船用螺旋桨敞水性能数值分析
船舶实验
船舶与海洋工程实验技术实验报告班级:姓名:学号:指导老师:华中科技大学船舶与海洋工程学院船模拖曳水池实验室2016年6月1日螺旋桨敞水试验一、实验目的(1)对于某一具体的螺旋桨,通过模型试验可以确定实际螺旋桨的水动力性能。
(2)通过多方案的试验研究,可以分析螺旋桨的各种几何要素对水动力性能的影响。
(3)检验理论设计的正确性,不断完善理论设计的方法。
(4)通过对螺旋桨模型的系列试验,可以绘制成专用图谱,供设计螺旋桨使用。
现时广泛使用的楚思德B 系列图谱和MAU 系列图谱等都是螺旋桨模型系列敞水试验的结果。
二、实验原理满足以下条件:几何相似; 螺旋桨模型有足够的深度; 试验时雷诺数应大于临界雷诺数。
进度系数相等。
22412252(,)(,)A A V nD T n D f nD V nD Q n D f nD ρνρν==螺旋桨雷诺数采用ITTC 推荐表达式:νπ2275.0)75.0(Re nD v c a +=临界雷诺数一般大于3×105为消除自由液面影响,桨模的沉深深度:m s D h )0.1-625.0(≥三、实验设备主要设备是螺旋桨动力仪 。
四、实验内容敞水试验通常是保持螺旋桨转速不变,改变拖车前进速度。
速度范围应从Va =0至推力小于零的进速之间,在该范围内测点取15个左右。
1、敞水箱安装敞水箱为流线型,螺旋桨的轴从敞水箱的前端伸出箱外,外伸长度必须使桨模位于箱前的距离大于螺旋桨直径的3倍,以避免箱体的影响。
敞水箱样式如下图所示。
动力仪和电机安装在敞水箱内。
2、仪器安装及操作进入数据采集界面,如图所示。
在拖车开动之前,要对采集系统进行调零。
即在水池水面平稳状态下,点击系统设定里面的“调零保存”,使该通道的工程值基本在0附近飘动。
在拖车开动之前,我们要给螺旋桨一定的转速。
具体转速的确定,要根据具体情况确定。
由进速系数公式 可知,螺旋桨直径D已定,如果螺旋桨转速n太低,我们需要提高进速V,才能是J达到足够到。
螺旋桨敞水性能预报讲解
三、几种特殊性能螺旋桨的敞水计算
• 对转螺旋桨
计算域的确定
•进口在前桨中心线上游 4 倍前桨直径处,出口在前桨中心 线下游 4 倍前桨直 径处,外边界直径为 5 倍前桨直径
•计算域分为前桨、后桨两个域,各自独立划分网格
•采用结构化-非结构化多块混合网格划分方法
湍流模式选择
标准 k- ε 模型
三、几种特殊性能螺旋桨的敞水计算
二、影响计算的主要因素及其选取
• 选择怎样的数值方法
• 怎样划分网格
二、影响计算的主要因素及其选取
• 选择怎样的数值方法
通常的求解器选取(张志荣,2004)
a. 直接求解三维不可压RANS方程
b. 微分方程离散:有限体积法
c. 对流项离散:二阶迎风格式 d. 扩散项离散:中心差分格式
e. 压力耦合方程求解:SIMPLE方法
桨摩擦力的预报精度会影响螺旋桨敞水性能的预报精度
?
加密桨叶表面及附近网格能提高摩擦力预报精度 , 从而提高 推力和扭矩的预报精度(胡芳琳、张志荣)
三、几种特殊性能螺旋桨的敞水计算
• 吊舱推进器 •
吊舱推进器CFD计算特点:
•螺旋桨与吊舱存在相互作用 •需研究斜航时系统受力情况 •吊舱推进器分为推式和拉式两种 •需使用滑移网格技术来求解螺旋物吊舱相互影响的非定常 问题 , 滑移网格技术是用来处理 存在定子麟子相对运动问 题的较理想的方法
• 选择怎样的数值方法
湍流模式的选取
张志荣,2004比较了船舶粘性流体计算的六种主要湍流模式 a.SA模型 b.标准k-ε模型 c.RNG k-ε模型 d.Realizable k-ε模型 e.标准k-w模型 f. SST k-w模型
二、影响计算的主要因素及其选取
第4章 螺旋桨模型的敞水试验汇总
第四章螺旋桨模型的敞水试验螺旋桨模型单独地在均匀水流中的试验称为敞水试验,试验可以在船模试验池、循环水槽或空泡水筒中进行。
它是检验和分析螺旋桨性能较为简便的方法。
螺旋桨模型试验对于研究它的水动力性能有重要的作用,除为螺旋桨设计提供丰富的资料外,对理论的发展也提供可靠的基础。
螺旋桨模型敞水试验的目的及其作用大致是:①进行系列试验,将所得结果分析整理后绘制成专门图谱,供设计使用。
现时各类螺旋桨的设计图谱都是根据系列试验结果绘制而成的。
②根据系列试验的结果,可以系统地分析螺旋桨各种几何要素对性能的影响,以供设计时正确选择各种参数,并为改善螺旋桨性能指出方向。
③校核和验证理论方法必不可少的手段。
④为配合自航试验而进行同一螺旋桨模型的敞水试验,以分析推进效率成分,比较各种设计方案的优劣,便于选择最佳的螺旋桨。
螺旋桨模型试验的重要性如上所述,但模型和实际螺旋桨形状相似而大小不同,应该在怎样的条件下才能将模型试验的结果应用于实际螺旋桨,这是首先需要解决的问题。
为此,我们在下面将分别研究螺旋桨的相似理论以及尺度作用的影响。
§4-1 敞水试验的相似条件从“流体力学”及“船舶阻力”课程中已知,在流体中运动的模型与实物要达到力学上的全相似,必须满足几何相似、运动相似及动力相似。
研究螺旋桨相似理论的方法甚多,所得到的结果基本上是一致的。
下面将用量纲分析法进行讨论,也就是用因次分析法则求出螺旋桨作用力的大致规律,然后研究所得公式中各项的物理意义。
