6.1平方根(第一课时算术平方根)教案

合集下载

人教版七年级数学下册6.1.1《算术平方根》教案

人教版七年级数学下册6.1.1《算术平方根》教案

人教版七年级数学下册6.1.1《算术平方根》教案一. 教材分析《算术平方根》是人教版七年级数学下册第六章第一节的内容。

本节课主要让学生掌握算术平方根的定义,理解求一个数的算术平方根的方法,以及熟练运用算术平方根解决实际问题。

教材通过引入大量的生活实例,激发学生的学习兴趣,引导学生探究、发现算术平方根的规律,培养学生的抽象思维能力。

二. 学情分析七年级的学生已经掌握了实数的概念,具备了一定的数学基础。

但在计算能力和数学思维方面,学生之间存在较大差异。

因此,在教学过程中,要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的数学素养。

三. 教学目标1.理解算术平方根的定义,掌握求一个数的算术平方根的方法。

2.能够运用算术平方根解决实际问题,提高学生的应用能力。

3.培养学生的抽象思维能力,提高学生的计算能力。

4.激发学生的学习兴趣,培养他们积极探究数学规律的精神。

四. 教学重难点1.算术平方根的定义及其求法。

2.运用算术平方根解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生发现算术平方根的规律。

2.探究教学法:引导学生积极参与课堂讨论,自主发现算术平方根的求法。

3.练习法:通过大量练习,巩固学生对算术平方根的理解和运用。

六. 教学准备1.教学课件:制作精美的课件,辅助教学。

2.练习题:准备适量的一定难度的练习题,用于课堂练习和课后作业。

3.教学道具:准备一些实物,如正方形、长方形等,用于直观展示。

七. 教学过程1.导入(5分钟)利用生活实例,如衣服的尺码、房屋面积等,引导学生思考:如何快速找到一个数的平方根?从而引出本节课的主题——算术平方根。

2.呈现(10分钟)介绍算术平方根的定义,并通过PPT展示一些图片,让学生直观地感受算术平方根的应用。

3.操练(10分钟)让学生分组讨论,探索如何求一个数的算术平方根。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成。

6.1 平方根 第1课时 (教学课件)- 人教版七年级数学下册

6.1 平方根 第1课时 (教学课件)-  人教版七年级数学下册

解: (1)因为302=900, 所以900的算术平方根是30,即 900 30 ;
(2)因为12=1, 所以1的算术平方根是1,即 1 1 ;
(3)因为
7 8
2
=
49 64
,所以
49 64
的算术平方根是 7
8
,即
49 = 7 64 8
;
(4)14的算术平方根是 14 .
四、典型例题
例2:已知2a-1的算术平方根是3,3a+b-1的算术平方根是4,求 a 2b 的值? 解:由题意可知:2a-1=9,3a+b-1=16, 解得:a=5,b=2, ∴ a 2b = 9 =3
【当堂检测】
1.求下列各数的算术平方根:
36 ,9 , 17, 0.81 , 10-4 16
解: 因为62=36, 所以36的算术平方根是6,即 36 6 ;
因为
3 4
2
=
9 16
,所以
9 16
的算术平方根是
3 4
,即
9 =3 ;
16 4
17的算术平方根是 17 ;
因为0.92=0.81, 所以0.81的算术平方根是0.9,即 0.81 0.9 ;
叫做 a 的算术平方根,a 的算术平方根记作“ a ”,读作“根号 a ”,a
叫做被开方数.
特别地,我们规定:0的算术平方根是0,即 0 0 .
三、概念剖析
(二)算术平方根的估算
思考:你能计算出 2 的值吗?
夹值法:即两边无限 逼近,逐渐确定真值
方法一:
因为12=1,22=4,所以1< 2 <2,
5 dm 因为52=25
三、概念剖析
(一)算术平方根

