时为正;一根大于1,另一根小于是等价于和异号。

【答案】(1)3a 7-≤<- (2)7a -< 【解析】设此方程的二根为,,则 ,。

⑴方程二根均大于1的条件为解之得:3a 7-≤<-⑵方程二根中一个大于1,另一个小于1的条件为⎪⎩⎪⎨⎧<+---=-->--=∆.01)a 2(a 6)1x )(1x (,0)a 6(4a 4212 解之得:7a -<。

【知识点】一元二次方程根与系数的关系【适用场合】当堂练习题【难度系数】3【试题来源】 【题目】解方程。

【答案】, 【解析】原方程可变形为。

令,。

则 , 。

由韦达定理逆定理知,以a ,b -为根的一元二次方程是。

解得,。

即a=8-或a=9。

或通过求解x 结果相同,且严谨。

,(舍去)。

解之得,。

此种方法应检验:是或否成立【知识点】一元二次方程根与系数的关系【适用场合】课后一个月练习【难度系数】4【试题来源】【题目】已知a 和b 是方程的二实根,则5325a b +=_____________。

相关文档
最新文档