可以设想,一定几何形状的螺旋桨在敞水中运转时产生的水动力(推力或转矩)与直径D(代表螺旋桨的大小)、转速n、进速VA、水的密度ρ、水的运动粘性系数ν及重力加速度g有关。
换言之,我们可用下列函数来表示推力T和各因素之间的关系,即T = f1(D,n,V A,ρ,ν,g),为了便于用因次分析法确定此函数的性质,将上式写作:T = k D a n b cAVρd νe g f(4-1)式中k为比例常数,a、b、c、d、e、f均为未知指数。
船舶螺旋桨的设计与计算过程.解析
某沿海单桨散货船螺旋桨设计计算说明书刘磊磊20081013202011年7月某沿海单桨散货船螺旋桨设计计算说明书1.已知船体的主要参数船长 L = 118.00 米 型宽 B = 9.70 米 设计吃水 T = 7.20 米 排水量 △ = 5558.2 吨 方型系数 C B = 0.658 桨轴中心距基线高度 Zp = 3.00 米由模型试验提供的船体有效马力曲线数据如下:航速V (kn ) 13 14 15 16 有效马力PE (hp ) 2160 2420 3005 40452.主机参数型号 6ESDZ58/100 柴油机 额定功率 Ps = 5400 hp 额定转速 N = 165 rpm 转向 右旋 传递效率 ηs=0.983.相关推进因子伴流分数 w = 0.279 推力减额分数 t = 0.223 相对旋转效率 ηR = 1.0船身效率 0777.111=--=wtH η4.可以达到最大航速的计算采用MAU 四叶桨图谱进行计算。
取功率储备10%,轴系效率ηs = 0.98 螺旋桨敞水收到马力: P D = 4762.8 hp根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算:项 目 单位 数 值 假定航速V kn 1314 1516V A =(1-w)V kn 9.373 10.09410.81511.536Bp=NP D 0.5/V A 2.569.013042 69.01304 69.0130422569.01304225Bp268.96548323.7116 384.6505072451.9996707MAU 4-40δ75.6 72.10878 64.87977369 60.744 P/D 0.64 0.667321 0.685420561 0.720498 ηO 0.5583333 0.582781 0.6057068060.62606P TE =P D ·ηH ·ηOhp 2863.9907 2989.395 3106.994626 3211.4377 MAU 4-55δ74.629121 68.63576 63.56589147 59.341025 P/D 0.6860064 0.713099 0.740958466 0.7702236 ηO 0.5414217 0.567138 0.590941438 0.6111996 P TE =P D ·ηH ·ηOhp 2777.2419 2909.156 3031.255144 3135.1705 MAU 4-70δ73.772563 67.77185 63.0305555658.68503P/D 0.69254 0.723162 0.754280639 0.7861101 ηO 0.5210725 0.54571 0.565792779 0.5828644 P TE =P D ·ηH ·ηOhp2672.86012799.2382902.2542 2989.8239据上表的计算结果可绘制PT E 、δ、P/D 及ηO 对V 的曲线,如下图所示。
使用Fluent软件的螺旋桨敞水性能计算分析
" C>5,<D*7,*5+ E>(F,*;<+6;4( -+6G*576,F@ H64+ $!##$"@ %<6+4I
;</&5()& #=, 67 6JK>5,4+, 6+ ,<* 5*7*45;< >? K5>K*((*5 ,> K5*L6;, +)J*56;4((F ,<* >K*+ D4,*5 K*5?>5J4+;*/ =+ >5L*5 ,> 5*7K>+L M)6;N(F ,> ,<* M)*5F 7*5G6;* ?>5 ,<* ;)7,>J*57@4+L 4(7> J4N* %&’ >+* >? ,<* J*4+7 >? ,<* K5>K*((*5 L*768+@6, 67 +*;*7745F ,> O56+8 %&’ ?47, K5*L6;,6>+ 4O6(6,F >? ,<* >K*+ D4,*5 K*5?>5J4+;* >? K5>! K*((*5 6+,> ,<* L*768+ K5>;*77 >? K5>K*((*5/PF *JK(>F6+8 %&’ 7>?,D45* >? &()*+,@,<* ;4(;)(4,6>+ K5>;*77 >? ,<* >K*+ D4,*5 K*5?>5J4+;* >? K5>K*((*5 67 L*G*(>K*L 6+ 32:=% QR<* 3456+* ’*768+ 9 :*7*45;< =+7,6,),* >? %<6+4S@D<6;< 67 6+,5>L);*L 6+ ,<67 K4K*5/2 K5>K*((*5 D6,< <68< 7N*D 4+L 54N* ,6K 67 ,FK6;4((F 7,)L6*L/ %>JK4567>+ >? ,<* >K*+ D4,*5 K*5?>5J4+;* ;)5G* >? ,<* K5>K*((*5 67 J4L* O*,D**+ ;4(;)(4,*L 5*7)(,7 4+L J*47)5*L G4()*/R<* 5*(4,*L 6+G*7,684,6>+ ,> ,<* >K*+ D4,*5 O*<4G6>57 >? ,<* K5>K*((*5 67 4(7> 5*K>5,*L/ =3. 4,5-/> K5>K*((*5B >K*+ D4,*5B %&’B &()*+,