平方根教案

平方根教案

6.1.1平方根(第一课时)一、【学习目标】1.了解算术平方根的概念,并会求非负数的算术平方根并用符号表示.2.了解无限不循环小数的特性.3.学会估算二、【重、难点】重点:算术平方根的概念.难点:求算术平方根三、【导学过程】(一)、预习导引阅读教材P40页第一段,填表并回答问题.1.什么样的运算是平方运算?2.你还记得1~20之间整数的平方吗? 请和同学交流.3.总结算术平方根定义:(二)、自读深思求下列各数的算术平方根⑴ 100 ⑵⑶ 0.0001 ⑷ 0 ⑸解:(1)因为10²=100,所以100的算数平方根是10,即(2)因为__________,所以______________________,即_____________(3)因为__________,所以______________________,即_____________(4)因为__________,所以______________________,即_____________(5)因为__________,所以______________________,即_____________2.总结:从例1可以看出:____________越大,对应的__________也越大.(三)、小组讨论填空:1、(1)因为_____2=64,所以64的算术平方根是______,即=______;(2)因为_____2=0.25,所以0.25的算术平方根是______,即=______;(3)因为_____2=,所以的算术平方根是______,即=______.(四)、结果展示1、求下列各式的值:(1) =;(2) =;(3) =;(4) =;(5) =;(6) =.(五)、当堂检测,及时反馈1.1的算术平方根是,25的算术平方根是,0的算术平方根是.2.的算术平方根是,的算平方根.3.若是49的算术平方根,则= ,若,则x = .4.若,则的算术平方根是.5. =_______;=________;=________;=_______.6. =_________;=_________;=___________.7. 当时,有意义;8.已知,则;9.的算术平方根是2,则=________;10.算术平方根等于它本身的数有________.四、【课后练习】1.比较大小8.5 ;0.52.式子成立的条件是3.若,则的取值范围是4.的化简结果是()A.2 B.-2 C.2或-2 D.4 5.的算术平方根是()A.B.7 C.D.46.一个数的算术平方根为a,比这个数大2的数是()A.a+2 B.-2 C.+2 D.a2+2能力提升7.若,求的值.五【课后反思】1.算数平方根的概念2.注意的几点课题:6.1.2平方根(第二课时)一、【学习目标】1.理解平方根的概念,并会求非负数的平方根.2.掌握并区分算数平方根与平方根二、【重、难点】求非负数的平方根.三、【导学过程】(一)、预习导引1.如果一个数的平方等于9,这个数是多少?2.平方得81的数有几个? 分别是什么?3.一对互为相反数的平方有什么关系?(二)、自读深思1.阅读教材P45,回答下列问题一般的,如果叫做a的平方根或.2.,叫做开平方.3.求下列数的平方根(1)100 (2)(3)0.25 (4)(5)04.归纳:(1)正数有个平方根,它们互为;(2)0的平方根是;(3)没有平方根.(三)小组讨论1.写出下列各数的平方根:(1)64 (2)0.04 (3)(4)2.写出下列各数的平方根:(1)(2)0 (3)(4)(四)结果展示1.计算:(1)(2)(3)2.下列各式是否有意义,为什么?(1)-(2)(3)(4)3.拓展:已知,求:的平方根(五)评讲总结1.判断下列说法是否正确(1)5是25的算术平方根()(2)是的一个平方根()(3)的平方根是-4()(4)0的平方根与算术平方根都是0()2.计算下列各式的值:(1)(2)(3)(4)四、【课后练习】1.判断下列说法是否正确(1)5是25的算术平方根();(2)是的一个平方根()(3)的平方根是-4();(4)0的平方根与算术平方根都是0()2.,,,3.若,则,的平方根是4.的平方根是()A.B.C.D.5.求下列各式中的值(1)(2)(3)(4)6.若,且,则的值为()A.B.C.D.7.若一个数的平方根等于它本身,数的算术平方根也等于它本身,试求的平方根.8.如果一个正数的两个平方根为和,请你求出这个正数.五、【课后反思】总结平方根与算数平方根的区别与联系课题:6.2立方根一、【学习目标】1.了解立方根的概念,会用立方运算求某些数的立方根.2.分清立方根与平方根的区别二、【重、难点】立方根的概念和求法.三、【导学过程】(一)、预习导入要制作一个正方体纸盒,如果这个正方体的体积为216 cm3,那么它每条棱长是多少?(二)、自读深思1.立方根的概念:阅读教材P49页,总结立方根的定义2.立方根的性质:(1)阅读教材P49页探究(2)总结归纳:正数的立方根是数,负数的立方根是数,0的立方根是.(3)思考:每一个数都有立方根吗? 一个数有几个立方根呢?3.立方根的表示法:(1)阅读教材P50页(2)总结归纳:立方根的表示法.(三)、小组讨论(3)思考:立方根与平方根的表示法有什么不同?(4(5)完成教材P50页探究,总结规律:求负数的立方根,可以先求出这个负数的的立方根,再取其,即(6)思考:立方根是它本身的数是,平方根是它本身的数是.(四)结果展示求下列各式的值:(1)(2)(3)求满足下列各式的未知数x:(1)(2)(五)讲评总结1.立方根等于它本身的数是,如果则.2.的立方根是,的立方根是.3.比较大小:(1),(2)(3)34.已知的立方根是4,求的算术平方根.5.已知,求的值.(六)检测反馈1.判断正误:(1)25的立方根是5………………………………………………………………()(2)互为相反数的两个数,它们的立方根也互为相反数………………………()(3)任何数的立方根只有一个……………………………………………………()(4)如果一个数的平方根与其立方根相同,则这个数是1……………………()(5)如果一个数的立方根是这个数的本身,那么这个数一定是0………………()(6)一个数的立方根不是正数就是负数……………………………………………()(7)–64没有立方根( )2.(1) 64的平方根是________立方根是________;(3) 若,则x=_______;若,则x=________;(4) 若;则x的取值范围是_____ __;若有意义,则x的取值范围是_________.四、【课后练习】1.当时,有意义;当时,有意义.2.的立方根是,的平方根是,的立方根是.3.已知,则= .4.解下列方程(1) (2) (3)5.计算:6.已知x-2的平方根是,的立方根是4,求的值.五、【课后反思】1.总结平方根与立方根的区别 2.立方根性质课题:6.3.1实数(第一课时)一、【学习目标】1.了解无理数和实数的概念以及实数的分类;2.了解实数与数轴上的点具有一一对应的关系,能用数轴上的点来表示无理数.二、【重、难点】重点:了解无理数和实数的概念;难点:对无理数的认识.三、【导学过程】(一)、预习导引1.填空:(有理数的两种分类)2.通过探究把下列有理数写成小数的形式,你有什么发现?3 ,,,,,(二)、自读深思阅读教材P53页,回答下列问题1.归纳:任何一个有理数都可以写成小数或小数的形式,反过来,任何小数或小数也都是有理数。

平方根教学设计

平方根教学设计
教师倾听学生的解题过程,并对学生的回答总结如下:
因为 =25,所以正方形画布的边长是5dm.
在此基础上,学生独立求出面积为1、9、16、36、 的正方形的边长为1、3、4、6、 .
学生清理思路,阐述观点.
总结:已知一个正数的平方,求这个正数的思想方法是平方运算的逆运算.
从现实生活中提出数学问题,使学生积极主动地投入到数学活动中去.
(1)25;
(2)9;
(3)0.0001.
例讲:
因为102=100,所以100的算术平方根是10,即x的平方等于a ,即x =a,那么这个正数x 就叫做a的算术平方根 ,记做 ,读作“根号a”,a是被开方数且(a≥0).
规则1. (a≥0)表示求a的算数平方根.
5.81的算术平方根是( )
的算术平方根是( )
6.(1) 的算术平方根是_______。
(2) ,
的算术平方根是多少
(3)
,求y的值
【我会算】
学生独立完成作业.
教师批改、总结.
本次活动中,教师关注:
(1)不同层次的学生对知识的理解程度,有针对性地讲解;
(2)学生在练习中暴露出的问题,要及时反馈.
通过课后独立思考,自我评价学习效果;学会反思,发现问题,试着解决问题;并试着通过阅读教材、查找资料了解知识的背景.
问题与情境
师生行为
设计意图
活动3
进一步了解算术平方根的性质
本次活动中:
说明
(1)算术平方根是非负数;
(2)被开方数是非负数;
(3)规定:零的算术平方根是零;
这种形式的小结为学生创造了交流的空间,调动了学生的积极性,既引导学生从数的发展的角度来理解,了解本节知识,又从能力、情感、态度等方面关注学生对课堂的整体感受.

