勾股定理及逆定理

合集下载

证明勾股定理逆定理

证明勾股定理逆定理

证明勾股定理逆定理一、引言作为几何学中最基础而又重要的定理之一,勾股定理无疑是大家熟知的。

然而,是否存在一种与之相反的定理呢?即,若三边满足某一条件,能否推导出这三条边一定是直角三角形的边长呢?这就是我们要证明的勾股定理逆定理。

二、勾股定理回顾在正式探讨勾股定理逆定理前,我们先回顾一下勾股定理的内容。

勾股定理又称毕达哥拉斯定理,主要表述为:在一个直角三角形中,直角边的平方等于两个直角边的平方和。

即a2+b2=c2,其中a和b为直角三角形的两条直角边,c为斜边。

三、勾股定理逆定理的表述勾股定理逆定理的表述为:若一个三角形的三边满足a2+b2=c2,其中a、b、c 为该三角形的三边,那么这个三角形一定是直角三角形。

四、证明过程为了证明勾股定理逆定理,我们将采用反证法。

假设存在一个三角形,它的三边满足a2+b2=c2,但这个三角形不是直角三角形。

4.1 假设这个三角形是钝角三角形首先,我们假设这个三角形是钝角三角形。

根据钝角三角形的性质,我们知道钝角三角形的两个锐角之和大于90°。

4.2 假设这个三角形是锐角三角形然后,我们再假设这个三角形是锐角三角形。

根据锐角三角形的性质,我们知道锐角三角形的任意两条边的平方和大于第三条边的平方。

4.3 假设这个三角形是等腰三角形接下来,我们假设这个三角形是等腰三角形。

根据等腰三角形的性质,我们知道等腰三角形的两条腰相等。

4.4 假设这个三角形是一般三角形最后,我们假设这个三角形是一般的三角形,即三条边都不相等也不相互垂直。

五、证明的推理对于假设的四种情况,我们分别将其带入a2+b2=c2进行推理,得出以下结论:5.1 假设1的推理对于假设1中的钝角三角形,由于两个锐角之和大于90°,导致a2+b2>c2,与已知条件矛盾。

5.2 假设2的推理对于假设2中的锐角三角形,由于任意两条边的平方和大于第三条边的平方,导致a2+b2>c2,与已知条件矛盾。

勾股定理

勾股定理

第1讲勾股定理第一部分知识梳理1.勾股定理:直角三角形的两直角边的平方和等于斜边的平方。

若直角三角形的两条直角边为a、b,斜边为c,则a²+b²=c²。

2.勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a²+b²=c²,那么这个三角形是直角三角形。

3.满足a²+b²=c²的三个正整数,称为勾股数。

若a,b,c是一组勾股数,则ak,bk,ck(k为正整数)也必然是一组勾股数。

常用的几组勾股数有3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41等。

4.勾股定理的应用:①圆柱形物体表面上的两点间的最短距离;②长方体或正方体表面上两点间的最短距离问题。

5.直角三角形的判别:①定义,判断一个三角形中有一个角是直角;②根据勾股定理的逆定理,三角形一边的平方等于另外两边的平方和,则该三角形是直角三角形。

6.勾股定理中的方程思想:勾股定理三角形有一个直角的“形”的特征,转化为三边“数”的关系,因此它是数形结合的一个典范.对于一些几何问题,往往借助于勾股定理,利用代数方法来解决.把一条边的长设为未知数,根据勾股定理列出方程,解方程求出未知数的值,即使有时出现了二次方程,大多可通过抵消而去掉二次项。

7.勾股定理中的转化思想:在利用勾股定理计算时,常先利用转化的数学思想构造出直角三角形,比如立体图形上两点之间的最短距离的求解,解答时先把立体图形转化为平面图形,在平面图形中构造直角三角形求解。

8.拓展:特殊角的直角三角形相关性质定理。

第二部分精讲点拨考点1. 勾股定理【例1】在Rt△ABC中,已知两边长为3、4,则第三边的长为变式1 等腰三角形的两边长为10和12,则周长为______,底边上的高是________,面积是_________。

变式2 等边三角形的边长为6,则它的高是________变式3 在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C所对的边,(1)已知c=4,b=3,求a;(2)若a:b=3:4,c=10cm,求a、b。

勾股定理及其逆定理的内容

勾股定理及其逆定理的内容

勾股定理及其逆定理的内容勾股定理和逆定理都是数学中非常经典的内容,不过听起来可能会有点儿陌生。

其实,它们非常实用,而且还很有趣。

让我们一起来聊聊吧。

1. 勾股定理的基本概念1.1 什么是勾股定理首先,咱们得知道勾股定理到底是什么。

它是关于直角三角形的一个定理。

简单来说,直角三角形的两条直角边(我们叫它们“勾”和“股”)的平方和等于斜边(我们叫它“弦”)的平方。

这就是勾股定理的核心内容。

听起来有点复杂,但举个例子就明白了。

假设你有一个直角三角形,直角边长分别是3和4,那么这两个边的平方和就是3²+4²=9+16=25。

斜边的平方也得等于25,所以斜边的长度就是5。

1.2 生活中的应用这个定理在我们的生活中非常有用。

比如说,如果你要测量房间的对角线长,只需要知道长和宽就能算出来。

又或者你在设计一些东西时,勾股定理能帮你确保每个角都是直角。

它就像是生活中的一个小工具,随时随地帮你解决问题。

2. 勾股定理的证明2.1 几何证明说到证明,勾股定理有几种不同的方法,其中几何证明是最直观的。

简单来说,就是我们可以用几何图形来证明这个定理。

想象一下,你在一个直角三角形的每一边上画出一个正方形,这些正方形的面积就像是拼图一样,可以用来证明勾股定理。

看起来可能会有点复杂,但其实就是一种图形化的方法,让定理更容易理解。

2.2 代数证明除了几何证明,还有一种代数证明的方法。

我们可以用代数公式来证明勾股定理的正确性。

这种方法比较适合那些喜欢公式和计算的人。

它用的是代数的语言,通过一些方程式来展示定理的正确性。

3. 勾股定理的逆定理3.1 什么是逆定理勾股定理的逆定理其实也很有趣。

它告诉我们,如果一个三角形的三边满足勾股定理的条件,那么这个三角形就是直角三角形。

也就是说,如果你知道一个三角形的三条边分别是a、b和c,并且它们满足a²+b²=c²的关系,那么这个三角形肯定是直角三角形。

勾股定理常用11个公式

勾股定理常用11个公式

勾股定理常用11个公式勾股定理也叫毕达哥拉斯定理,指的是直角三角形中,任意一条直角边的平方等于另外两条边的平方之和。

勾股定理是数学中非常重要的一条定理,广泛应用于各个领域。

以下是勾股定理常用的11个公式:1. 勾股定理的一般形式在直角三角形 ABC 中,设 AB、AC 为直角边,BC 为斜边,则有:BC² = AB² + AC²2. 勾股定理的两个常见形式a. 已知直角边和斜边设直角边 AB = a,AC = b,BC = c,则有:c² = a² + b²b. 已知两条直角边设直角边 AB = a,BC = b,AC = c,则有:c² = a² + b²3. 勾股定理的逆定理如果在一个三角形中,某一边的平方等于另外两边的平方之和,那么这个三角形肯定是直角三角形,即有:若 c² = a² + b²,则三角形 ABC 是直角三角形。