CFD敞水螺旋桨性能计算分析
CFD敞水螺旋桨性能计算分析缪宁跃;孙江龙【摘要】根据螺旋桨的投影原理及其型值参数,建立螺旋桨的三维模型.基于计算流体动力学(CFD)理论和CFD商业软件进行研究,采用分区混合网格力案和动网格技术及旋转坐标(MRF)方法,结合RANS方程和RNG湍流模型对螺旋桨三维粘性流动进行数值模拟,得到该螺旋桨的推力及其转矩.经与试验结果比较分析,证实该方法能实现对螺旋桨的敞水粘性流场模拟,预报其敞水性能.%According to projection theory and curved-surface offsets, a 3D geometry model of propeller was built. Based on computational fluid dynamics (CFD) method, the sub-domains hybrid meshes method,the dynamic meshes method and the moving reference frame(MRF) method were adopted to simulate the hydrodynamic performance of propeller in open-water by using the Reynolds-Averaged NavierStokes (RANS) equation and RNG turbulence models. Thrust and torque of the propeller in open water were obtained and compared with experimental results. The results show the proposed method can achieve the numerical prediction of hydrodynamic performance for propeller in open water.【期刊名称】《中国舰船研究》【年(卷),期】2011(006)005【总页数】6页(P63-68)【关键词】三维模型;CFD;动网格;MRF;敞水件能【作者】缪宁跃;孙江龙【作者单位】华中科技大学船舶与海洋工程学院,湖北武汉430074;华中科技大学船舶与海洋工程学院,湖北武汉430074【正文语种】中文【中图分类】U664.331 引言由于数值模拟相对于实验研究具有独特的优点,如成本低、周期短,能获得完整的数据,能模拟出实际运行过程中各种测量数据的状态,因而目前计算流体动力学(CFD)技术被广泛应用于工程领域。
螺旋桨敞水曲线与流场的CFD不确定度分析
螺旋桨敞水曲线与流场的CFD不确定度分析螺旋桨是船舶设备中最重要的部件之一,具有强大的推进力和扭矩,可以让船舶顺利航行。
对于螺旋桨的设计和优化,越来越多地依赖于计算流体力学(CFD)分析。
螺旋桨的设计目标是最大限度地提高其效率和推力。
在螺旋桨运动中,液体将随着螺旋桨的旋转而形成流动。
在这个过程中,螺旋桨的性能受到液体流动的影响。
因此,在设计螺旋桨时,必须考虑流场的影响。
CFD技术可以用来模拟螺旋桨周围的流场。
能够解决一些难以实验研究的问题,为螺旋桨的设计和优化提供宝贵的信息。
但是,这种技术也有一定的局限性和不确定性。
对于螺旋桨的CFD分析,最大的不确定性源于流场模拟。
因为液体流动过程非常复杂,需要考虑诸多因素,比如流速、液体特性、涡旋扭转等。
CFD技术采用了数学方法来模拟流体的流动,需要处理大量的方程组。
因此,CFD技术的可靠性取决于三个方面:数值算法、离散化方法和模拟条件。
首先,数值算法影响CFD的精度。
数值算法决定了求解流动方程组的方法。
如果数值算法本身不准确,计算出来的结果也会有某种程度的误差。
因此,为了减小不确定性,需要在CFD模拟中选择合适的数值算法。
其次,离散化方法是影响CFD精度的另一大因素。
离散化方法决定了流场被划分为小单元(有限元)的方法。
由于流场并非是连续的,若流场被分割的越小,精度越高。
但同时,由于计算量的增加,计算时间也会相应的增加。
因此,在CFD模拟中需要在准确性和计算速度间寻找平衡点,以确定合适的离散化尺度。
最后,模拟条件如何影响模拟结果是CFD模拟中的另一个重要方面。
模拟条件包括模拟几何、边界条件、流体特性等。
在CFD模拟中,正确的模拟条件对于结果的准确性具有重要意义。
例如,如果流体的粘度参数不准确,结果将会偏差很大。
综上所述,CFD技术在螺旋桨的设计和优化中具有不可替代的作用。
但是,对于螺旋桨的CFD分析,不确定度常常存在,主要源于流场模拟的误差。
在CFD模拟中,数值算法、离散化方法和模拟条件都会影响模拟结果的准确性,因此一个完全可靠的模拟需要在这些方面进行充分考虑。
