九年级教案设计:解直角三角形(2)
九年级数学下册解直角三角形教案新人教版

《解直角三角形》教案一、素质教育目标(一)知识教学点使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.(三)德育渗透点渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.三、教学步骤(一)明确目标1.在三角形中共有几个元素?2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?(1)边角之间关系(2)三边之间关系a2+b2=c2(勾股定理)(3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.(二)整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.(三)重点、难点的学习与目标完成过程1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题例 1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且c=287.4,∠B=42°6′,解这个三角形.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.解:(1)∠A=90°-∠B=90°-42°6′=47°54′,∴a=c. cosB=28.74×0.7420≈213.3.∴b=c·sinB=287.4×0.6704≈192.7.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例 2在Rt△ABC中,a=104.0,b=20.49,解这个三角形.在学生独立完成之后,选出最好方法,教师板书.查表得A=78°51′;(2)∠B=90°-78°51′=11°9′注意:例1中的b和例2中的c都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些.但先后要查两次表,并作一次加法(或减法).4.巩固练习解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习P.35中1、2.练习1针对各种条件,使学生熟练解直角三角形;练习2代入数据,培养学生运算能力.参考答案:1.(1)∠B=90°-∠A,a=c·sinA,b=c·cosA;(3)∠B=90°-∠A,a=b·tgA,说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.(四)总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2.幻灯片出示图表,请学生完成四、布置作业教材P.46习题6.3A组3.五、课后记解直角三角形是前面一段时间学习四个三角函数的综合应用,因此要求学生对前面知识要十分熟悉,学生表现出对知识连贯性不太好。
数学教案-解直角三角形复习二

数学教案-解直角三角形复习二一、教学目标1.巩固直角三角形的定义及性质。
2.熟练掌握直角三角形中的特殊角的计算方法。
3.学会运用直角三角形的知识解决实际问题。
二、教学重难点重点:直角三角形中特殊角的计算方法。
难点:实际问题的解决。
三、教学准备1.教学课件2.练习题四、教学过程一、导入1.复习直角三角形的定义及性质。
2.提问:直角三角形中有哪些特殊角?二、新课讲解1.讲解直角三角形中30°、45°、60°角的计算方法。
1.1.当直角三角形中有一个角是30°时,其他两个角的度数分别是60°和90°。
1.2.当直角三角形中有一个角是45°时,其他两个角的度数分别是45°和90°。
1.3.当直角三角形中有一个角是60°时,其他两个角的度数分别是30°和90°。
2.通过例题演示如何运用这些特殊角的计算方法解决实际问题。
例题1:一个直角三角形的两条直角边分别是3cm和4cm,求斜边的长度。
解:由勾股定理可知,斜边的长度为√(3²+4²)=5cm。
例题2:一个直角三角形的一个锐角是30°,另一个锐角是45°,求第三个角的度数。
解:第三个角的度数为180°-30°-45°=105°。
三、课堂练习1.练习题1:一个直角三角形的两条直角边分别是6cm和8cm,求斜边的长度。
2.练习题2:一个直角三角形的一个锐角是60°,另一个锐角是30°,求第三个角的度数。
3.练习题3:一个直角三角形的斜边长度为10cm,一条直角边长度为6cm,求另一条直角边的长度。
四、拓展延伸1.让学生思考:如何运用直角三角形的性质解决生活中的问题?2.举例说明:在建筑、测量等领域,如何运用直角三角形的知识?五、课堂小结2.鼓励学生在日常生活中发现并运用直角三角形的性质。
九年级数学上册《利用解直角三角形解决有关问题》教案、教学设计

4.拓展延伸:针对不同层次的学生,设计不同难度的练习题,使学生在巩固基础知识的同时,提高解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣和热情,使学生充分认识到数学在现实生活中的重要性。
2.培养学生勇于探索、积极思考的学习态度,增强学生面对困难时的自信心。
2.讨论要求:每个小组需要明确问题,分析问题,提出解决方案,并计算出结果。
3.教师指导:在学生讨论过程中,教师巡回指导,解答学生的疑问,引导学生运用三角函数解决实际问题。
(四)课堂练习
1.教学内容:设计不同难度的练习题,让学生巩固所学知识,提高解题能力。
2.练习类型:包括基础题、提高题和应用题,满足不同层次学生的需求。
五、作业布置
为了巩固本节课所学的解直角三角形的原理和方法,以及提高学生运用数学知识解决实际问题的能力,特布置以下作业:
1.基础练习题:请学生完成课本上相关的习题,以巩固正弦、余弦、正切函数的定义及其在解直角三角形中的应用。
-选择题:针对解直角三角形的基本概念和性质,设计选择题,帮助学生巩固基础知识。
3.教学方法:让学生独立完成练习题,教师对学生的解答进行点评和指导,帮助学生发现问题并改正。
(五)总结归纳
1.教学内容:对本节课所学的解直角三角形的原理、方法以及在实际生活中的应用进行总结。
2.教学方法:采用师生互动、学生自主总结等多种形式,帮助学生梳理所学知识。
3.教学要求:让学生明确解直角三角形的关键是掌握三角函数的定义和应用,以及将实际问题转化为数学模型的能力。
2.学会运用三角函数解决实际问题,特别是在直角三角形中的运用。
九年级数学《解直角三角形》教案

