量子力学题库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子力学题库Last revision on 21 December 2020
《量子力学》题库
一、 简答题
1 试写了德布罗意公式或德布罗意关系式,简述其物理意义 答:微观粒子的能量和动量分别表示为:
其物理意义是把微观粒子的波动性和粒子性联系起来。等式左边的能量和动量是描述粒子性的;而等式右边的频率和波长则是描述波的特性的量。
2 简述玻恩关于波函数的统计解释,按这种解释,描写粒子的波是什么波
答:波函数的统计解释是:波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。按这种解释,描写粒子的波是几率波。
3 根据量子力学中波函数的几率解释,说明量子力学中的波函数与描述声波、光波等其它波动过程的波函数的区别。
答:根据量子力学中波函数的几率解释,因为粒子必定要在空间某一点出现,所以粒子在空间各点出现的几率总和为1,因而粒子在空间各点出现的几率只决定于波函数在空间各点的相对强度而不决定于强度的绝对大小;因而将波函数乘上一个常数后,所描写的粒子状态不变,这是其他波动过程所没有的。
4 设描写粒子状态的函数ψ可以写成2211ϕϕψc c +=,其中1c 和2c 为复数,1ϕ和2ϕ为粒子的分别属于能量1E 和2E 的构成完备系的能量本征态。试说明式子2211ϕϕψc c +=的含义,并指出在状态ψ中测量体系的能量的可能值及其几率。
答:2211ϕϕψc c +=的含义是:当粒子处于1ϕ和2ϕ的线性叠加态ψ时,粒子是既处于1ϕ态,又处于2ϕ态。或者说,当1ϕ和2ϕ是体系可能的状态时,它们的线性叠加态ψ也是体系一个可能的状态;或者说,当体系处在态ψ时,体系部分地处于态1ϕ、2ϕ中。
在状态ψ中测量体系的能量的可能值为1E 和2E ,各自出现的几率为2
1c 和2
2c 。
5 什么是定态定态有什么性质
答:定态是指体系的能量有确定值的态。在定态中,所有不显含时间的力学量的几率密度及向率流密度都不随时间变化。
6 什么是全同性原理和泡利不相容原理两者的关系是什么
答:全同性原理是指由全同粒子组成的体系中,两全同粒子相互代换不引起物理状态的改变。
泡利不相容原理是指不能有两个或两个以上的费米子处于同一状态。
两者的关系是由全同性原理出发,推论出全同粒子体系的波函数有确定的交换对称性,将这一性质应用到费米子组成的全同粒子体系,必然推出费米不相容原理。 7 试简述波函数ψ的标准条件。
答:波函数在变量变化的全部区域内应满足三个条件:有限性、连续性和单值性。 8 为什么表示力学量的算符必须是厄米算符
答:因为所有力学量的数值都是实数。而表示力学量的算符的本征值是这个力学量的可能值,所以表示力学量的算符的本征值必须是实数。厄米算符的本征值必定是实数。所以表示力学量的算符必须是厄米算符。 9 请写出微扰理论适用条件的表达式。
答:1)
0()0('<<-m
n mn E E H , ())
0()0(m n E E ≠ 10 试简述微扰论的基本思想。 答:复杂的体系的哈密顿量
分成
与
两部分。
是可求出精确解的,而
可看成对
的微扰。只需将精确解加上由微扰引起的各级修正量,逐级迭代,逐级逼近,就可得到接近问题真实的
近似解。
11 简述费米子的自旋值及其全同粒子体系波函数的特点,这种粒子所遵循的统计规律是什么
答:由电子、质子、中子这些自旋为
2 的粒子以及自旋为2
的奇数倍的粒子组成的全同粒子体系的波函数是反对称的,这类粒子服从费米(Fermi) -狄拉克 (Dirac) 统计,称为费米子。 12 通常情况下,无限远处为零的波函数所描述的状态称为什么态一般情况下,这种态所属的能级有什么特点 答:束缚态,能级是分立的。
13 简述两个算符存在共同的完备本征态的充要条件,并举一例说明(要求写出本征函数系)。在这些态中,测量这两个算符对应的力学量时,两个测量值是否可以同时确定 答:两个算符存在共同的完备本征函数系的充要条件是这两个算符对易。例如,
0]ˆ
,ˆ[2=z L L ,这两个算符有共同的完备本征函数系{
}),(ϕθm Y 。 14 若两个力学量的算符不对易,对这两个力学量同时进行测量时,一般地它们是否可以同时具有确定值它们的均方偏差之间有什么样的关系
答:不可能同时具有确定值。它们的均方偏差之间满足海森堡不确定性关系。 15 请写出线性谐振子偶极跃迁的选择定则。 答:1'±=-=∆l l l
16 指出下列算符哪个是线性的,说明其理由。
① 222
4dx d x ; ② []2
; ③ ∑=n
K 1
解:①2
2
2
4dx d x 是线性算符
②[]2 不是线性算符 ③∑=n
K 1是线性算符
17 指出下列算符哪个是厄米算符,说明其理由。
18 下列函数哪些是算符22
dx
d 的本征函数,其本征值是什么
①2x , ② x e , ③x sin , ④x cos 3, ⑤x x cos sin +
解:①2)(2
22=x dx
d
∴ 2
x 不是22
dx
d 的本征函数。
② x x
e e dx
d =22
∴ x
e 不是22
dx
d 的本征函数,其对应的本征值为1。
③x x dx
d
x dx d sin )(cos )(sin 22-==
∴ 可见,x sin 是22
dx d 的本征函数,其对应的本征值为-1。
④)cos 3(cos 3)sin 3()cos 3(22x x x dx
d
x dx d --=-= ∴ x cos 3 是22
dx d 的本征函数,其对应的本征值为-1。
⑤)
cos (sin cos sin sin (cos )cos (sin 22x x x
x x x dx d x x dx d +-=--=-=+) ∴ x x cos sin +是22
dx
d 的本征函数,其对应的本征值为-1。
19 问下列算符是否是厄米算符:
①x p x
ˆˆ ②)ˆˆˆˆ(2
1
x p p x x x + 解:①⎰⎰=τψψτψψd p x d p x
x x )ˆ(ˆ)ˆˆ(2*12*1 因为 x x p x p
ˆˆˆχ≠ ∴ x p x
ˆˆ 不是厄米算符。 ②⎰⎰⎰+=+τψψτψψτψψd x p d p x d x p p x x x x x 2*12*12*1)ˆˆ(2
1)ˆˆ(21)]ˆˆˆˆ(21[