螺旋桨敞水试验实验报告
螺旋桨敞水实验
一、试验过程
1、按照临界雷诺数的要求,螺旋桨模型的试验转速应当尽可能高一些。
但是还应考虑到动力仪量程的限制和水槽流速可能达到的最大进速,最后选定试验转速。
2、试验时进速A V 的变化范围应从0A V =开始至推力T 为负值止。
在此区间内选择10个速度点进行试验。
3、保持螺旋桨转速不变,使水流稳定在某一个速度,同步测量下列数据: 螺旋桨转速n (r s )、前进速度A V (m s )、推力0T (N )、扭矩Q (N m ⋅)。
4、 改变水流速度和转速,重复下一组参数试验。
二、实验数据记录及处理
1.螺旋桨敞水实验相关参数: 桨模直径: D=0.1175m 桨叶数: Z=4 螺距比: P/D=0.8 模型缩尺: λ=40
实验水温: t=淡水20℃
2.敞水实验记录数据及螺旋桨敞水性征系数
3.敞水性征曲线图(J—K T、10K0、η0)。
螺旋桨敞水性能预报讲解
Rhee and Josh ,2003 :k-w 湍流模型,对一5页桨计算,10%误差 唐登海,1997 :B-L 代数湍流模型,对DTRC419桨计算,压力分布、 螺旋桨流场三维流动特性及尾流结果良好,边界层、某些地方的速度 分量偏差较大 张志荣,2004 :SST k-w湍流模型,对许多螺旋桨模型取得成功, 部分工作点工况偏差较大
二、影响计算的主要因素及其选取
• 怎样划分网格
螺旋桨流场计算域
二、影响计算的主要因素及其选取
• 样划分网格
网格分类
• 非结构网格
• 结构化网格 • 分块混合网格
二、影响计算的主要因素及其选取
• 怎样划分网格
网格分类
• 非结构网格
• 结构化网格 • 分块混合网格
二、影响计算的主要因素及其选取
• 螺旋桨敞水性能计算的一般步骤
• 数值方法(Numerical Method)的选取 离散格式 求解算法 湍流模式
• 几何建模与网格划分(Model Geometry and Grid Generation) • 计算结果考察分析(Result Analysis)
一、螺旋桨敞水性能计算概述
• 流场预报需考量的因素
二、影响计算的主要因素及其选取
• 选择怎样的数值方法
湍流模式的选取
龚吕,2007 :标准k-ε模型,对六叶斜侧反扭桨计算, 高富东,2010 :k-ε、k-w、RSM模型,对DTMB4119桨计算,敞水 性能最大误差k-ε(7.41%)、k-w(11.21%)、RSM(5.47%)
二、影响计算的主要因素及其选取
f. 离散的代数方程求解:Gauss-Seidel迭代法
二、影响计算的主要因素及其选取
螺旋桨敞水试验报告
螺旋桨敞水实验一、实验目的和意义螺旋桨模型的敞水实验是在循环水槽中测试螺旋桨模型单独在水流条件下进行的性能试验,是《船舶推进》课程在整个教学过程中的一个重要环节,其目的: 1、 配合自航试验分析船舶推进的各种效率成分,并预估实船推进性能 2、 分析比较各种螺旋桨设计方案的优劣,选择性能最佳的螺旋桨3、 进行螺旋桨系列试验,将其结果综合绘制成图谱,供设计螺旋桨使用。
4、 根据螺旋桨试验结果,进行螺旋桨理论的验证,分析几何参数对螺旋桨性能的影响规律。
二、模型试验要求和准备工作图2.1 螺旋桨敞水试验布置图1、桨模敞水试验的相似定理:桨模和实桨满足几何相似、运动相似、动力相似才能将模型试验数据应用在实桨上。
为避免缩尺影响过大,桨模试验的雷诺数Re 必须超过临界值,螺旋桨的雷诺数根据1957年ITTC 会议推荐采用的下列定义式Re =其中0.75C -- 0.75R (半径)处叶剖面的弦长(m ) D-- 螺旋桨的直径(m ) A V-- 螺旋桨的进速(m s ) n-- 螺旋桨的转速(round s )υ--水的运动粘性系数(2m s )根据1978年ITTC 会议建议,临界雷诺数为5Re 3.010=⨯临。
2、为避免自由面兴波和吸入空气对桨性能产生不利影响,在桨模进行敞水试验时,其浸没与水中的深度应满足 1.0h D ≥,其中h 为桨轴中心线距水面的距离(m )。
3、敞水动力仪的流线罩与桨模安装位置应有足够大的距离,以避免因流线罩干扰的水流影响试验结果。
一般要求桨轴伸出在罩外的长度大于三倍桨模直径。
4、螺旋桨轴端身在前面,其轴端平面对水流的干扰将影响进入桨面的水流,因此在试验时应加装导流罩帽。
桨模后方也应装有光顺的过渡导流罩,以使将毂到桨轴的阶梯处不致产生涡流。
5、螺旋桨动力仪在试验前应作静校验,并应测量轴承摩擦损耗和桨轴在水中旋转时的摩擦损耗s Q ∆和s T ∆,以便对试验结果进行修正。
校验时,将动力仪按照试验要求装载拖车上,在装桨模的位置处安装个假毂,其外形与桨毂相同,重量与桨模相近,可用铜或铅制成,桨轴埋水深度按试验要求放置。
船用螺旋桨设计和分析参数
电话号码:传真:
E-mail地址:
船舶设计主要参数
船体
主机
齿轮箱
船总长(m)
方形系数
型号
型号
水线长(m)
棱形系数
额定功率(马力)
减速比
型宽(m)
`
船舶用途
额定转速(转/分)Байду номын сангаас
备注
设计吃水(m)
备注
排水量(T)
原有螺旋桨参数
直径
螺距
叶数
盘面比
后倾角
旋向
桨型
材料
最大限制直径
设计航速
实际航速
喜欢就下载吧!