4. 勾股数指满足勾股定理的整数三元组 (a, b, c),其中 a、b、c 都是正整数,称为勾股数。

例如:(3, 4, 5)、(5, 12, 13)。

5. 勾股数的生成公式生成勾股数的公式称为勾股数生成公式。

其中,m 和 n 是正整数,且 m > n,gcd(m, n) = 1,k 是任意正整数,则有:a = k × (m² - n²),b = k × (2mn),c = k × (m² + n²)6. 勾股数的性质a. 勾股数只存在于原始勾股数列中。

b. 勾股数之间不存在公因数。

c. 每个奇数都可以表示为两个勾股数之和。

d. 每个正整数都可以表示为不超过四个勾股数之和。

7. 勾股数的应用a. 构造直角三角形。

b. 计算斜线长度。

c. 解决一些证明问题。

d. 在几何光学中,勾股数用于计算光路长度。

初二勾股定理逆定理公式

初二勾股定理逆定理公式

初二勾股定理逆定理公式1. 勾股定理勾股定理是初中数学中非常重要的定理之一,它是由古希腊数学家毕达哥拉斯(Pythagoras)提出的。

勾股定理的公式表达如下:a^2 + b^2 = c^2其中 a、b、c 分别表示直角三角形的两条直角边和斜边,满足该公式的三条边的比例关系。

2. 逆定理逆定理是勾股定理的一个重要推论,它在解决初中数学中一些几何问题时非常有用。

逆定理的公式表达如下:如果 a^2 + b^2 = c^2 成立,那么这三个数构成一个直角三角形。

逆定理的意义在于,当我们已知某个三角形的边长满足勾股定理的公式时,可以根据这个公式判断该三角形是否为直角三角形。

3. 应用示例为了更好地理解逆定理的应用,下面通过一个例子来说明。

例子:已知一个三角形的三边分别为 3、4 和 5,我们要判断这个三角形是否为直角三角形。

根据逆定理,我们可以将已知的三边长度代入勾股定理的公式中,并验证等式是否成立。

3^2 + 4^2 = 5^29 + 16 = 25计算结果符合等式,所以根据逆定理,我们可以得出结论,这个三角形是一个直角三角形。

4. 注意事项在应用逆定理时,需要注意以下几点:•应用逆定理时,必须满足勾股定理的公式,即 a^2 + b^2 = c^2,才能判断三角形是否为直角三角形。

•如果已知三边的长度满足 a^2 + b^2 = c^2,但等式的两边可能相差一个数的误差,这时我们可以使用近似值来验证等式是否成立。

•在进行计算时,应注意数值的精确性,尽量避免精度误差带来的影响。

5. 总结初二勾股定理逆定理公式是初中数学中重要的概念之一,在几何学习中有着广泛的应用。

逆定理可以帮助我们判断已知三边长度的三角形是否为直角三角形,为解决几何问题提供了便利。

在应用逆定理时,我们应注意勾股定理公式的条件和计算的精确性,以得出准确的结论。

希望通过本文的介绍,您对初二勾股定理逆定理公式有了更深入的理解和应用。

勾股定理及其逆定理

勾股定理及其逆定理

勾股定理及其逆定理⑴勾股定理的内容:在直角三角形中,斜边的平方等于两条直角边的平方和.例如:①如图所示,在等腰△ABC中,若AB=AC=13,BC=10,求底边上的高.②如图所示,在△ABC中,∠ACB=,AC=4,CB=3,求斜边AB上的高.解:①作AH⊥BC∵AB=AC=13,AH⊥BC⑵勾股定理逆定理的内容:如果三角形一条边的平方等于其他两条边的平方和,那么这个三角形是直角三角形,这条边所对的角是直角.例如:①如图所示,在△ABC中,三条边之比为9:12:15,那么此三角形为何三角形?②如图所示,在△ABC中,若,,那么此三角形为何三角形?解:①∴设∴此三角形是Rt△.②证:∴此三角形是Rt△.注:勾股定理与勾股定理逆定理的联系与区别:区别:勾股定理是直角三角形的性质定理,而其逆定理是直角三角形的判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关.2. 勾股定理的证明方法介绍勾股定理曾引起很多人的兴趣,几千年来,人们已经发现了400多种勾股定理的证明方法,其中包括大画家达·芬奇和美国总统詹姆士·阿·加菲尔德.以下我们撷取几个优美而巧妙的证法供同学们欣赏.(1)赵爽的拼图法我国古代著名数学家赵爽在《勾股圆方图》一书中运用四个相同的直角三角形组成一个正方形,从面积的角度证明了勾股定理,其方法简捷、优美.如图,在边长为的正方形中,有四个斜边为的全等的直角三角形,已知它们的直角边为、利用这个图,即可证明勾股定理.理由如下:因为正方形边长为,所以正方形的面积为.又因为正方形的面积=,所以有.(2)旋转面积法如图,设矩形ABCD为火柴盒侧面,将这个火柴盒推倒至A'B'C'D的位置,D点不动.若设AB=,BC=,DB=,则梯形的面积=,又因为其面积还等于三个三角形面积的和,即为:.所以有:=.化简为:,即.(3)美国第20任总统的拼图面积法加菲尔德的证法的关键是用两个相同的直角三角形,组成直角梯形,使两斜边之间的夹角为90°.如图所示,将两个全等的直角三角形拼成如图所示的直角梯形,设AC=BE=,BC=DE=,AB=DB=.因为,.即=即.3. 有关勾股定理题时常用的辅助线和数学思想方法⑴解有关勾股定理的题型时常作垂线构成直角三角形.⑵解有关勾股定理的题型时常用方程思想、分类讨论思想、转化思想和数形结合思想.4. 勾股定理及其逆定理的应用勾股定理及其逆定理在实际生活中有着广泛的应用,我们要能善于从实际生活背景中抽象出直角三角形,再运用勾股定理及其逆定理解答相关的问题.【典型例题】例1. 若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积. 分析:直角三角形边的有关计算中,常常要设未知数,然后用勾股定理列方程(组)求解.解:设此直角三角形两直角边分别是3x,4x,根据题意得:(3x)2+(4x)2=202化简得x2=16;∴直角三角形的面积=×3x×4x=6x2=96例2. 如图,在长方形ABCD中,DC=5cm,在DC上存在一点E,沿直线AE 把ΔAED折叠,使点D恰好落在BC边上,设此点为F,若ΔABF的面积为30cm2,那么折叠的ΔAED的面积为______.分析:注意折叠后相等的角与相等的线段的转化,通过设未知数列方程求解. 解:由已知条件可得BF=12,则在RtΔABF中,AB=5,BF=12根据勾股定理可知AF=13,再由折叠的性质可知AD=AF=13,所以FC=1,可设DE=EF =x,则EC=5-x,则在RtΔEFC中,可得方程:12+(5-x)2=x2.解这个方程,得x=.所以SΔAED=××13=16.9(cm2).例3. 直角三角形周长为12cm,斜边长为5cm,求直角三角形的面积.分析:两条直角边长不能直接求出,要求直角三角形的面积,只要求出两直角边长的积即可.解:设此直角三角形两直角边分别是x,y,根据题意得:由(1)得:x+y=7,(x+y)2=49,x2+2xy+y2=49 (3)(3)-(2),得:xy=12∴直角三角形的面积是xy=×12=6(cm2)例4. 等边三角形的边长为2,求它的面积.分析:要求等边三角形的面积,已知边长,只需求出任意一边上的高.解:如图,等边△ABC,作AD⊥BC于D则:BD=BC(等腰三角形底边上的高与底边上的中线互相重合)∵AB=AC=BC=2(等边三角形各边都相等)∴BD=1在直角三角形ABD中AB2=AD2+BD2,即:AD2=AB2-BD2=4-1=3∴AD=S△ABC=BC·AD=注:等边三角形面积公式:若等边三角形边长为a,则其面积为a2.