6.1平方根(第1课时) 教学设计

6.1平方根(第1课时)  教学设计

6.1平方根(第1课时)教学目标1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;2.了解开方与乘方互为逆运算,会求某些非负数的算术平方根,能化简某些带根号的数,掌握计算根式范围的方法;3.通过学习算术平方根,提升学生的数感和符号感,发展抽象思维;4.通过解决实际生活中的问题,让学生体会数学与生活是紧密联系的.教学重点表示正数的算数平方根教学难点√2多大探究教学过程一、情景引入讲述数学史第一次数学危机:的出现,却在当时的数学界掀起了一场巨大风暴。

它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。

实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。

对于当时所有古希腊人的观念这都是一个极大的冲击。

这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。

这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。

更糟糕的是,面对这一荒谬人们竟然毫无办法。

这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。

二、新知探究活动一:算数平方根探究:问题1:学校要举行美术作品比赛,你想裁出一块面积为25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?说一说,你是怎样算出来的?因为52=25,所以这个正方形画布的边长应取5 dm.问题2:完成表1:正方形的边长/dm 1 3 9 2 3正方形的面积/dm²1 9 81 49思考:你能从表1发现什么共同点吗?已知一个正数,求这个正数的平方,这是平方运算问题3:完成表2:正方形的面积/dm² 4 49 0.36964正方形的边长/dm 2 7 0.6 3 8思考:你能从表2发现什么共同点吗?表1与表2中两种运算有什么关系?已知一个正数的平方,求这个正数;互为逆运算归纳:一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x叫做a 的算术平方根。

算术平方根—教学设计及点评

算术平方根—教学设计及点评

§6.1《平方根》第1课时《算术平方根》教案一、教学内容分析:教材分析:《算术平方根》是人教版七年级下册第六章第一节《平方根》的第1课时的学习内容,它为后续学习无理数,数集的扩充以及二次根式的学习奠定基础,在教材中起到承上启下的作用。

学生分析:学生在小学阶段、七年级上册《有理数》的学习,对平方运算有一定的认识,这为过渡到本节内容的学习起到了铺垫的作用。

二、教学目标分析:知识目标:体会“已知正方形面积求边长和已知边长求面积”的互逆过程,理解算术平方根的概念。

技能目标:会用“”表示一个非负数的算术平方根;会用平方运算求某些非负数的算术平方根。

能力目标:体会引入“”的必要性,建立数感和符号意识,会用“”表示非负数的算术平方根。

三、教学重点难点分析:教学重点:算术平方根的概念和求法。

教学难点:“根号”产生的必要性,算术平方根的存在性,理解“”的意义。

四、教学准备:预备知识:有理数运算法则、几何图形初步。

教学方法:启发式。

教学道具:剪刀、两块1dm²的正方形纸片、透明胶纸。

五、教学过程:预计时间教学内容教师活动学生活动教学评价5分钟一、引入问题:1.学校要举行美术作品比赛,小鸥想裁出一块面积为25dm²的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?2.填表:1.正方形画布的边长应取多少?你是怎么算出来的?2.请你填写下列表格,体会正方形面积和边长的关系。

通过填表,你1.因为5²=25,所以这个正方形画布的边长取5dm.2.面积为1,边长为1;面积为4,边长为2……通过情景引入,让学生体会“已知正方形面积求边长和已知边长求面积”的互逆过程,为算术平方根的概念的引出四、探究:2的算术平方根是,的大小;在数轴上的什么位置呢(借助数轴估计)?六、小结解决一类新问题,已知一个正数的平方,求这个正数的问题(即已知任意一个正方形的面积求它的边长的问题).定义:如果一个正数x 的平方等于a,即x²=a,那么这个正数x 叫做a 的算术平方根.同学们,这节课我们由平方运算开始,学习了一种新的数,算术平方根,认识了一种新的运算,开方运算,由旧到新,数形结合,你有什么收获和疑问呢?答:1.解决新问题:已知一个正数的平方,求这个正数;2.理解新概念:算术平方根的概念;3.注意:0的算术平方根是0,负数没有算术平方根 观察学生能否用自己的方式将本节课的知识、技能、能力等进行归纳.理解算术平方根的定义及其表示方法.七、作业: 课本习题6.1P47 第1、2、6题6.1.1 算术平方根新授课 例题讲解 学生活动一、为什么引入根号? 例1. 求下列各数的算术平方根 二、定义:如果一个正数x (1)100;(2)4964;(3)0.0001的平方等于a,即x²=a,那么 这个正数x 叫做a 的算术平 方根.对林惠同志算术平方根的点评陈远刚广东省惠州市教育科学研究院林惠老师尊重教材、根据教材来设计教学环节,是一节师生互动有效,值得回味的优秀课。

七年级数学下册(人教版)6.1.1算术平方根(第一课时)优秀教学案例

七年级数学下册(人教版)6.1.1算术平方根(第一课时)优秀教学案例
1.理解算术平方根的概念,掌握求一个数的算术平方根的方法。
2.能够运用算术平方根的知识解决实际问题,如计算面积、体积等。
3.了解算术平方根在实际生活中的应用,如测量、建筑设计等。
(二)过程与方法
1.通过复习平方根的概念,引导学生自主探究算术平方根的定义,培养学生的自主学习能力。
2.利用多媒体展示、实物演示等方法,让学生在直观感知的基础上,理解并掌握算术平方根的概念。
3.通过学生之间的互相评价,让学生了解自己的学习情况,发现他人的优点,学会欣赏和尊重他人。
4.教师要根据学生的学习情况,及时调整教学策略,以保证教学目标的实现。同时,要对学生的进步给予肯定和鼓励,增强他们的自信心。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一个实际问题:一块土地的面积是36平方米,求它的边长。让学生思考如何解决这个问题。
3.通过小组讨论、数学游戏等形式,激发学生的学习兴趣,培养学生合作探究的能力。
4.设计一系列练习题,巩固所学知识,提高学生的解题能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和好奇心,使他们感受到数学的趣味性和魅力。
2.培养学生的自信心,使他们相信自己能够掌握算术平方根的知识,并能够运用所学知识解决实际问题。
针对这一教学目标,我设计了以下教学案例。首先,通过复习平方根的概念,引导学生回顾已学知识,为新课的学习做好铺垫。然后,通过多媒体展示、实物演示等方法,生动形象地引入算术平方根的概念,让学生在直观感知的基础上,理解并掌握算术平方根的定义。接下来,运用数学游戏、小组讨论等形式,激发一系列练习题,巩固所学知识,提高学生的解题能力。最后,结合生活实际,引导学生运用所学知识解决实际问题,培养学生的应用意识。
整个教学过程中,注重启发式教学,引导学生主动参与,积极思考,提高学生的思维能力。同时,关注学生的个体差异,给予不同程度的学生适当的指导和关爱,使他们在数学学习过程中感受到成功的喜悦。通过本节课的教学,使学生对算术平方根有了更深入的理解,提高了学生的数学素养,为后续学习奠定了基础。