船用螺旋桨设计和分析参数
选用合适的螺旋桨对船的的使用非常重要,一个与船体和主机匹配的效率最佳螺旋桨能使船发挥最佳航速和使主机耗油量最低。
用户在使用螺旋桨过程中遇到的任何问题,请尽管提出,我们将会尽力回答。
如客户对目前使用的螺旋桨不满意或需要新做螺旋桨,请填写下面表格,我们将会复核您提供的的数据,提出参考建议!
螺旋桨敞水试验
nm D
设
m
2 m
ns D
s
2 s
m s
nm D n s D
2 m 2 s 2 m 2 s
nm D 2 ns D
16
2 相似条件及要求
要保持桨模和实桨进速系数和雷诺数 同时相等,必须满足
nm 2 ns VAm nm 1 VAs ns
桨模的推力系数等于实桨的推力系数
KT J V A nD 2 n 2 D 2 0 f3 ( , , ) K Q 2 nD gD
13
2 相似条件及要求
VA nD
nD 2
为进速系数J,运动相似基本条件 为雷诺数Re ,粘性相似条件 相当傅汝德数,重力相似条件,当桨 轴的沉没深度hs>0.625D,兴波影响 忽略,傅汝德数可不考虑
39
3.3 DH5922动态信号测试分析系统
输出部分:
通道数:2路 输出信号范围:0-5V(最大电流5mA) 输入阻抗:0.02Ω D/A转换分辨率:12位 D/A转换速度:2μ S
数字输入输出:
DI:8路,TTL标准电平 DO:8路,TTL标准电平
40
3.3 DH5922动态信号测试分析系统
计数器/计时器(8254)
仅修正扭矩系数 k Q。利用平板摩擦阻力 公式直接对扭矩系数进行修正。若采用柏 兰特---许立汀公式 2.58
K Qm K Qs R em R es
1978 年 ITTC 推荐的修正方法,当模型桨 与实桨在同一进速系数时,按下式对推力 系数及扭矩系数进行修正。
KTs KTm KQs KQm KT KQ
3.1 敞水动力仪(H29-1)
直流电机
螺旋桨敞水性能预报
一些铺垫
• 左图为SSPA Da-Qing Li 对某桨的敞水性能计算结 果
螺旋桨敞水特性(Open Water Character)曲线
目录
一、螺旋桨敞水性能计算概述
二、影响计算的主要因素及其选取
三、丌同螺旋桨方法选择不研究情况
四、总结
一、螺旋桨敞水性能计算概述
• 螺旋桨敞水性能计算
不螺旋桨敞水试验相对应传播的船舶计算流体力学CFD计算工作
• 螺旋桨敞水性能计算的一般步骤
• 数值方法(Numerical Method)的选取 离散格式 求解算法 湍流模式
• 几何建模不网格划分(Model Geometry and Grid Generation) • 计算结果考察分析(Result Analysis)
一、螺旋桨敞水性能计算概述
• 流场预报需考量的因素
• 网格划分
• 流场预报需分析的结果
• 网格敏感性 • 雷诺数影响 • 敞水特征曲线 • 倒车性能 • 尾流考察
• 离散格式
• 求解算法
• 湍流模式
一、螺旋桨敞水性能计算概述
• 螺旋桨敞水性能计算的特点
桨叶前、后缘相对于其弦中部位,压力分布的计算值不测量值偏差很大
不升力相比,阻力计算值不测量值偏差较大
四、总结
• 关于螺旋桨的敞水性能预报,经过十几年的发展,已经比 较成熟; • 在湍流模型的选取中,k-ε 模型是最为广泛使用的,然而, 近年来 SST k-w模型逐渐兴起幵被众多研究验证为具有丌 错求解速度和精度的方法 • 网格划分上多采用混合网格,有利于减少计算量的同时保 证足够的计算精度
谢谢,欢迎批评指正
张志荣,2004比较了船舶粘性流体计算的六种主要湍流模式
螺旋桨水动力性能的数值预报方法_胡健
2
江苏科技大学学报 ( 自然科学版 )
2008 年
的计算 , 80 年代 , 面元法被引入到螺旋桨的性能计算中 , 建立了基于源汇和偶极的混合分布面元法 。 文 献 [ 4] 也完成了相应的工作 。 在国内 , 文献 [ 5] 首先开展了螺旋桨升力线理论的研究 , 并编制了程序 。 文献 [ 6 7] 展开了升力面方法的研究 , 取得了重要成果 。 文献 [ 8 9 ] 对面元法展开了相应地研究 , 并 将其应用到螺旋桨的研究中 。 本文采用基于速度势的低阶面元法 , 研究了螺旋桨的水动力性能 。 积分 [ 3] 方程由格林公式导出 , 用压力库塔条件封闭积分方程 。 影响系数用 M o r i n o 方法求解 , 桨叶表面切向速 度用 Y a n a g i z a w a 方法求解 , 桨叶表面压力分布由伯努力方程求解 , 环量分布等于桨叶随边处上下表面 的速度势的差值 。 理论和试验的比较说明 , 该方法在预报螺旋桨的水动力性能 、压力分布和环量分布等 方面均能取得良好效果 。
ቤተ መጻሕፍቲ ባይዱ
2 积分方程的数值解法
将螺旋桨表面和尾涡面分成一系列小单元 , 并用双曲面元替代每一单元 。 这里在弦向和展向分别采 用余弦分割 , 螺旋桨尾涡面的形状一般是未知的 , 但在理论分析中必须先确定其形状 , 这样就必须对尾 涡作一些假设 , 一般有线性尾涡和非线性尾涡模型 , 线性尾涡不考虑尾涡的变形 , 将其假设为定螺距的 螺旋面 , 而非线性尾涡根据实验数据和观察结果修正尾涡面 , 得到变螺距扭曲的尾涡面 。 本节算例采用 线性尾涡模型及面元分割 。 假设在每个面元内扰动势 φ 、 速度势跳跃 Δφ 和( V ) 都是常数 , 则积分方程可转化为线性方程组 0· n
船舶推进螺旋桨模型的敞水试验
18
第19页/共30页
船舶推进第四章 螺旋桨模型的敞水试验
§4-2 临界雷诺数及尺度效应