例5. 飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,问:飞机飞行了多少千米?分析:根据题意,可以先画出符合题意的图形,如图,图中△ABC•中的∠C=90°,AC=4000米,AB=5000米,•要求出飞机这时飞行多少千米,•就要知道飞机在20秒时间里飞行的路程,也就是图中的BC长,在这个问题中,•斜边和一直角边是已知的,这样,我们可以根据勾股定理来计算出BC的长.解:根据题意可得示意图:(如图)在△ABC•中的∠C=90°,AC=4000米,AB=5000米,根据勾股定理可得:BC===3000(千米)所以:飞机飞行了3000千米.例6. 以下列各组数为边长,能组成直角三角形的是()A、8,15,17B、4,5,6C、5,8,10D、8,39,40分析:此题可直接用勾股定理的逆定理来进行判断,对数据较大的可以用c2=a2+b2的变形:b2=c2-a2=(c-a)(c+a)来判断.例如:对于选择项D,∵82≠(40+39)×(40-39),∴以8,39,40为边长不能组成直角三角形.解:因为172=82+152,所答案为:A.例7. 如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC =36m,求这块地的面积.分析:在求面积时一般要把不规则图形分割为规则图形,若连接BD,则无法求出.由于题中含有直角∠ADC,故可考虑连结AC,应用勾股定理.解:连结AC,在Rt△ADC中,AC2=CD2+AD2=92+122=225,所以AC=15m.在Rt△ABC中,AB2=1521,AC2+BC2=152+362=1521,所以AB2=AC2+BC2,所以∠ACB=90°.所以S△ABC-S△ACD=AC·BC-AD·CD=×15×36-×12×9=270-54=216(m2).答:这块地的面积是216m2.例8. 如图,圆柱的轴截面ABCD是边长为4的正方形,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短路径长为( )A. 2B. 2C. 4D. 2分析:在运用勾股定理解决有关问题时,常常需要将一些线段通过平移、旋转、翻折等运动变化从而转化到一个直角三角形中.化归思想即转化思想,它是我们初中阶段数学解题方法的灵魂,是指当有些问题如果直接解决则难以入手,于是换一个角度来考虑,从而使问题清晰明朗.运用转化思想来解题常用的策略有:化复杂为简单;化陌生为熟悉;换一种方式来表达等等.解:求几何体的表面的最短距离,可联系我们学过的圆柱体的侧面展开图,化“曲面”为“平面”,再寻找解题的途径.如右图,可得展开图中的AB长为2π,BS为2,根据勾股定理,在RtΔABS中,得AS=2所以,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短路径长为2.故选A.例9. 在锐角△ABC中,已知其两边a=1,b=3,求第三边的变化范围.分析:显然第三边b-a<c<b+a,但这只是能保证三条边能组成一个三角形,却不能保证它一定是一个锐角三角形,为此,先求△ABC为直角三角形时第三边的值.解:设第三边为c,并设△ABC是直角三角形(1)当第三边是斜边时,c2=b2+a2,∴c=(2)当第三边不是斜边时,则斜边一定是b,b2=a2+c2,∴c=2(即)∵△ABC为锐角三角形所以点A应当绕着点B旋转,使∠ABC成为锐角(如图),但当移动到点A'位置时∠ACB成为直角.故点A应当在A和A'间移动,此时2<AC<注:此题易忽视①或②中一种情况,因为假设中并没有明确第三边是否直角边,所以有两种情况要考虑.例10. 四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.分析:先根据勾股定理求出AC的长,再由勾股定理的逆定理得到ΔADC是直角三角形,将四边形ABCD分成两个直角三角形.本题是一个典型的勾股定理及其逆定理的应用题.解:连结AC∵∠B=90°,AB=3,BC=4∴AC2=AB2+BC2=25(勾股定理)∴AC=5∵AC2+CD2=169,AD2=169∴AC2+CD2=AD2∴∠ACD=90°(勾股定理逆定理)∴S四边形ABCD=S△ABC+S△ACD=AB·BC+AC·CD=36例11. 若、为正实数,且,则的最小值是多少?试求之.解析:此题是竞赛题,不知从何下手,若仔细观察分析,从x2+1和y2+4入手,结合勾股定理的形式可为我们提供解题的思路.可以看出,、分别是以x、1,y、2为直角边的直角三角形的斜边长,这时,上述问题就变成了求两条线段之和的最值问题.构造如图所示的图形:线段AB=4,P为AB上任意一点.设PA=x,PB=y.CA⊥AB于A,DB⊥AB于B,且CA=1,BD=2,则PC+PD=.要求的最小值就是求PC+PD最小,很明显,当点P、C、D在同一直线上时,PC+PD的最小值.再过C作CE⊥DB交DB的延长线于点E,构造RtΔDCE,在RtΔDCE中,CE=AB=4,ED=1+2=3,所以PC+PD=DC==5.所以的最小值是5.例12. (2006年山西中考题)如图,分别以直角ΔABC的三边AB,BC,CA为直径向外作半圆.设直线AB左边阴影部分的面积为S1,右边阴影部分的面积和为S2,则()A. S1=S2B. S1<S2C. S1>S2D. 无法确定分析:将阴影部分的面积表示出来,再观察所列代数式与直角三角形三边长的关系可得答案.解:直线AB左边阴影部分的面积为:=,直线AB右边阴影部分的面积为:=.∵ΔABC是直角三角形,根据勾股定理有:.故选A.【模拟试题】(答题时间:40分钟)一、填空题:1. 设直角三角形的三条边长为连续自然数,则这个直角三角形的面积是_____.2. 如图,•某人欲横渡一条河,•由于水流的影响,•实际上岸地点C•偏离欲到达点B200m,结果他在水中实际游了520m,则该河流的宽度为_____m.二、选择题:3. 直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为().A. 6cmB. 8.5cmC. cmD. cm4. 有四个三角形:⑴△ABC的三边之比为3:4:5;⑵△A′B′C′的三边之比为5:12:13;⑶△A′B′C′的三个内角之比为1:2:3;⑷△CDE的三个内角之比为1:1:2.其中是直角三角形的有().A. ⑴⑵B. ⑴⑵⑶C. ⑴⑵⑷D. ⑴⑵⑶⑷三、解答题:5. 在△ABC中,AC=21cm,BC=28cm,AB=35cm,求△ABC的面积.6. 如图,△ABC的三边分别为AC=5,BC=12,AB=13,将△ABC沿AD折叠,使AC•落在AB上,求DC的长.7. 如图,一只鸭子要从边长分别为16m和6m的长方形水池一角M•游到水池另一边中点N,那么这只鸭子游的最短路程应为多少米?8. 如图,铁路上A、B两点相距25km,C、D为两村庄,DA•垂直AB于A,CB垂直AB于B,已知AD=15km,BC=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站建在距A站多少千米处?【试题答案】一、填空题1. 62. 480二、选择题3. D4. D三、解答题5. 294cm26. 因为AC2+BC2=52+122=169=132=AB2,•∴∠C=90°,将△ABC沿AD折叠,使AC落在AB上,C的对称点为E,则CD=DE,AC=AE,BE=AB-AE=8,设CD=x,则x2+82=(12-x)2,x=,∴CD=.7. 10m8. 10km处。