算术平方根(第1课时)教学设计—【教学参考】

算术平方根(第1课时)教学设计—【教学参考】
这个问题实际上是已知一个正数的平方,求这个正数的问题.
这就要用到平方根的概念,也就是本章的主要学习内容.本节课我们先学习有关算术平方根的概念.
二、合作探究
填表:
正方形的面积/dm2
1
9
16
36
正方形的边长/dm
思考:上述问题可以看作已知什么,求什么问题.
学生讨论展示:是已知一个正数的平方,求这个正数的问题.也就是,在等式x2=a(x≥0)中,已知a,求x的值.
课题
6.1 平方根(第一课时)




知识

技能
1.理解并掌握算术平方根的概念,会用根号表示一个非负数的算术平方根.
2.了解算术平方根的非负性,会求一个非负数的算术平方根.
过程

方法
通过学习算术平方根,建初步的数感和符号感,发展抽象思维.
情感
态度
与价
值观
1.通过解决实际生活中的问题,让学生体验数学与生活实际是紧密联系的.
六、布置作业
课本P47习题6.1第1、2题
归纳结论:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,a的算术平方根记为,读作“根号a”,a叫做被开方数.
规定:0的算术平方根是0.
三、应用举例
例1求下列各数的算术平方根:
(1)100;(2) ;(3)0.0001.
从例1可以看出:被开方数越大,对应的算术平方根也越大.这个结论对所有正数都成立.
解:设每块地砖的边长是 m,则有120 =10.8.
因为 >0,所以 =0.3.
答:每块地砖的边长为0.3m.
五、课堂小结
这节课有什么收获?(学生口述,教师总结)

2023~2024学年 6.1 课时1 算术平方根(17页)

2023~2024学年 6.1 课时1 算术平方根(17页)
非负数a≥0
到目前为止,我们学习了表示非负数的式子有:
|a|≥0;a2 ≥ 0;当a ≥ 0 时,
a 0
课堂练习
1.判断下列各式的正误.
- 7 2
(1) (7)² =7
49 7
(2) (7)² =7

7 2
49 7
(3) (5)² = 5

52
合作探究
思考:怎么用符号来表示一个正数的算术平方根呢?
x²=a
(x≥0)
互为
平方根号
x=
逆运算
a的算术平方根
读作:根号a
被开方数
(a≥0)
典型例题
求下列各数的算术平方根:
(2)
(1)100;
49
;
64
解:(1)∵10²100,
(3)0.0001.
对于正数x,
∴100的算术平方根是10
如果x²a,
算术平方根
一般地,如果一个正数x的平方等于a,即x²a,
那么这个正数x叫做a的算术平方根.
规定:0的算术平方根是0.
小试牛刀
3
1.因为3²9,所以9的算术平方根是____;

2.下列说法正确的是______.
①5是25的算术平方根.
②0.01是0.1的算术平方根.
算术平方根是它本身的数只有0和1.
物理中的一个常数, g≈9.8m/s2 , R是地球半径,R≈6.4×10 6 m.
怎样求v1和v2呢?
合作探究
学校要举行美术作品比赛,小鸥想裁出一块面积为25 dm2的正方形画
布,画上自己的得意之作参加比赛,小欧裁出的正方形画布的边长为5dm
你知道为什么吗?

人教版七年级下册6.1.1《算术平方根》(教学设计)

人教版七年级下册6.1.1《算术平方根》(教学设计)

人教版七年级下册6.1.1《算术平方根》(教学设计)一. 教材分析《算术平方根》是人教版七年级下册数学教材第六章第一节的内容。

本节课主要介绍了算术平方根的概念、性质及其求法。

通过学习本节课,学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够应用算术平方根解决实际问题。

教材通过例题和练习题的形式,帮助学生巩固所学知识,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了有理数、整数、分数等基础知识,具备了一定的逻辑思维能力和运算能力。

但部分学生对平方根的概念可能还比较模糊,需要通过实例和练习来进一步理解。

此外,学生可能对算术平方根的求法存在一定的困惑,需要通过教师的引导和同学的讨论来掌握。

三. 教学目标1.知识与技能目标:理解算术平方根的概念,掌握求算术平方根的方法,能够熟练运用算术平方根解决实际问题。

2.过程与方法目标:通过自主学习、合作交流,培养学生探究问题和解决问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,激发学生学习数学的积极性。

四. 教学重难点1.重点:算术平方根的概念及其求法。

2.难点:算术平方根在实际问题中的应用。

五. 教学方法1.启发式教学:通过问题引导,激发学生的思考,培养学生的探究能力。

2.合作学习:学生进行小组讨论,促进学生之间的交流与合作,共同解决问题。

3.实例教学:通过具体的例子,让学生更好地理解算术平方根的概念和求法。

4.练习巩固:通过适量练习,巩固所学知识,提高学生的应用能力。

六. 教学准备1.教材:人教版七年级下册数学教材。

2.课件:制作课件,包括算术平方根的定义、性质、求法及应用等内容。

3.练习题:准备一些有关算术平方根的练习题,用于课堂练习和巩固。

4.板书:准备黑板,用于书写重要概念和步骤。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学过的平方根知识,为新课的学习做好铺垫。

例如:“请大家回忆一下,平方根的概念是什么?我们已经学习了哪些求平方根的方法?”2.呈现(10分钟)教师展示课件,介绍算术平方根的定义、性质和求法。

人教版教材七年级数学第6章第一节《算术平方根》教学设计

人教版教材七年级数学第6章第一节《算术平方根》教学设计

重点:算术平方根概念的理解。

难点:根据算术平方根的概念正确求出非负数的算术平方根。

七、教具安排PPT、视频八、课件使用说明本课件采用微软件幻灯片制作软件Microsoft Office PowerPoint 2007制作,安装Microsoft Office PowerPoint 2007或该软件更高版本可以正常运行。

双击PPT文件即可进入本课件进行授课。

九、教学过程1.明确目标课前导学出示学习目标(课标要求);围绕学习目标,课前学生自主阅读教材P40-41。

设计意图:明确本节所学的内容,让学生对本节课知识有个大体认识,产生疑惑课堂答疑。

2.提出问题引入新课提出问题:能否用两个面积为1dm2的正方形拼成一个面积为2dm2的大正方形?边长为多少?(设边长为xdm,可列方程x2=2,引出概念)设计意图:从现实生活中提出数学几何问题,能够使学生积极主动地投入到数学活动中去,动手操作,师生共探,培养学生动手能力和学习兴趣,发散学生思维,同时为学习算术平方根提供实际背景和生活素材。