一、雷诺数:是以特征速度与特征尺寸的乘积 除以运动粘性系数所得的一个无因次系数。 根据1978年ITTC的规定,螺旋桨的雷诺数以 0.75R处叶切面的弦长及其合速度来表示:
11
第12页/共30页
船舶推进第四章 螺旋桨模型的敞水试验
二、临界雷诺数
螺旋桨模型试验时的雷诺数无法保持与实桨相 同,若雷诺数过低,则由于桨叶切面上流动状 态与实桨不同,将使试验结果无实用价值,因 此必须确立一个模型桨试验的最低雷诺数值称为临界雷诺数。决定粘性流体流动状态的基 本参数之一为雷诺数,当雷诺数足够大时,界 层中的流动才能达到紊流状态,故临界雷诺数 乃为保证模型界层中达到紊流状态的最低雷诺 数。
27
第28页/共30页
船舶推进第四章 螺旋桨模型的敞水试验
目前世界上已有不少性能优良的螺旋桨系列, 其中比较著名、应用较广的有:荷兰的B型螺 旋桨、日本的AU型螺旋桨和英国的高恩螺旋桨 等。B型和AU型螺旋桨适用于商船,而高恩螺 旋桨则适用于水面高速军舰。
目前世界各国比较有名的螺旋桨系列发展 情况,如表4-2和表4-3所示,可根据需要 选用。
28
第29页/共30页
感谢您的观看。
29
第30页/共30页
12
第13页/共30页
船舶推进第四章 螺旋桨模型的敞水试验
螺旋桨模型敞水试验报告
螺旋桨模型敞水试验实验报告
螺旋桨模型敞水试验的目的:
螺旋桨模型单独地在均匀水流中的试验称为敞水试验,该试验可以在船模试验水池、循环水池中进行。
它是鉴定和分析螺旋桨性能的较为简便可靠的方法。
该试验的目的是为了配合自航试验分析船舶推进的各种效率成分,或对若干方案进行比较分析。
试验步骤:
(1)在准备工作完成后,使螺旋桨叶背向拖车前进方向安装。
(2)按选定的螺旋桨转速保持转速不变,改变拖车的前进速度,在适当的速度范围内测量(10~15)个点,速度范围的选取应从0=Am V 到使推力0<m T 。
(3)在某一速度下同时记录以下数据: a 、螺旋桨转速m n 。
b 、螺旋桨前进速度Am V 。
c 、推力t T 。
d 、扭矩m Q 。
在试验操作时应注意下列事项: a 、 每次开车前水面要平静
b 、 待螺旋桨转速和车速达到预定值且稳定一段时间后,方可记录数据。
c 、 每次测试要先开车后启动电机,数据记录完毕后要先电机后停车,以防系泊情况发生,保证动力仪的安全。
试验数据处理:
由试验得到数据; 1、螺旋桨试验相关参数 浆模直径: m D 1175.0= 桨叶数:
4=Z 螺距比: 8.0=D P
模型缩尺: 40=λ
试验水温:
C t 20淡水=
由以上数据求J 、T K 、Q K 、0η 进速系数nD
V J A
=
推力系数4
2D n T
K T ρ=
扭矩系数5
2D
n Q
K Q ρ=
效率Q
T
K K J ⋅
=
πη20 1、 求进速系数J 由以上数据得。
船舶操纵螺旋桨05
推进器
• 螺旋桨
推进器
• 螺旋桨
推进器
• 螺旋桨
推进器
• 螺旋桨
推进器
• 螺旋桨
推进器
• 螺旋桨
螺旋桨及其效应
• • • • • 螺旋桨及其工作原理 推力与转矩 滑失 主机功率与船速 螺旋桨的致偏作用
螺旋桨及其工作原理
• 螺旋桨又称螺旋推进器,构造简单、重量轻、效率高 • 主要参数
主机功率
• 主机功率关系
– 螺旋桨收到功率DHP与机器功率MHP的比值称为 传递效率,其值通常为0.95~0.98。 – 有效功率EHP与收到功率DHP之比称为推进器效 率,该值约为0.60~0.75。 – 有效功率EHP与主机机器功率MHP之比称为推进 系数,该值约为0.5~0.7。这就是说,主机发出 功率变为船舶推进有效功率后己损失了将近一半。
– – – – 螺旋桨沉深横向力 伴流横向力 排出流横向力 推力中心偏位产生的横向力
• 螺旋桨横向力的致偏作用
本节作业
•
• • •
何谓滑失?对螺旋桨推力、排出流、舵效 有何影响?。 试述沉深、伴流、排出流横向力产生的原 因、条件及作用规律。 绘草图说明右旋FPP单桨船利用车、舵减 小掉头区的方法。 绘出倒车停船轨迹,并说明为何呈现这样 的形状。
螺旋桨横向力
• 排出流横向力
螺旋桨横向力
• 排出流横向力
– 机理:进车受伴流的影响,上半部排出流轴向速度较小, 因此作用在舵上的冲角较大,使舵叶右侧的水动力大于 左侧,造成推尾向左的横向力;倒车排出流打在船尾右 舷尾外板上冲角较大,面积较为宽广,所以形成较强的 冲击力 ; – 条件:进车伴流存在,倒车排出流作用在船尾; – 方向:就右旋FPP而言,正倒车均使船首向右偏转; – 总体而言,倒车排出流横向力是较大的量
敞水实验报告
船模与渔具水动力实验室桨模敞水试验报告姓名:专业:班级:所属课程:试验日期:同组者:年月日船模与渔具水动力实验室螺旋桨模型基本信息模型浆编号:形式:直径D(mm):螺距比P/D:盘面比Ae/Ao:叶数Z:叶厚比:毂径比:后倾角:最大叶宽比:旋向:一、螺旋桨敞水性特征计算表模型编号__________________________模型直径D__________________________叶厚分数t0/D__________________________水温__________________________ 试验编号__________________________盘面比A e/A o ________________________毂径比d b/D ___________________________ 密度ρ________________________ 比例尺λ__________________________ 