勾股定理及其逆定理

勾股定理及其逆定理

勾股定理及其逆定理一、勾股定理勾股定理是数学中的基础定理之一,它描述了直角三角形中的关系。

根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。

用公式表示就是:c² = a² + b²,其中c表示斜边的长度,a和b分别表示两条直角边的长度。

勾股定理的历史可以追溯到公元前6世纪的中国和印度,但最早被发现并应用的是中国的古代数学家勾股。

因此,这个定理被称为勾股定理。

勾股定理的应用非常广泛,特别是在测量和计算方面。

例如,我们可以利用勾股定理来计算三角形的边长、角度以及面积等。

在实际应用中,我们经常会遇到需要使用勾股定理解决问题的情况。

二、勾股定理的逆定理勾股定理的逆定理是指,如果一个三角形的三条边满足c² = a² + b²,那么这个三角形一定是直角三角形。

这个逆定理也被称为勾股定理的逆命题。

为了证明逆定理的正确性,我们可以通过数学推导来证明。

假设一个三角形的三条边为a、b、c,且满足c² = a² + b²。

首先,我们可以假设这个三角形不是直角三角形,即不存在直角。

根据三角形的角度性质可知,三角形的三个角度之和为180度。

如果这个三角形不是直角三角形,那么它的三个角度之和一定小于180度。

假设三个角度分别为A、B、C,且A + B + C < 180度。

然后,我们可以使用余弦定理来推导c²的表达式。

根据余弦定理,c² = a² + b² - 2ab·cosC。

将这个表达式代入c² = a² + b²中,得到a² + b² - 2ab·cosC = a² + b²。

经过简化后可得- 2ab·cosC = 0,即cosC = 0。

根据余弦函数的性质可知,当cosC = 0时,角C等于90度。

勾股定理及其逆定理

勾股定理及其逆定理

- 1 -第一讲、勾股定理及其逆定理一、勾股定理:(1)文字表述:在任何一个直角三角形(Rt △)中,两条直角边的长度的平方和等于斜边长度的平方(也可以理解成两个长边的平方相减与最短边的平方相等)。

(2)数学表达:如果直角三角形的两直角边长分别为a ,b ,斜边长为c (斜边对应的角为直角),那么222c b a =+。

(a :勾,b :股,c :弦)。

能够构成直角三角形的三边长的三个正整数称为勾股数,即222c b a =+中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ,常见的勾股数有3,4,5;6,8,10;5,12,13;7,24,25等。

(2)平方根的表示方法一个正数a 的正的平方根,用符号2a 表示,a 叫做被开方数,2叫做根指数(一般情况下省略不写),正数a 的负的平方根用符号-2a 表示,a 的平方根合起来记作±2a ,其中2±读作二次根号,2a 读作“二次根号下a ”.根指数为2的平方根也可记作“2a ±”读作“正、负根号”。

时,未必等于有正负两个解。

=- 2 -,即,那么这个正数的平方根或二次方根。

这就是说,如果,那么2、已知两条线的长为5cm和4cm,当第三条线段的长为_________时,这三条线段能组成一个直角三角形。

3、能够成为直角三角形三条边长的正整数,称为勾股数。

请你写出三组勾股数:___________。

4、如图,求出下列直角三角形中未知边的长度。

c=________ b=__________h=__________5、在Rt△ABC中,∠C=90°,BC∶AC=3∶4,AB=10,则AC=_______,BC=________。

6、已知等腰三角形的腰长为10,底边上的高为6,则底边长为__________7、如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是。

勾股定理及其逆定理的运用课件

勾股定理及其逆定理的运用课件
力。
通过学习勾股定理及其逆定理,学生可 以培养出严密的逻辑思维和推理能力, 为后续的数学、物理、工程等学科的学
习打下坚实的基础。
学生可以从中领悟到数学与实际生活的 紧密联系,激发对数学的兴趣和热爱,
提高自主学习和探索的能力。
对实际应用的展望和期待
随着科技的发展和实际问题的复杂化,勾股定理及其逆定理的应用前景 将更加广阔。
度。
物理学
在物理学中,勾股定理可以用来解 决与直角三角形相关的力和运动问 题,例如单摆的运动和受力分析。
航海学
在航海学中,勾股定理可以用来计 算船只的航行距离和方向,以确保 航行安全。
02
逆定理的的逆定理是指,如果一 个三角形的三边满足勾股定理的 条件,那么这个三角形一定是直 角三角形。
条件限制不同
勾股定理适用于所有直角 三角形,而逆定理只适用 于已知一边和与之相对的 角为直角的三角形。
证明方法不同
勾股定理可以通过相似三 角形或面积法证明,而逆 定理通常通过反证法证明 。
定理与逆定理的互补之处
勾股定理是逆定理的前提
01
只有当满足勾股定理的条件时,一个三角形才可能是直角三角
形。
逆定理是勾股定理的延伸
02
勾股定理的逆定理是勾股定理的 一个重要应用,它可以帮助我们 判断一个三角形是否为直角三角 形。
逆定理的证明方法
勾股定理的逆定理可以通过反证法进 行证明。
然后通过构造一个直角三角形与三角 形ABC全等,并利用勾股定理证明假 设不成立,从而得出三角形ABC是直 角三角形的结论。
首先假设一个三角形ABC的三边满足 a²+b²=c²,但角C不是直角。
勾股定理及其逆定理的运用ppt课件
目录