3.解决问题学会算法解决问题:实际问题(正方形画布已知面积求边长)填入表格PPT展示对比;提问:加法、减法、乘法、除法、乘方这五种运算中那些是互逆运算呢?得出平方与开平方互为逆运算,配套练习教师点拨思考方法及书写。

设计意图:通过填表活动,从数学几何问题抽象为代数问题,总结归纳规律,解决生活实际问题,并在归纳中加深学生对平方与开平方互逆运算的认识,理解算术平方根的算法。

4.生成问题提炼性质符号表示:强调a的算术平方根符号表示,配套三个练习巩固。

生成新问题:负数有算术平方根吗?中的a可以取任何数吗?总结性质(双非负性-PPT展示)。

初步了解无理数:√a是什么数?(视频播放有多大)得出结论,两种情况考虑。

2配套习题,归纳性质。

设计意图:巩固练习,强化符号和文字的转换,加强符号意识。

通过三个新问题的提出和解决,总结性质;通过数学故事的视频播放,初步了解无理数,感受无理数的发展史;最后通过配套的习题,师生凝练性质,记忆符号表达。

6.1.1+算术平方根教案-2023-2024学年人教版数学七年级下册

6.1.1+算术平方根教案-2023-2024学年人教版数学七年级下册

第1课时算术平方根教学设计课题算术平方根授课人素养目标1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根.教学重点算术平方根的概念.教学难点根据算术平方根的概念求出非负数的算术平方根.教学活动教学步骤师生活动活动一:创设情境,新课导入设计意图借助实例让学生感受算术平方根的产生是实际生活的需要,也是数学运算的需要.【情境导入】同学们,你们知道宇宙飞船离开地球进入地面附近轨道的速度在什么范围内吗?这时它的速度要大于第一宇宙速度v1(单位:m/s),而小于第二宇宙速度v2(单位:m/s).v1,v2的大小满足v12=gR,v22=2gR,其中g是物理中的一个常数(重力加速度),g≈9.8m/s2,R是地球半径,R≈6.4×106m.怎样求v1,v2呢?这就要用到算术平方根的概念,也就是本节课的主要学习内容.【教学建议】此内容富有感染力,使学生感性认识本章知识的应用价值.对第一、二宇宙速度讲解不宜过多,重在借此公式引出如何求v1,v2的值.活动二:问题引入,自主探究设计意图引导学生通过填表体会求算术平方根的过程,引出算术平方根的概念.探究点1算术平方根的概念与求算术平方根(教材P40问题)学校要举行美术作品比赛,小鸥想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?解:因为52=25,所以这个正方形画布的边长应取5dm.填表并回答问题.问题1观察上表,从上面到下面对应的是什么运算?从下面到上面又对应的是什么运算?答:从上面到下面是已知一个正数的平方,求这个正数;从下面到上面是求一个正数的平方,即我们学过的平方运算.【教学建议】教师提问,学生作答,使学生理解算术平方根的概念,并学会计算一个数的算术平方根:先找出哪一个正数的平方等于所给的数,再用式子表示即可.注意:①求一个带分数的算术平方根时,要先将其化为假分数,如对应训练T4(5);教学步骤师生活动设计意图引导学生总结算术平方根的双重非负性.问题2这两个运算之间有什么关系?答:互为逆运算.概念引入:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.例1(教材P40例1)求下列各数的算术平方根:(1)100;(2)6449;(3)0.0001.解:(1)因为102=100,所以100的算术平方根是10,即100=10;(2)因为(87)2=6449,所以6449的算术平方根是87,即6449=87;(3)因为0.012=0.0001,所以0.0001的算术平方根是0.01,即0.0001=0.01.从例1可以看出:被开方数越大,对应的算术平方根也越大.这个结论对所有正数都成立,即若a>b>0,则a>b.【对应训练】1.若x是49的算术平方根,则x等于(A )A.7B.±7C.49D.-492.(1)若一个数的算术平方根是13,则这个数是13.(2)①16=4,16的算术平方根是2;②2(-5)=5,2(-5)的算术平方根是5,(-5)2的算术平方根是5.(3)2x=6,则x=±6.(4)算术平方根是其本身的数是0,1.3.教材P41练习第2题.4.(教材P41练习第1题及补充)求下列各数的算术平方根:(1)0.0025;(2)81;(3)32;(4)12136;(5)25241.解:(1)因为0.052=0.0025,所以0.0025的算术平方根是0.05,即0.0025=0.05;(2)因为92=81,所以81的算术平方根是9,即81=9;(3)因为32=9,所以32的算术平方根是3,即23=3;(4)因为(116)2=12136,所以12136的算术平方根是116,即12136=116;(5)因为25241=2549,(57)2=2549,所以25241的算术平方根是57,即25241=57.②看清被开方数,如对应训练T2(2).教学步骤师生活动探究点2算术平方根的双重非负性根据上面探究的内容,想一想:(1)算术平方根√a中,a可以取任何数吗?(提示:结合教材P40问题进行思考,面积可以为负数吗?)答:不可以.被开方数a是非负数,即a>0或a = 0.(2)√a是什么数?(提示:结合教材P40问题进行思考,边长可以为负数吗?)答:√a是非负数,即√a>0或√a= 0.(3)√−4有意义吗?通过(1)(2)(3)你能得出什么结论?答:没有.结论:非负数的算术平方根是非负数,负数没有算术平方根.【对应训练】已知x,y为有理数,且√x−1+(y-2)2=0,求x-y的值.解:由题意,得x-1=0,y-2=0,所以x=1,y=2.所以x-y=1-2=-1.【教学建议】让学生先独立思考,再小组合作,交流探究,启发学生思维,让学生逐步学习,引导学生总结,教师再进行补充讲解,为后面研究平方根做准备,也为以后的二次根式学习埋下伏笔.利用非负性解题的关键点是:若几个非负数的和为0,则这几个数都为0.活动三:重综合训练,提升探究设计意图巩固加深对于算术平方根及其非负性的理解.例2已知√1−3a与√b−108互为相反数,求ab的算术平方根.解:根据题意,得1-3a=0,b-108=0,所以a=13,b=108,所以ab=13×108=36.因为62=36,所以ab的算术平方根是6.【对应训练】若|x+1|+y-8=0,求2y+x的算术平方根.解:由|x+1|+y-8=0,可知x+1=0,y-8=0,所以x=-1,y=8,所以2y+x=16-1=15.故2y+x的算术平方根是√15.【教学建议】学生自主探究,对于此类算术平方根综合其非负性类型题目进行练习巩固,加深理解,也有利于为以后学习二次根式的性质打下坚实的基础.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:什么是算术平方根?如何求一个正数的算术平方根?什么数才有算术平方根?【知识结构】【作业布置】1.教材P47习题6.1第1,2,11题.2.相应课时训练.教学步骤师生活动板书设计6.1平方根第1课时算术平方根1.概念:若x2=a(x为非负数),则x叫做a的算术平方根.2.表示:a的算术平方根用a表示,即x=a.算术平方根的性质归纳:①算术平方根的双重非负性:算术平方根本身是非负数,算术平方根的被开方数也是非负数.拓展:非负性的应用:几个非负数的和等于0,则这几个非负数均等于0.即若√a +√b +…+√m =0,则a =b =…=m=0.②一个正数的算术平方根的平方等于这个数本身.即(√a )2=a .③一个数的平方的算术平方根等于这个数的绝对值,再根据这个数的正负去绝对值符号.即√a 2=a .例1 √81的算术平方根是( B ) A.9 B.3 C.±9 D.±3分析:利用算术平方根的概念解答即可,注意看清被开方数是√81,而不是81. 解析:因为√81=9,9的算术平方根为3,所以√81的算术平方根是3.故选B. 例2若√x −1+√x +y =0,则x +2y 的值为( A ) A.-1 B.0 C.1 D.2分析:根据算术平方根的非负性可知被开方数必须为非负数,由此得到x -1=0,x +y =0,分别求出x ,y 的值,然后代入所要求值的式子即可得出结果.解析:因为√x −1+√x +y =0,所以x -1=0,x +y =0,所以x =1,y =-1,所以x +2y =-1.故选A.例3计算:√32=3,√0.72=0.7,√02=0,√(−6)2=6,-√(−34)2=34.(1)根据计算结果,回答√a 2一定等于a 吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算:√(3.14−π)2 . 解:(1) √a 2不一定等于a , √a 2=|a |. (2)原式=|3.14-π| = π-3.14.例1已知√25=x ,√y =2,z 是9的算术平方根,求2x +y -z 的算术平方根.解:因为√25=x ,所以x =5.因为√y =2,所以y =4.因为z 是9的算术平方根,所以z =3. 所以2x +y -z =2×5+4-3=11,所以2x +y -z 的算术平方根是11. 例2小强同学用两个小正方形纸片做拼剪构造大正方形游戏:(他选用的两个小正方形的面积分别为S 1,S 2)(1)如图①,S 1=1,S 2=1,拼成的大正方形A 1B 1C 1D 1的边长为√2;3.性质:(1)算术平方根的“双重非负性”;(2)正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.教学反思本节课从宇宙飞船的实例引入,激发学生学习的积极性,再从学生熟知的正方形的边长与面积的关系入手,揭示问题本质:它们都是已知一个正数的平方,求这个正数的问题,进而从具体到抽象地给出算术平方根的概念,再从概念的本质入手,引导学生分析算术平方根的双重非负性,最后通过例题和练习题进一步巩固所学知识,达到教学目标.如图②,S1=1,S2=4,拼成的大正方形A2B2C2D2的边长为√5;如图③,S1=1,S2=16,拼成的大正方形A3B3C3D3的边长为√17.(2)若将(1)中的图③沿正方形A3B3C3D3边的方向剪裁,能否剪出一个面积为14.52且长、宽之比为4∶3的长方形?若能,求它的长、宽;若不能,请说明理由.分析:(1)求出所拼成的正方形的面积,再根据算术平方根的概念进行计算即可;(2)根据题意求出其长、宽,再根据算术平方根进行验证即可.解:(1)解析:当S1=1,S2=1时,拼成的大正方形A1B1C1D1的面积为1+1=2,因此其边长为√2;当S1=1,S2=4时,拼成的大正方形A2B2C2D2的面积为1+4=5,因此其边长为√5;当S1=1,S2=16时,拼成的大正方形A3B3C3D3的面积为1+16=17,因此其边长为√17.(2)不能.理由如下:设长方形的长为4x,宽为3x,则有4x·3x=14.52,所以x2=1.21,即x=1.1(x>0).因此长方形的长为4x=4.4,宽为3x=3.3.因为(4.4)2=19.36>17,所以4.4>√17,所以不能沿正方形A3B3C3D3边的方向剪出一个面积为14.52且长、宽之比为4∶3的长方形.。