螺距比P/D _________________________叶数Z____________________________日期___________________________螺旋桨雷诺数计算公式:1、曾用公式:Re=nD2/v或者V p D/v 2、1978年ITTC规定公式:Re={b0.75R[V p2+(0.75πnD)2]1/2}/v螺旋桨敞水性能无因次系数:1、进速系数:J p=V p/nD 2、推力系数:K T=T/ρn2D43、扭矩系数:K Q=Q/ρn2D54、敞水效率:η0=K T J P/K Q2π二、螺旋桨敞水性特征曲线0.10.30.20.50.60.4 1.00.80.90.70.10.20.30.60.50.40.70.80.91.0KT10K Qη三、试验结果的分析、讨论四、教师评阅成绩: 签名:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
船用螺旋桨敞水性能数值分析作者:顾铖璋郑百林来源:《计算机辅助工程》2011年第04期摘要:为预测某船用螺旋桨在不同螺距下的敞水性能,对标准螺旋桨DTMB 4119的敞水性能进行数值模拟,得到的推力因数和扭矩因数计算值与试验值的对比表明通过求解RANS方程模拟螺旋桨黏性流场是可行的.用该方法预测某船用螺旋桨的敞水性能:模拟得到不同螺距下螺旋桨推力因数、扭矩因数和表面压力因数的变化以及尾流情况.通过RANS方法可以较准确地分析船用螺旋桨敞水性能.关键词:船用螺旋桨;敞水性能;螺距;表面压力;尾流中图分类号: U664.33; TB115.1文献标志码: BNumerical analysis on open water performance ofship propellerGU Chengzhang, ZHENG Bailin(Institute of Applied Mechanics, Tongji University, Shanghai 200092, China)Abstract: To predict the open water performance of a ship propeller under different pitches, the numerical simulation on open water performance of the standard propeller DTMB 4119 is performed. The comparison of computation results and test results of thrust coefficient and torque coefficient indicates that it is feasible to simulate viscous flow field of the propeller by solving RANS equations. The method is applied to predict the open water performance of a ship propeller, and the thrust factor, torque factor, surface pressure factor, and wake flow are simulated under different pitches. The open water performance of a ship propeller can be well analyzed by RANS method.Key words: ship propeller; open water performance; pitch; surface pressure; wake flow0引言随着现代计算机硬件以及数值算法的快速发展,RANS方法在目前流场分析及工程设计优化中的应用越来越广,解决了很多通过经典算法以及传统试验难以解决的问题.从第22届国际拖曳水池会议(International Towing Tank Conference,ITTC)开始,RANS方法开始被应用到船用螺旋桨的水动力分析中[1],而在此之前,螺旋桨的设计以及性能预测主要基于势流理论建立的升力面理论[2]和面元法[3],与其相比,RANS方法能更快地模拟螺旋桨附近的黏性流场.1螺旋桨三维黏性流场的数值模拟为验证通过求解RANS方法预报螺旋桨三维黏性流场的准确性,以DTMB 4119桨为例,对其桨叶周围的黏性流场进行数值模拟.DTMB 4119桨被ITTC选为考证数值方法预报精度的标准螺旋桨,其桨叶直径为0.3048 m,叶剖面为NACA-66mod型,毂径比为0.2.[4]1.1理论基础RANS方程中的连续性方程[5]可用笛卡尔张量表示为(1)动量方程可表示为-(2)式中:ρ为流体密度;μ为流体动力黏性因数;μt为湍流动力黏性因数.若流体为不可压缩流,则(3)1.2CFD计算模型螺旋桨流场的计算域见图1,包括外部大圆柱形区域(直径1.60 m)和内部小圆柱形区域(直径0.36 m).内区采用非结构化网格(见图2),并在螺旋桨表面划分5层棱柱体网格来更好地模拟边界层的流动;外区采用结构化网格,内外区的交界面定义为interface.采用动参考系模型计算,即内区定义为与螺旋桨同步转动,而外区则采用绝对坐标系.