勾股定理逆定理的证明方法

勾股定理逆定理的证明方法

勾股定理逆定理的证明方法证明勾股定理逆定理勾股定理逆定理是指:给定任意正整数a,b,c,如果a^2+b^2=c^2,则a,b,c三者互为正整数的勾股数。

证明勾股定理逆定理,可以采用反证法。

假设a,b,c三者不是正整数,即a,b,c至少有一个不是正整数。

首先,假设a不是正整数,则a可能是负数或者零。

如果a是负数,则a^2是负数,而b^2和c^2都是正数,因此a^2+b^2不可能等于c^2,这与勾股定理逆定理的要求相矛盾,因此a不可能是负数。

如果a是零,则a^2也是零,而b^2和c^2都是正数,因此a^2+b^2不可能等于c^2,这也与勾股定理逆定理的要求相矛盾,因此a也不可能是零。

其次,假设b不是正整数,则b可能是负数或者零。

如果b是负数,则b^2是负数,而a^2和c^2都是正数,因此a^2+b^2不可能等于c^2,这与勾股定理逆定理的要求相矛盾,因此b不可能是负数。

如果b是零,则b^2也是零,而a^2和c^2都是正数,因此a^2+b^2不可能等于c^2,这也与勾股定理逆定理的要求相矛盾,因此b也不可能是零。

最后,假设c不是正整数,则c可能是负数或者零。

如果c是负数,则c^2是负数,而a^2和b^2都是正数,因此a^2+b^2不可能等于c^2,这与勾股定理逆定理的要求相矛盾,因此c不可能是负数。

如果c是零,则c^2也是零,而a^2和b^2都是正数,因此a^2+b^2不可能等于c^2,这也与勾股定理逆定理的要求相矛盾,因此c也不可能是零。

由以上分析可知,a,b,c三者不可能同时不是正整数,因此a,b,c三者必须同时是正整数,这就是勾股定理逆定理的证明。

综上所述,可以得出结论:给定任意正整数a,b,c,如果a^2+b^2=c^2,则a,b,c三者互为正整数的勾股数。

勾股定理逆定理

勾股定理逆定理

勾股定理的逆定理(1)知识领航1.勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.2. 满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用的勾股数有3、4、5、;6、8、10;5、12、13等.3. 应用勾股定理的逆定理时,先计算较小两边的平方和再把它和最大边的平方比较.4. 判定一个直角三角形,除了可根据定义去证明它有一个直角外,还可以采用勾股定理的逆定理,即去证明三角形两条较短边的平方和等于较长边的平方,这是代数方法在几何中的应用.e 线聚焦【例】如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD 的面积.分析:根据题目所给数据特征,联想勾股数,连接AC ,可实现四边形向三角形转化,并运用勾股定理的逆定理可判定△ACD 是直角三角形.解:连接AC ,在Rt △ABC 中,AC 2=AB 2+BC 2=32+42=25, ∴ AC =5. 在△ACD 中,∵ AC 2+CD 2=25+122=169, 而 AB 2=132=169,∴ AC 2+CD 2=AB 2,∴ ∠ACD =90°.故S 四边形ABCD =S △ABC +S △ACD =21AB ·BC +21AC ·CD =21×3×4+21×5×12=6+30=36.双基淘宝仔细读题,一定要选择最佳答案哟!1. 分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能构成直角三角形的有( )A .4组B .3组C .2组D .1组 2. 三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2(a 、b 都是正整数),则这个三角形是()A .直角三角形B .钝角三角形C .锐角三角形D .不能确定3.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍B . 2倍C . 3倍D . 4倍 4. 下列各命题的逆命题不成立的是( )A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a =b ,那么a 2=b 25.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)A B C D综合运用认真解答,一定要细心哟!6. 如图所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.7. 一个零件的形状如左图所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?ADA D8. 如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且AB =4,CE =41BC ,F 为CD 的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.A D C B勾股定理的逆定理(2)知识领航1.应用勾股定理及其逆定理解决简单的实际问题,建立数学模型.2.体会从“形”到“数”和从“数”到“形”的转化,培养转化、推理的能力.e 线聚焦【例】如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B .已知A 、C 两艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海?分析:为减小思考问题的“跨度”,可将原问题分解成下述“子问题”:(1)△ABC 是什么类型的三角形?(2)走私艇C 进入我领海的最近距离是多少?(3)走私艇C 最早会在什么时间进入?这样问题就可迎刃而解.解:设MN 交AC 于E ,则∠BEC =900.又AB 2+BC 2=52+122=169=132=AC 2, ∴△ABC 是直角三角形,∠ABC =900.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE , 则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE =288, ∴CE =13144. 13144÷169144≈0.85(小时), 0.85×60=51(分). 9时50分+51分=10时41分.答:走私艇最早在10时41分进入我国领海.双基淘宝仔细读题,一定要选择最佳答案哟!1. 如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .321,421,521 C .3,4,5 D .4,721,821 2.在下列说法中是错误的( )A .在△ABC 中,∠C =∠A 一∠B ,则△ABC 为直角三角形.B .在△ABC 中,若∠A :∠B :∠C =5:2:3,则△ABC 为直角三角形.C .在△ABC 中,若a =53c ,b =54c ,则△ABC 为直角三角形. D .在△ABC 中,若a :b :c =2:2:4,则△ABC 为直角三角形.3. 有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾A ME NC B顺次连接搭成一个直角三角形,则这根木棒的长度分别为( )A .2,4,8B .4,8,10C .6,8,10D .8,10,124.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数 , , .5.若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为 . 6.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为 .综合运用◆ 认真解答,一定要细心哟!7.如图,已知等腰△ABC 的底边BC =20cm ,D 是腰AB 上一点,且CD =16cm ,BD =12cm ,求△ABC 的周长.8.如图,三个村庄A 、B 、C 之间的距离分别为AB =5km ,BC =12km ,AC =13km .要从B 修一条公路BD 直达AC .已知公路的造价为26000元/km ,求修这条公路的最低造价是多少?9.如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D 处上爬到树顶A 处,利用拉在A 处的滑绳AC ,滑到C 处,另一只猴子从D 处滑到地面B ,再由B 跑到C ,已知两猴子所经路程都是15m ,求树高AB .拓广创新◆ 试一试,你一定能成功哟!10.如图,在△ABC 中,∠ACB =90º,AC =BC ,P 是△ABC 内的一点,且PB =1,PC =2,P A =3,求∠BPC 的度数.B12 5。

勾股定理及其逆定理全章的复习

勾股定理及其逆定理全章的复习

勾股定理及其逆定理全章的复习一、复习的内容:勾股定理及其逆定理的应用1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

即:a 2+b 2=c 2;勾股定理的逆定理:如果三角形的三边长:a 、b 、c 有关系a 2+b 2=c 2,那么这个三角形是直角三角形。

2、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

如果用勾股定理的逆定理判定一个三角形是否是直角三角形:(1)首先确定最大边(如:C ,但不要认为最大边一定是C )(2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的三角形;若c 2<a 2+b 2,则△ABC 是以∠C 为锐角三角形。

二、例题分析例1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。

解点评:直角三角形边的有关计算中,常常要设未知数,然后用勾股定理列方程(组)求解。

例2、直角三角形周长为12cm ,斜边长为5cm ,求直角三角形的面积。

点评:运用整体的数学思想方法求解比较快速、简捷、省时。

例3题目(2008年福建省莆田市中考题)已知矩形ABCD 和点P ,当点P 在BC 上任一位置(如图①所示)时,易证得结论:2222PA PC PB PD +=+,请你探究:当点P 分别在图②、图③中的位置时,2222PA PB PC PD 、、和又有怎样的数量关系?请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论.答:对图②的探究结论为____________________________________.对图③的探究结论为_____________________________________.证明:如图②分析:这是一道信息给予题,引导学生创造性地利用所给信息,通过解题方法的迁移,探索2222PA PB PC PD 、、和在新的条件下又有怎样的数量关系?由于已给信息的解题方法很多,而每种方法迁移后又可解决新的问题,因此本题为学生创造了更为广阔的思维空间和探索空间;当点P 在矩形ABCD 的边BC 上任一位置,如图①所示时,运用勾股定理易得: 222PB AB PA +=,222CD PD PC -=,因为四边形ABCD 为矩形,所以AB=CD .从而得到结论:2222PA PC PB PD +=+,通过解题方法的迁移,根据点和图形之间的位置关系,可以得出当点P 分别在图2、图3中的位置时,2222PA PB PC PD 、、和之间的数量关系,并能给予证明.评注:本题既考查了学生的理解创新能力,又考查了学生探究学 习的过程,充分渗透了化归思想、变式思想和运动变化的观点.如图,盒内长,宽,高分别是30米,24米和18米,盒内可放的棍子最长是多少米?直角三角形是一种特殊的三角形,它具有许多重要的性质,特别是勾股定理在数学中有着极其广泛的应用。

干货勾股定理的逆定理,常用的11公式是什么

干货勾股定理的逆定理,常用的11公式是什么

干货勾股定理的逆定理,常用的11公式是什么勾股定理大家都非常熟悉,在高中学习数学的时候经常用到,那么勾股定理的逆定理是什么,来看一下!1勾股定理的逆定理如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。

最长边所对的角为直角。

勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。

若c为最长边,且a²+b²=c²,则△ABC是直角三角形。

如果a²+b²>c²,则△ABC是锐角三角形。

如果a²+b²<c²,则△ABC是钝角三角形。

勾股定理是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。

直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。

也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。

勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。

2勾股定理常用的11个公式1.直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²;2.(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)。

3.(5,12,13),(7,24,25),(9,40,41)……2n+1,2n^2+2n,2n^2+2 n+1(n是正整数)。

4.(8,15,17),(12,35,37)……2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1(n是正整数)。

5.m^2-n^2,2mn,m^2+n^2(m、n均是正整数,m>n)。

6.平行公理经过直线外一点,有且只有一条直线与这条直线平行。

勾股定理逆定理及其应用

勾股定理逆定理及其应用

勾股定理逆定理及其应用知识要点:1、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足222c b a =+,那么这个三角形是直角三角形.2、命题与原命题:勾股定理的逆定理的题设和结论恰好与勾股定理的题设和结论相反,我们把像这样的两个命题叫做互逆命题,如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