初中数学七年级下册第六章实数6.1平方根教案

初中数学七年级下册第六章实数6.1平方根教案

6.1 平方根6.1 平方根(第1课时)从现实生活中提出数学问题,在学生已有的基础上建立新旧知识的联系,让学生用自己的语言有条理地、清晰的阐述算术平方根的概念、意义及求法,提高理解能力和语言表达能力。

趣与信心。

算术平方根的概念和性质。

教学媒体选择分析表媒体教学作使用占用时间2分钟价值观①媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验证,建立概念;D.提供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.其它。

②媒体的使用方式包括:A.设疑—播放—讲解;B.设疑—播放—讨论;C.讲解—播放—概括;D.讲解—播放—举例;E.播放—提问—讲解;F.播放—讨论—总结;G.边播放、边讲解;H.设疑_播放_概括.I讨论_交流_总结J.其他1.情境导入学校要举行美术作品比赛,小鸥想裁出一块面积为25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?(1)若正方形的面积如下,请填表:(2)你能指出它们的共同特点吗?2.总结概念3.例题解析例1 求下列各数的算术平方根:4.练习求下列各式的值:5.例题解析例2 下列各式是否有意义,为什么?6.提出问题能否用两个面积为1的小正方形拼成一个面积为2的大正方形?7.归纳小结(1)什么是算术平方根?如何求一个正数的算术平方根?(2)什么数才有算术平方根?课本41页:练习1、2.作业布置教科书47页第1、2题组织学生积极思考,鼓励学生多回答。

每完成一个问题,后面紧跟练习,检测学生的掌握情况。

课标依据掌握算术平方根的概念,能通过计算器求一个非负数算术平方根。

从现实生活中提出数学问题,在学生已有的基础上建立新旧知识的联系,让学生用自己的语言有条理地、清晰的阐述算术平方根的概念、意义及求法,提高理解能力和语言表达能力。

6.1平方根算术平方根(教案)