湍流模型采用RNG k-ε模型,定义残值收敛标准为5E-5.1.3边界条件设置设内流场的转速为600 r/min,而外流场则在绝对坐标系下静止,流场入口设置为速度入口,其速度vA根据螺旋桨的进速因数J换算得到,换算公式为J=vA/nD式中:n为螺旋桨的转速;D为桨叶直径;vA为入口速度.出口设为压力出口,大圆柱体表面设为对称边界条件,桨叶和桨毂表面设为无滑移壁面.1.4计算结果1.4.1敞水性能计算结果及验证进速因数分别取为0.500,0.600,0.700,0.833,0.900和1.100,计算得到不同进速因数下的螺旋桨桨叶的推力和扭矩值,换算得到推力因数KT和转矩因数KQ并与试验值[6]进行比较,其中,KT=F/ρn2D4KQ=M/ρn2D5式中:F和M分别为螺旋桨桨叶的推力和扭矩值.由图3可知,计算所得的推力因数与试验值在进速因数低于0.833时吻合较好,而转矩因数与试验值误差始终很小,可见虽然计算中采用的RANS方法未能考虑桨叶周围的流场从层流向湍流的过渡,但对本文的计算精度影响很小.2船用螺旋桨水动力性能计算及分析2.1螺旋桨三维模型螺旋桨桨模的几何尺度如下:叶片数Z=5,螺旋桨直径d=3 800 mm,旋转速度n=210r/min.将螺旋桨桨叶的切面型值坐标转换为三维空间坐标,随后在CATIA中建立桨叶各切面的样条曲线,最后由各切面的样条曲线生成桨叶叶面.采用前述的相同方法求解螺旋桨的黏性流场,计算过程中各个参数设置与标准桨一致.2.2不同螺距比下螺旋桨水动力性能在不同螺距比下的螺旋桨推力因数和转矩因数见图4,可知,螺旋桨在3种不同螺距比下的推力因数和扭矩因数随进速因数的变化趋势相同.(a)推力因数分布(b)扭矩因数分布螺旋桨的敞水效率η=KTJ/(2πKQ)不同螺距比下的敞水效率见图5,可知,当此螺旋桨的螺距比为1.473及1.600时,在进速因数J小于1.1的区间内未达到其最大敞水效率,而当螺距比为1.23时,此螺旋桨的最大敞水效率出现在进速因数0.95左右处.此外,该螺旋桨在螺距比为1.230的工况下,其在低进速因数下的敞水效率虽高于另两种螺距比工况,但当进速因数高于0.95后,其敞水效率随进速因数的增大急剧下降.2.3不同螺距比下螺旋桨表面压力因数当进速因数J=0.8时,不同螺距比下螺旋桨在其半径比为r/R=0.35处的表面压力因数Cp 分布见图6.(a)螺距比为1.230时的压力因数分布(b)螺距比为1.473时的压力因数分布(c)螺距比为1.600时的压力因数分布通过控制云图每一级的数值可知,随着螺距比的增大,吸力面上的负压因数逐渐增大,且负压区向导边方向靠近.2.4不同螺距下螺旋桨尾流J=0.8时螺旋桨尾流情况见图7.螺旋桨对流场的抽吸作用使螺旋桨尾流的外直径小于螺旋桨的直径,在同一螺距下,螺旋桨的尾流螺距随进速因数J的上升而增大,由图7可知,在不同螺距下螺旋桨的尾流螺距随螺旋桨螺距比的增大而增大.(a)螺距比为1.230(b)螺距比为1.473(c)螺距比为1.600图 7J=0.8时螺旋桨尾流情况Fig.7Propeller wake flow when J=0.83结论(1)对某标准桨叶的敞水性能进行数值模拟,结果与试验值吻合较好,验证通过求解RANS 方程模拟螺旋桨黏性流场方法的可行性.(2)通过求解RANS方程对某船用螺旋桨进行水动力分析,计算螺旋桨在3种不同螺距比工况下的敞水性能,可知螺旋桨在不同螺距工况下,其推力因数和扭矩因数随进速因数的变化规律相似,但敞水效率差异较明显.不同螺距下螺旋桨表面的压力因数分布以及螺旋桨的尾流情况也略有不同.(3)本文未考虑螺旋桨的空化现象,而在螺旋桨的某些工况下,空化现象的确存在,此点有待进一步研究.参考文献:[1]The 22nd ITTC Propulsion Committee Workshop. Propeller RANS/Panel methods[R]. Grenoble, France, 1998: 23.[2]YANG C J,WANG G Q,KOIZUKA H.Study on performance and spindle torque of CPP[J]. J Soc Naval Arch West-Jpn, 1994(87): 27-37.[3]董世汤, 唐登海, 周伟新. CSSRC的螺旋桨定常面元法[J]. 船舶力学, 2005, 9(5): 46-60.DONG Shitang, TANG Denghai, ZHOU Weixin. Panel method of CSSRC for propeller in steady flows[J]. J Ship Mech, , 2005, 9(5): 46-60.[4]李巍, 王国强, 汪蕾. 螺旋桨黏流水动力特性数值模拟[J]. 上海交通大学学报, 2007, 41(7): 1200-1204.LI Wei, WANG Guoqiang, WANG Lei. The numerical simulation of hydrodynamic characteristics in propeller[J]. J Shanghai Jiaotong Univ, 2007, 41(7): 1200-1204.[5]王福军. 计算流体动力学分析: CFD 软件原理与应用[M]. 北京: 清华大学出版社, 2004: 7-13.[6]KOYAMA Koichi. Comparative calculations of propellers by surface panel method[J]. Papers Ship Res Inst, 1993, 15(S1): 57-66.(编辑于杰)。