3、逆定理:一般地,如果一个定理的逆命题经过证明是正确的,它也是一个定理,称这两个定理互为逆定理。

4、勾股数:3、4、5这样,能够成为直角三角形三条边长的三个正整数,称为勾股数。

常见的勾股数组有:(3,4,5);(6,8,10);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)例:观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262…,你有没有发现其中的规律?请用含n 的代数式表示此规律并证明,再根据规律写出接下来的式子.题型分析:一、判断直角三角形问题:1.下面几组数:①7,8,9;②12,9,15;③m 2 + n 2, m 2 – n 2, 2mn(m,n 均为正整数,m >n);④2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( )A.①②;B.①③;C.②③;D.③④2. 如果△ABC 的三边分别为m 2-1,2 m ,m 2+1(m >1)那么( )A.△ABC 是直角三角形,且斜边长为m 2+1B.△ABC 是直角三角形,且斜边长2 为mC.△ABC 是直角三角形,但斜边长需由m 的大小确定D.△ABC 不是直角三角形3.阅读下列解题过程:已知a ,b ,c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判定△ABC 的形状. 解:∵ a 2c 2-b 2c 2=a 4-b 4 ①∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2) ②∴c 2=a 2+b 2 ③∴△ABC 是直角三角形问:上述解题过程,从哪一步开始出现错误?请写出该步的序号:_________;错误的原因为_________;本题正确的结论是_________.4.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c.试判断△ABC 的形状.5.如图, 在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=41BC , 求证:∠EFA=90︒.二、边长问题 1.若一个三角形的三边长的平方分别为:32,42,x 2则此三角形是直角三角形的x 2的值是( )A.42B.52C.7D.52或7 2. 已知,△ABC 中,AB=17cm ,BC=16cm ,BC 边上的中线AD=15cm ,试说明△ABC 是等腰三角形。

勾股定理和逆定理

勾股定理和逆定理

勾股定理和逆定理一、勾股定理的“神奇”之处勾股定理听起来可能有点高大上,但其实它就是在告诉我们,三角形的直角那一边(也就是斜边)和其他两边之间的关系。

大家如果画个直角三角形,勾股定理就像是一张万能的说明书,告诉你怎样计算那个最长的边。

很简单,勾股定理的公式是:a²+b²=c²,其中a和b是直角边,c是斜边。

你看,是不是特别直白?而且呀,这个定理的神奇之处就在于,它无论在什么地方,什么三角形里,始终都成立。

无论是个角度多么微小的直角三角形,还是几乎呈直线的那种,勾股定理总是能让你轻松找到斜边的长度。

这个小小的定理,真的是数千年来数学界的宝贝。

如果你背过三角形的公式,你就能大概理解那个c到底有多重要。

记得小时候,数学老师就用勾股定理来逗我们玩。

他会在黑板上画个直角三角形,然后突然问:“你们觉得,假如我知道两条边,能不能算出第三条?”我们都懵了,一时半会儿答不上来。

可是老师一个微笑,然后甩出勾股定理的公式,整个教室的气氛瞬间就变得轻松起来。

这个时候,数学不再是深奥的学问,而是能让人兴奋、让人动手去解答的挑战了。

而且啊,这个定理不仅仅是数学题里面的“明星”。

它在现实生活中也超级有用。

比如我们知道了勾股定理,就能帮忙计算出很多东西的长度。

像建筑工地上的测量,很多时候都用到这个定理来确保角度准确,铺砖、搭架子都少不了它的身影。

像你走路时,想找个最短的路径,或者在地图上计算两点之间的最短距离,勾股定理也能来帮忙。

真的,数千年的智慧就这样悄悄地融入我们的生活。

二、逆勾股定理的“逆天”妙用说到勾股定理,很多人觉得它就是一个简单的公式,直接就能得出答案。

但你知道吗?除了正着用勾股定理,我们还可以反过来用,这就叫逆勾股定理。

其实逆勾股定理也没有什么神秘的,它说的是,如果你已经知道了三角形的三条边,根本不需要知道角度,只要确认它们的长度满足a²+b²=c²,那么你就可以确认这个三角形一定是直角三角形。

考点丨勾股定理及其逆定理必考点总结,考试就考这些!

考点丨勾股定理及其逆定理必考点总结,考试就考这些!

考点丨勾股定理及其逆定理必考点总结,考试就考这些!展开全文周老师说勾股定理以及其逆定理的应用是中考的重点考查内容,对今后几何的学习也具有举足轻重的作用。

今天,周老师给大家整理了《勾股定理》的全部知识点!大家记得及时收藏和学习。

查看文章底部,领取!勾股定理考点总结word文档1勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么.勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:,,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为大正方形面积为所以方法三:,,化简得证.3勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4勾股定理的应用①已知直角三角形的任意两边长,求第三边在中,,则,,②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5勾股定理的逆定理如果三角形三边长a,b,c满足,那么这个三角形是直角三角形,其中c为斜边.①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c 为三边的三角形是直角三角形;若,时,以a,b,c 为三边的三角形是钝角三角形;若,时,以a,b,c 为三边的三角形是锐角三角形;②定理中a,b,c 及只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c 满足,那么以a,b,c 为三边的三角形是直角三角形,但是b为斜边.③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即中,a,b,c 为正整数时,称a,b,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3、4、5;6、8、10;5、12、13;7、24、25等。