23.2解直角三角形
一、学习目标
1.知道直角三角形的边角关系,能利用它求直角三角形的边或角。
2.理解并掌握解直角三角形的概念。
3.能够根据所给条件解直角三角形。
小组展示各组指派
代表,师友
共同回答,
依次展示
各自的结
论,其他同
学适时补
充纠正。
检验学生自学和
互相学习的效
果,培养学生表
达和理解能力,
提高学生学习积
极性和主动性,
当堂检测1、出检测题(见右栏);
2、学生练习完,公布答案;
3、对没有达到要求的学生,教师要求组内解决,
及时进行订正。
4、教师适当进行点评组内合作
当堂检测学生自主
完成查缺补漏,课堂最后一次扫除学生的问题,及时补救
课堂小结 1.本节课我有什么收获?
2,通过本节课的学习我有什么感想?
3,你对自己今天的表现满意吗?
再次突破重难
点,进一步理解
知识运用知识。
人教初中数学九年级下册28-2 解直角三角形及其应用(教学设计)

师:尝试写出∠A 的三角函数。
生:∠A 的正弦值:sin A=∠A 所对的边斜边= ac∠A 的余弦值:cos A= ∠A 所邻的边斜边= bc∠A 的正切值:tan A=∠A 所对的边邻边= ab师:将 30°、45°、60°角的正弦值、余弦值和正切值填入下表:生:变式1-1 在Rt △ABC 中,∠C =90°,a = 30, b = 20,根据条件解直角三角形.变式1-2 在△ABC 中,∠C =90∘, AB =6, cosA =13,则AC 等于( )A .18B .2C .12D .118变式1-3在Rt △ABC 中,斜边AB 的长为m ,∠A =35°,则直角边BC 的长是( ) A .msin35° B .mcos35° C .m sin35°D .mcos35°变式1-4 如图,在Rt △ABC 中,∠C=90°,∠B=35° ,b=20,解这个直角三角形(结果保留小数点后一位). 变式1-5 如图,太阳光线与水平线成70°角,窗子高AB =2米, 要在窗子外面上方0.2米的点D 处安装水平遮阳板DC ,使光线不 能直接射入室内,则遮阳板DC 的长度至少是( ) A .2tan70°米 B .2sin70°米 C .2.2tan70°米 D .2.2cos70°米平线下方的叫做俯角。
指南或指北的方向线与目标方向线构成小于900的角,叫做方位角. 师:尝试说出A,B关于坐标原点O的位置?生:点A位于点O北偏东30°位置,点B位于点O南偏西45°位置[多媒体展示]热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m)。
解直角三角形 优秀教案