6.1平方根算术平方根(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
()学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平方根在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-开平方运算的熟练程度:开平方是求解算术平方根的基本技能,但学生可能在这一过程中遇到困难,如对开平方运算步骤的不熟悉,需要通过反复练习来突破。
-平方根的图形表示:理解平方根在坐标系中的图形表示,如x²=4的图形是一个抛物线,这对学生的直观想象能力提出了挑战。
在教学过程中,需要针对这些重点和难点进行详细讲解和反复练习,确保学生能够透彻理解平方根与算术平方根的概念,并能熟练应用于实际问题中。通过具体的例子和练习题,帮助学生巩固知识,突破难点。
3.重点难点解析:在讲授过程中,我会特别强调平方根的定义和性质,以及算术平方根的求解方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解负数没有平方根和算术平方根的近似计算。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平方根相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何使用尺规作图求解一个已知正方形的边长的平方根。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《6.1平方根算术平方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解一个数的平方根的情况?”(如求解一个正方形的边长)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平方根的奥秘。

平方根第一课时教案

平方根第一课时教案
自主探究
尝试应用
1.你能求出下列各数的平方吗?
0,-1,5,2.3,- ,-3,3,1,
2.若已知一个数的平方为下列各数,你能把这个数的取值说出来吗?
25,0,4, , ,- ,1.69
探究1学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?
观察上面的运算可知:对所有正数, 被开方数越大,对应点算术平方根也越大
练一练
1。某数的算术平方根等于它本身,则这个数为_______; 的算术平方根是__________, 4的算术平方根是 的算术平方根是
2. 若(a-1)2+│b-9│=0,则 的算术平方根是下列哪一个( ) A. B.±3 C.3 D.-3
当a为正数时, a2的算术平方根表示为 ,其值为a,即 =a.
当a=0时, =0
由此可 =|a|=
学生独立完成
师生交流讨论
课外作业:
习题 6.1 第1、2、3题
师生问答
情境引入 学生看课本40页,思考问题并填表。
教师板书课题,定义
学生思考,小组交流,教师点拨。
补充:
当a为负数时,a2为正数,故a2有算术平方根,如a=-5时,a2=(-5)2=25, = =5,5是- 5的相反数,故a<0时, a2的算术平方根与a互为相反数,表示为-a.
3. 有意义吗? 分析:因为任何数的平方都是___,即a2≥0,故 _意义.
4.求下列各式的值: = = = =
5.3x-4为25的算术平方根,求x的值为______
6.已知9的算术平方根为a,b的绝对值为4,求a-b= ______
7. 若某数的算术平方根为其相反数,则这个数为______.

人教版七年级数学下册《6.1算术平方根》一等奖优秀教学设计

人教版七年级数学下册《6.1算术平方根》一等奖优秀教学设计

人教版义务教育课程标准实验教科书七年级下册《6.1平方根----算术平方根》教学设计一、教材分析1、地位作用:《平方根》是人教版七年级下册第六章第一节内容,隶属于“数与代数”领域,重点结合实际问题情景认识算术平方根、平方根的意义,能够对算术平方根进行符号表示,能够利用概念的本质探获求算术平方根、平方根的方法,理解算术平方根、平方根的性质。

本节共三课时,本课为第一课时,从学生熟悉的正方形面积与边长之间的关系入手提出已知面积探求边长的问题,通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。

通过对这一节课的学习,既可以让学生了解算术平方根的概念,会用符号表示正数的算术平方根,并了解算术平方根的非负性,又可以渗透化归思想(将求算术平方根的运算转化为求幂底数的运算)将为学生以后学习平方根奠定基础;同时这一节也是联系数学与生活的桥梁。

2、教学目标:(1)了解算术平方根的概念。

(2)会求一些数的算术平方根,并用算术平方根符号表示。

3、教学重难点:教学重点:算术平方根的概念和求法教学难点:算术平方根的意义突破难点的方法:力求从学生实际出发,以他们熟悉的问题情境引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性。

二、教学准备:多媒体课件、导学案2、若=-2)3(( )A-3 B 3 C3 D 3- 三、解答下列各题1、 求下列各数的算术平方根: (1)100 (2)6449(3)0.0001 (4)10000(5)2)94((6)1.44 2、求下列各式的算术平方根254,412,)25(,812-3、下列式子表示什么意义?你能求出它们的值更上一层楼!【课外探究】怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?(2)独立完成问题三,关注并评价同伴表现。

两人板演,集体评价,关注注意事项。

四、 反思小结,布置作业本节课你学习了哪些知识?在探索知识的过程中,你用了哪些方法?对你今后的学习有什么帮助?布置作业,课后延伸 1、必做题:(1)阅读教材相关内容 (2)习题13.12、选做题:《一尤佳学案》第35页按要求,进行自主小结,注意倾听同伴意见,反思梳整存在问题。

6.1-平方根-教学设计-教案

6.1-平方根-教学设计-教案

教学准备1. 教学目标1.1 知识与技能:了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

1.2过程与方法:经历算术平方根概念的形成过程,了解算术平方根的概念,会求某些正数(完全平方数)的算数平方根.1.3 情感态度与价值观:通过丰富的现实情境,使学生在已有数学经验的基础上,了解数学的价值,发展“用数学”的信心。

2. 教学重点/难点2.1 教学重点平方根的概念.2.2 教学难点算术平方根的概念和求法.3. 教学用具4. 标签教学过程1 情境导入同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少dm?师:请你说一说解决问题的思路.生:上面的问题,实际上是已知一个正数的平方,求这个正数的问题。

生:因为5的平方等于25,所以这个边长是5dm.2、导入新课:(1)提出问题:(书P68页的问题)你是怎样算出画框的边长等于5dm的呢?这个问题相当于在等式x2=25中求出正数x的值.平方根的概念:一般地,如果一个正数x的平方等于a,即x2 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.即:在等式x2 =a (x≥0)中,记着: x = .规定:0的算术平方根是0. 记着:=0师:你能根据等式:x2 =144说出144的算术平方根是多少吗?并用等式表示出来.师:负数有算数平方根吗?为什么?生:只有非负数才有算术平方根,算术平方根是非负的,一个数的平方不可能是负数。

3例1 求下列各数的算术平方根:(1) 100; (2) 1; (3) ; (4) 0.0001解:(1)因为102 =100,所以100的算术平方根是10,即(2)因为,所以的算术平方根是即:(3)因为,所以0.0001的算术平方根是0.01。