数学勾股定理及逆定理

数学勾股定理及逆定理

一、一周知识概述勾股定理:如果直角三角形的两条直角边长分别为a、b,斜边为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.勾股定理只适用于直角三角形,对于一般非直角三角形就不存在这种关系.勾股定理的作用是:①已知直角三角形的两边求第三边;②在直角三角形中,已知其中的一边,求另两边的关系;③用于证明平方关系;④利用勾股定理,作出长为的线段.二、重点、难点、疑点突破1、勾股定理:勾股定理反映了直角三角形(三边分别为a,b,c,其中c为斜边)的三边关系,即c2=a2+b2.它的变形为c2-a2=b2或c2-b2=a2.运用它可以由直角三角形中的两条边长求第三边.例如:已知一个直角三角形两边长分别为3cm,4cm,求第三边长.因为该题设没有说明哪条边是直角三角形的斜边,所以要进行分类讨论.当两直角边分别为3cm,4cm时;当斜边为4cm,一直角边为3cm时2、直角三角形的几个性质(1)两锐角互余;(2)三边长满足勾股定理;(3)如果有一个锐角等于30°,那么所对的直角边(设此边长为a)等于斜边的一半,三边长的关系为a,,2a;(4)等腰直角三角形(直角边边长为a)三边长的关系为a,a,;(5)面积等于两直角边乘积的一半.3、用尺规画长为的线段教材中介绍了用尺规画长为的线段的作法,对画长为(k为自然数)的线段,我们通常可将k写成两个自然数的平方和或平方差来解决.例如用尺规画长为的线段.因为21=25-4=52-22,所以画Rt△ABC,使一条直角边AC=2,斜边AB=5,则另一条直角边BC=;同理,因为37=36+1=62+12,所以画Rt△ABC,使两直角边AC=1,BC=6,则斜边AB=.4、数形结合思想三、典型例题剖析1、运用勾股定理求值例1、如图,在△ABC中,CD⊥AB于D,若AB=5,CD=,∠BCD=30°,求AC的长.解:∵CD⊥AB于D,∠BCD=30°,∴BD=BC.设BD=x,则BC=2x.在Rt△BCD中,由勾股定理有BD2+CD2=BC2,即点拨:这里分别在两个直角三角形中运用了勾股定理,但含30°角的直角三角形的性质也给解题带来了很大的方便.例2、如图,在△ABC中,∠A=90°,P是AC的中点,PD⊥BC于D,BC=9,DC=3,求AB的长.解:连结PB,BD=BC-DC=6.在Rt△BDP和Rt△PDC中,PD2=BP2-BD2,PD2=PC2-DC2,∴BP2-BD2=PC2-DC2.∴BP2-PC2=36-9=27.∵AP=PC,∴BP2-AP2=AB2=27,∴AB=.点拨:连结BP,在PD为公共边的两个直角三角形中运用勾股定理,得到BP2-PC2=BD2-DC2=27,是解答本题的关键所在.例3、如图,在△ABC中,∠C=90°,AD、BE是中线,BE=,AD=5,求AB的长.解:设CE=x,CD=y,则AC=2x,BC=2y.在Rt△ACD和Rt△BCE中,由勾股定理得在Rt△ABC中,.点拨:运用勾股定理计算时,常设未知数,列方程或方程组来求解.2、构造直角三角形解题例4、如图,已知,∠A=60°,∠B=∠D=90°,AB=2,CD=1.求BC和AD的长.解:如图,延长BC,AD交于E.∵∠B=90°,∠A=60°,∴∠E=30°,∴AE=2AB=4.同理CE=2CD=2.在Rt△ABE中,BE2=AE2-AB2=16-4=12,∴BE=.在Rt△CDE中,DE2=CE2-CD2=4-1=3,∴DE=.∴BC=BE-CE=-2,AD=AE-DE=4-.点拨:灵活根据图形及条件,构造直角三角形(其实也就是补图),创造条件去利用勾股定理解题.例5、如图,在△ABC中,∠BAC=90°,AB=AC,点D、E在BC上,且∠DAE=45°,求证:CD2+BE2=DE2.解:如图,将△ABE绕点A逆时针旋转90°得△ACF,则∠ACF=∠B=45°,BE=CF,∠BAE=∠CAF.又∵∠ACB=45°,∴∠DCF=90°.∵∠EAD=45°,∴∠BAE+∠DAC=45°.∴∠DAF=∠CAF+∠DAC=45°.在△AED和△AFD中,∴△AED≌△AFD,∴ED=FD.又在Rt△CDF中,CD2+CF2=FD2,∴CD2+BE2=DE2.点拨:此题从待论证的结论可以联想到勾股定理,而三条线段不在同一个直角三角形中,故可运用旋转法将分散的线段集中在同一个三角形中.3、运用面积法解题例6、如图,△ABC中,∠B=90°,两直角边AB=7,BC=24.在三角形内有一点P到各边的距离相等,则这个距离是()A.1B.3C.6D.无法求出解:依勾股定理知AC=.设点P到各边的距离为r,连结PA、PB、PC.依三角形的面积关系,有S△ABP+S△BCP+S△ACP=S△ABC,即AB·r+BC·r+AC·r=AB·BC.得(7+24+25)r=7×24,解得r=3.故选B.点拨:涉及到垂线段的问题,常可联系到某一三角形的高,从而可应用面积法来解题.因为它是一种代数方法,因此显得十分直观、简捷.例7、如图,Rt△ABC的两直角边AB=4,AC=3,△ABC内有一点P,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,且.求PD、PE、PF的长.解:在Rt△ABC中,∵AB=4,AC=3,∴BC==5.设PF=x,PE=y,PD=z,则.①连结PA、PB、PC.∵S△PAB+S△PBC+S△PAC=S△ABC,∴AB·x+BC·z+AC·y=AB·AC,即4x+3y+5z=12.②①+②,得4x+3y+5z+=24,配方,得∴PD=PE=PF=1.点拨:本题显然不能直接运用勾股定理来计算PD、PE、PF的长,只能在连结PA、PB、PC后,将原三角形分成三个分别以AB、BC、CA为底,PF、PD、PE为高的三角形,由面积法列出关系式,再利用题设条件,即可求解.4、构造几何图形解答代数问题例8、设a、b、c、d都是正数,求证:.分析:题中出现线段的平方和,考虑构造直角三角形,利用勾股定理证明.证明:构造一个边长分别为(a+b)、(c+d)的矩形ABCD(如图).在Rt△ABE中,.在Rt△BCF中,.在Rt△DEF中,.在△BEF中,BE+EF>BF,即点拨:勾股定理将直角三角形的位置关系(两边垂直)转化为数量关系,这为我们运用代数方法研究几何问题提供了工具,反过来,对有些代数问题,特别是含有平方和或平方差的代数式,我们也可以通过构造直角三角形用勾股定理来解决,即用几何方法解决代数问题.勾股定理的逆定理一、一周知识概述1、勾股定理的逆定理是直角三角形判定的重要方法如果三角形的三边长为a,b,c,且满足a2+b2=c2,那么这个三角形是直角三角形.这就是勾股定理的逆定理.在叙述定理时,不能简单地将原命题(勾股定理)的条件和结论颠倒过来,写成“如果一个三角形的两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2,那么这个三角形是直角三角形”.要是这样叙述,则条件中所说“直角边,斜边”等名词已承认三角形是直角三角形,而结论又为直角三角形,这样条件与结论就会混乱.勾股定理的逆定理给出了判定一个三角形是直角三角形的方法.这种方法与前面学过的一些判定方法不同,它是通过代数运算“算”出来的.实际上利用计算证明几何问题在几何里也是很重要的.这里体现了数学中的重要思想——数形结合思想,打破了利用角与角之间的转化计算直角的方法,建立了通过求边与边关系判定直角的新方法.它将数形之间的联系体现得淋漓尽致,因此也有人称勾股定理的逆定理为“数形结合的第一定理”!2、逆命题和逆定理的概念把一个命题的题设和结论互换,就得到它的逆命题.一个真命题的逆命题不一定也是真命题.例如“全等三角形的对应角相等”是一个真命题,它的逆命题是“对应角相等的两个三角形是全等三角形”,显然这个命题不是真命题,即为假命题.一个定理的逆命题是真命题,那么这个逆命题就是这个定理的逆定理.例如:勾股定理和勾股定理的逆定理,就是互逆定理.前一个是直角三角形的性质定理,后一个是直角三角形的判定定理,我们要善于比较这两个定理间的联系和区别.我们前面学习的角平分线的性质与判定,线段垂直平分线的性质与判定等都是像这样的互逆定理,大家可以对照复习一下.对于那些不是以“如果……,那么……”形式给出的命题,在叙述它们的逆命题时,可以把这些命题变为“如果……,那么……”的形式.例如“等边对等角”可以改写为“如果一个三角形是等腰三角形,那么它的两个底角相等”.3、勾股数组能够成为直角三角形三条边长的三个正整数,称为勾股数组.不难验证(3,4,5),(5,12,13),(7,24,25),(9,40,41),(11,60,61),…均为基本勾股数组.显然,若(a,b,c)为基本勾股数组,则(ka,kb,kc)也为勾股数组,其中k为正整数.例如(6,8,10),(9,12,15),(10,24,26),…为勾股数组.若能掌握前几个基本勾股数组,会给解题带来方便和快捷.二、重难点知识归纳1、勾股定理的逆定理的应用.2、逆命题和逆定理的概念.3、勾股数组.三、典型例题剖析1、利用勾股定理的逆定理证直角例1、如图,在△ABC中,D是BC上一点,AB=10,BD=6,AD=8,AC=17.求△ABC 的面积.解:∵BD2+AD2=36+64=100=102=AB2,∴△ABD是直角三角形,∠ADB=90°.在△ADC中,∴BC=BD+DC=6+15=21.点拨:已知三角形的三边长,常验证其中是否有两个数的平方和等于第三个数的平方,以便判断该三角形是否为直角三角形.例2、如图,四边形ABCD为正方形(四角为直角、四边相等的四边形),点E为AB中点,点F在AD边上,且求证:EF⊥CE.点拨:这里先运用勾股定理计算出△CEF各边的边长,然后运用勾股定理的逆定理来判断其为直角三角形,这是证明两条直线垂直的又一种方法.例3、如图,P为正三角形内一点,且PC=3,PB=4,PA=5.求∠BPC.解:将图中的△ACP绕顶点C按逆时针旋转60°,得△BP′C的位置.∵PC=P′C,∠PCP′=60°,∴△PP′C为正三角形.在△BP′P中,BP=4,PP′=PC=3,BP′=AP=5,∴△BP′P为Rt△.∴∠BPP′=90°,∠BPC=∠BPP′+∠P′PC=90°+60°=150°.点拨:由PC=3,PB=4,PA=5想到常见的勾股数组,但这三条线段不在同一个三角形中,但可以借助旋转将三条线段集中起来,由勾股定理的逆定理得到一个直角三角形.2、勾股数组例4、试判断:三边长分别为2n2+2n,2n+1,2n2+2n+1(n为正整数)的三角形是否是直角三角形?解:∵(2n2+2n+1)-(2n2+2n)=1>0,(2n2+2n+1)-(2n+1)=2n2>0,∴2n2+2n+1为三角形中最大边.又∵(2n2+2n+1)2=4n4+8n3+8n2+4n+1,(2n2+2n)2+(2n+1)2=4n4+8n3+8n2+4n+1,∴(2n2+2n+1)2=(2n2+2n)2+(2n+1)2.由勾股定理的逆定理可知,此三角形为直角三角形.点拨:这里先作差比较确定最大边,其依据是:a-b>0,则a>b;a-b=0,则a=b;a-b<0,则a<b.实际上有时用这种方法还会有困难,对于不考虑过程仅需要答案的题,还可利用特殊值迅速解决.例5、(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:a=______,b=______,c=______;(2)猜想:以a,b,c为边长的三角形是否为直角三角形?并证明你的猜想.解:(1)n2-1;2n;n2+1.(2)以a,b,c为边的三角形是直角三角形.证明如下:∵a2+b2=(n2-1)2+4n2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2=c2,∴以a,b,c为边长的三角形是直角三角形.点拨:解决此类问题的思路一般是观察→猜想→证明.例6、(2002,湖北省)如图,在△ABC中,AB=5,AC=13,边BC上的中线AD=6,求BC的长.解:如图,延长AD至E,使DE=AD=6,连结CE.∵CD=BD,且∠ADB=∠EDC,∴△ABD≌△ECD.∴AB=CE=5.点评:根据题设的条件,由中线联想到中线倍长,将分散的条件集中起来,由数据关系可判定△ACE是直角三角形,再在Rt△CDE中求CD的长就不难了.例7、写出下列命题的逆命题,并判断真假.(1)如果a=0,那么ab=0;(2)如果x=4,那么x2=16;(3)面积相等的三角形是全等三角形;(4)如果三角形有一个内角是钝角,则其余两个角是锐角;(5)在一个三角形中,等角对等边.分析:先分清原命题的题设和结论,再把题设和结论互换位置,就得到原命题的逆命题.解答:(1)的逆命题是:如果ab=0,那么a=0.它是一个假命题.(2)的逆命题是:如果x2=16,那么x=4.它是一个假命题.(3)的逆命题是:全等三角形的面积相等.它是一个真命题.(4)的逆命题是:如果三角形有两个内角是锐角,那么另一个内角是钝角.它是一个假命题.(5)的逆命题是:在一个三角形中,等边对等角.它是一个真命题.方法总结:写一个命题的逆命题的关键是分清题设和结论,再交换题设与结论的位置,必要时要加一些适当的语句,切忌不能生搬硬套.例8、下列定理是否都有逆定理?若有,请写出来.(1)如果两个角都是直角,那么这两个角相等;(2)内错角相等,两直线平行;(3)等边三角形的三个角都等于60°.分析:先写出每个定理的逆命题,再判断其真假.方法总结:先写出逆命题,再判断真假,一般判断一个命题是真命题要经过证明,判断一个命题是假命题只需举一个反例即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理及逆定理
勾股定理是数学中的一项基本定理,它是指在直角三角形中,斜边的平方等于两直角边平方和。