即.师:被开方数的大小与对应的算术平方根的大小之间有什么关系呢?观察上面的运算可知:对所有正数,被开方数越大,对应点算术平方根也越大例2、下列各式是否有意义,为什么?(1)(2)(3)(4)解:(1)无意义;(2)有意义;(3)有意义;(4)有意义;4 练习:(1)判断下列说法是否正确,若不正确请改正.①5是25的算术平方根;√②-6是 36 的算术平方根; ×③0的算术平方根是0 ;√④0.01是0.1的算术平方根; ×⑤-3是-9的算术平方根. ×(2).算术平方根等于本身的数有_1,0__.(3).若,则x=_9_.(5).求下列各数的算术平方根.① 25 ②③ 0.36 ④ 0 ⑤答案:① 5 ②③ 0.6 ④ 0 ⑤ 4(6)、利用平方根、立方根来解下列方程5、探究:(课本第69页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?方法1:课本中的方法,略;方法2:课堂小结这节课学习了什么呢?生:1、学习了什么是一个数的平方根?2、正数、0、负数的平方根的规律?3、怎么样求一个数的平方根。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1平方根(第一课时算术平方根)教案
《 6.1平方根(第一课时算术平方根)教案》这是优秀的教案文章,希望可以对您的学习工作中带来帮助!
作业内容
6.1平方根(第一课时:算术平方根)
教学目标:
知识与技能
1、了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

过程与方法
通过学习算术平方根,建立初步的数感和符号感,发展抽象思维。

情感、态度与价值观
1、通过解决实际生活中的问题,让学生体验数学与生活实际是紧密联系的。

2、通过探究活动培养学生动手能力,锻炼学生克服困难的意志,建立自信心,提高学习热情。

重点难点:
重点
算术平方根的概念
难点
根据算术平方根的概念正确求出非负数的算数平方根。

教材分析:
算术平方根从学生熟悉的正方形面积边长之间的关系入手提出已知面积探求边长的问题,通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系的。

通过对这一节的学习,既可以让学生了解算术平方根的概念,会用符号表示正数的算术平方根,并了解算术平方根的非负性,又可以渗透化归思想(讲算术平方根的运算转化为
求幂底数的运算)将为学生以后学习平方根奠定基础,同时这一节也是联系数学与生活的桥梁。

学情分析:
本节内容是学生在学习本章内容之前,已经经历了有理数、一元一次方程等代数知识的学习,知道有理数在刻画现实问题的局限性,具有乘方有关概念及运算基础,理解乘方的基础,理解乘方运算的本质,对加减乘除运算的互逆关系有了明确的认识,拥有计算正方形等几何图形面积的技能,在前面的学习中已经积累了自主探究、合作学习的经验,具有一定的观察、分析、归纳、概况能力,具备了一定的合作与交流能力。

这节课的教学,力求从学生的实际出发,以他们熟悉的问题情境引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性。

教学设计:
一、自主探究
(一)、创设情境导入新课
同学们,2007年11月7日,“嫦娥一号”探月计划飞行取得圆满成功,实现了中华民族千年的奔月梦想(多媒体同时出示“嫦娥一号”升空时的画面)。

那么,卫星离开地球进入正常轨道,它运行的速度在什么范围?这时它的速度要大于第一宇宙速度(米/秒)而小于第二宇宙速度(米/秒)。

、的大小满足,。

其中g是物理中的一个常量、R是地球的半径。

怎样求、呢?即使给出个g、R的对应值,利用我们已学过的知识,也很难求出。

这就要用到平方根的概念,也就是本章的主要学习内容。

这节课我们先学习有关算术平方根的概念。

多媒体展示教材第40页的问题。

问题:
你能算出画布的边长等于多少吗?
说说你是怎样算出来的?
如果这块正方形画布的面积为单位1,那么它的边长是多少?如果面积分别为9、16、36、呢?
(边问边展示幻灯片)
上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题。

实际上是已知一个正数,求这个正数的算数平方根的问题。

【设计意图】使学生感受到“嫦娥一号”的成功发射这一伟大壮举,竟然与我们将要学习的本章知识有着密切的联系,激发起学生的好奇心和学习兴趣,感受到学习算术平方根的必要性。

通过幻灯片的演示,直观的把实际问题抽象为数学问题,为学习算术平方根提供背景和素材,进而引入算术平方根的概念。

活动2【活动】自主探究合作交流
出示自学提纲:
阅读教材40页,并回答下列问题:
1、算术平方根以及有关概念。

2、为什么规定:0的算数平方根为0?
3、自学例1,先试做后对照。

4、表示的意义是什么?它的值是多少?用等式怎样表示?
5、144的算术平方根是多少?怎样用符号表示?
学生活动:独立思考上述5个问题(5分钟)
小组交流答案,提出疑难问题。

注意:每个小组做好笔记
全班展开交流提出疑难问题。

【设计意图】给学生充足的时间和空间,理解和感知算术平方根的概念,通过小组间的讨论、交流,释疑解难,提出共性问题,使学生的自主性和合作性得到很好的发展,教学目标得到很好的落实。

活动3【活动】师生互动归纳新知
问题1:你能叙述算术平方根的概念吗?
一般的,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。

a的算数平方根记为,读作“根号a”,a叫做被开方数。

强调:书写时根号一定要把被开方数盖住。

问题2:为什么规定0的算数平方根是0?
因为0²=0,所以0的算数平方根是0,记作。

问题3:表示什么意思?它的值是怎样的数?
这里的被开方数a应该是怎样的数呢?
归纳:表示a的算数平方根。

算数平方根为非负数,即≥0,被开方数a≥0。

负数没有算数平方根,即当a<0时,无意义。

活动4【作业】自我尝试
1、求下列各数的算术平方根
0.0025,121,3²
学生活动:模仿教材例1的模式,注意语言的准确性和书写的规范性。

三位同学板演,全班同学做完后修改板演同学的错误,用彩色粉笔改出来。

2、下列式子表示什么意思?你能求出它们的值吗?
学生活动:在全班交流每个式子的意思,并板演。

3、(口答)16的算术平方根是。

的值是。

的算术平方根是。

学生谈谈自己的思考过程并思考三个问题间的区别与联系。

【设计意图】展示学生对算术平方根的思考过程,全班纠错,小组相互监督,培养学生良好的学习习惯。

活动5【活动】总结反思
1、本节课你有哪些收获?
2、你还有什么问题或想法需要和大家交流?
引导学生从内容上、方法上、情感上总结。

3、布置作业:习题6.1第1题、第10题、第11题。

【设计意图】让学生按这一模式进行小结,培养学生学习——总结——学习——反思的良好习惯,同时通过自我评价来获得成功的快乐,提高学习的自信心。

6.1平方根(第一课时算术平方根)教案这篇文章共6924字。

相关文档
最新文档