这个定理被广泛应用于数学、物理、工程等领域,是一项非常重要的数学工具。

本文将从历史、证明、应用等方面详细介绍勾股定理及其逆定理。

一、历史
勾股定理的历史可以追溯到古代中国和古代印度。

在中国,早在《周髀算经》中就已经有了勾股定理的雏形,其中记载了一个数学问题:一座高为三的墓,从墓底往上看,墓斜对角线的长度为五。

这个问题可以用勾股定理来解决。

在印度,勾股定理被称为毗邻弥勒定理,早在公元前800年左右的《苏尔巴修塔》中就有了记载。

在欧洲,勾股定理最早被希腊数学家毕达哥拉斯发现,因此也被称为毕达哥拉斯定理。

二、证明
勾股定理有多种证明方法,其中最著名的是毕达哥拉斯的证明。

毕达哥拉斯证明的基本思路是将直角三角形拆分成两个小三角形,然后运用几何定理证明。

具体来说,假设直角三角形的两条直角边长分别为a、b,斜边长为c,我们可以将这个三角形拆分成两个小三角形:一个以直角边a和斜边c为直角和斜边的三角形,另一个以直角边b 和斜边c为直角和斜边的三角形。

这两个小三角形的面积分别为
1/2ab和1/2ac,因此整个直角三角形的面积为
1/2ab+1/2ac=1/2(a+b)c。

另一方面,根据勾股定理,c^2=a^2+b^2,
因此c^2=2ab/2+(a^2+b^2)/2=(a+b)c/2,即c=(a^2+b^2)^(1/2)。

将这个结果代入前面的公式,可以得到直角三角形的面积为
1/2(a+b)(a^2+b^2)^(1/2),这就是毕达哥拉斯的证明。

三、应用
勾股定理是一项非常实用的数学工具,它被广泛应用于数学、物理、工程等领域。

以下是一些常见的应用:
1.测量距离:在测量两个点之间的距离时,可以利用勾股定理计算。

假设两个点的坐标分别为(x1,y1)和(x2,y2),它们之间的距离d 可以用勾股定理计算:d=((x2-x1)^2+(y2-y1)^2)^(1/2)。

2.计算角度:在三角函数中,勾股定理被广泛应用于计算角度。

例如,在正弦函数中,sin(x)=opposite/hypotenuse,其中opposite 和hypotenuse分别表示斜边和对边,可以用勾股定理计算。

同样地,在余弦函数和正切函数中也可以应用勾股定理。

3.解决实际问题:勾股定理可以用于解决各种实际问题,例如在建筑工程中计算斜面的长度、在物理学中计算物体的运动轨迹等等。

四、逆定理
勾股定理的逆定理是指,如果一个三角形的三条边满足
a^2+b^2=c^2,则这个三角形一定是直角三角形。

逆定理的证明可以通过反证法来完成,即假设这个三角形不是直角三角形,然后推导出矛盾的结论。

逆定理的应用也非常广泛,它可以用于判断三角形是否为直角三角形,从而解决各种实际问题。

总之,勾股定理是数学中一项非常重要的定理,它不仅有着悠久
的历史,而且在实际应用中也有着广泛的用途。

通过掌握勾股定理及其逆定理,我们可以更好地理解数学中的基础知识,从而更好地应用数学于实际生活和工作中。

相关文档
最新文档