《解直角三角形》教学设计说明一、教材分析《解直角三角形》是北师大版九年级下册第一章第四节的内容. 在此之前,学生已经具备了勾股定理、锐角三角函数的基本知识,会求任意一个锐角的三角函数值. 本节课是三角函数应用之前的准备课,旨在建立好解直角三角形的数学模型,以便有效的为现实生活服务.培养学生解答实际应用题的技能,掌握如何构建解直角三角形的思想方法、技巧.把勾股定理和锐角三角函数的前期准备知识有机的组织起来,使学生能承前启后、有思想性和可操作性. 因此,本节课在教材教学计划中起着一发牵制全局的重要作用.二、学情分析1、九年级学生已经掌握了勾股定理,刚刚学习过锐角三角函数,能够用定义法求三角函数sinα、cosα、tanα值.2、在计算器的使用上,学生学习了用计算器求任意锐角的三角函数值,并对计算器的二次功能有所了解.有上述知识技能作基础为学生进一步学习“解直角三角形”创造了必要条件.3、但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都比较差,因此要在本节课进行有意识的培养.三、教学任务分析本节内容是在学习了“锐角三角函数”“勾股定理”等内容的基础上进一步探究如何利用所学知识解直角三角形.通过直角三角形中边角之间关系的学习,整合三角函数的知识,归纳解直角三角形的一般方法.在呈现方式上,显示出实践性与研究性,突出了学数学、用数学的意识与过程,注重联系学生的生活实际,同时还有利于数形结合.通过本节课的学习,不仅可以巩固勾股定理和锐角三角函数等相关知识,初步获得解决问题的方法和经验,而且还让学生进一步体会数学与实际生活的密切联系.掌握将实际问题转化为数学模型的思想方法.所以教学目标如下:知识技能:初步理解解直角三角形的含义,掌握运用直角三角形的两锐角互余、勾股定理及锐角三角函数求直角三角形的未知元素.数学思考:在研究问题中思考如何把实际问题转化为数学问题,进而把数学问题具体化.解决问题:解直角三角形的对象是什么?在解决与直角三角形有关的实际问题中如何把问题数学模型化.通过利用三角函数解决实际问题的过程,进一步提高学生的逻辑思维能力和分析问题解决问题的能力情感态度:在解决问题的过程中引发学生形成数形结合的数学思想,体会数学与实践生活的紧密联系.从而增强学生的数学应用意识,激励学生敢于面对数学学习中的困难.通过获取成功的体验和克服困难的经历,增进学习数学的信心,养成良好的学习习惯.教学重难点:重点:理解并掌握直角三角形边角之间的关系,运用直角三角形的两锐角互余、勾股定理及锐角三角函数求直角三角形的未知元素.难点:从已知条件出发,正确选用适当的边角关系或三角函数解题.四、教学过程 1. 知识回顾1、在一个直角三角形中,共有几条边?几个角?(引出“元素”这个词语)2、在Rt ΔABC 中,∠C=90°.a 、b 、c 、∠A 、∠B 这些元素间有哪些等量关系呢?讨论复习:Rt ΔABC 的角角关系、三边关系、边角关系分别是什么?总结: 直角三角形的边角关系(1) 两锐角互余:∠A+∠B=90°(2) 三边满足勾股定理:a 2+b 2=c 2(3) 边与角的关系:.tan cot ,cot tan ,sin cos ,cos sin ab B A ba B A cb B A ca B A ======== 定义:在直角三角形中由已知元素求出未知元素的过程就是解直角三角形.2. 探究新知在Rt △ABC 中,(1)根据∠A= 60°,斜边AB=30,你能求出这个三角形的其他元素吗?(2)根据AC=2,BC= 6 ,你能求出这个三角形的其他元素吗?(3)根∠A=60°,∠B=30°, 你能求出这个三角形的其他元素吗?从以上关系引导学生发现,在直角三角形中,只要知道其中两个元素(至少有一个是边)就可以求出其余的几个元素,从而引出解直角三角形的定义:在直角三角形中由已知元素求出未知元素的过程就是解直角三角形. 3. 例题讲解例1 在Rt △ABC 中,∠C 为直角,∠A ,∠B ,∠C 所对的边分别为 a ,b,c,且a =15,b =5,求这个三角形的其他元素.解;例2:如图:在Rt ΔABC 中,∠C=90°,∠B=25°,b=30.解这个直角三角形(结果保留小数点后一位).注意强调:在解决直角三角形的过程中,常会遇到近似计算,尽量选择原始数据,避免累积误差.B6A C4. 知识应用1、在Rt△ABC 中,∠C =90°,根据下列条件求出直角三角形的其他几个元素(角度精确到 1°)(1)已知 a=4,b=8;(2)已知 b=10,∠B=60°;(3)已知 c=20,∠A=60°.(1)中已知两条边如何解直角三角形,(2)(3)已知一条边及一个角解直角三角形,本题的设计重在引导学生体会并归纳常规解直角三角形的常规方法:解直角三角形的方法遵循“有斜用弦,无斜用切;宁乘勿除,化斜为直”五、课堂小结一、通过本节课的学习,大家有什么收获?六、作业布置:1、习题1.5 1、2.2、预习下一节内容,要求了解什么是仰角和俯角3、补充作业:如图,根据图中已知数据,求△ABC其余各边的长,各角的度数和△ABC的面积.七、板书设计:八、教学反思本节课,为解直角三角形应用题之前的准备课,旨在建立好解直角三角形的数学模型,以便有效的为现实生活服务.培养学生解答实际应用题的技能,掌握如何构建解直角三角形的思想方法、技巧.把勾股定理和锐角三角函数的前期准备知识有机的组织起来,使学生能承前启后、有思想性和可操作性.因此,本节课在教材教学计划中起着一发牵制全局的重要作用.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题的能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.。
鲁教版-数学-九年级上册- 解直角三角形2 教案

《解直角三角形》教案教学目标1、初步了解解直角三角形的意义.2、会用一边一锐角解直角三角形教学重难点用一边一锐角解直角三角形教学过程一、提问引入1.在三角形中共有几个元素?(几条边,几个角)2.直角三角形ABC 中,90C ∠=︒,a b c A B ∠∠、、、、这五个元素间有哪些等量关系呢?(1)边角之间关系 sin A =a c cos A =b c tan A a b; (2)三边之间关系222a b c +=(勾股定理);(3)锐角之间关系90A B ∠+∠=︒.从上面可以看出,直角三角形的边与角,边与边,角与角之间都存在着密切的关系,能否根据直角三角形的几个已知元素去求其余的未知元素呢?上节课我们学习了已知两边解直角三角形,这节课我们在这个基础上改动一个条件,已知一边一锐角解直角三角形.怎样解决这个新问题呢?二、例题讲解例1在Rt △ABC 中,∠C =90°,c =128,∠B =60°解这个直角三角形.解:∠A =90°-∠B =90°-60°=30°.∵cos B =sin a b B c c=,,∴a =c ·cos B =64,B =c ·sin B=例2 在Rt △ABC 中,∠C =90°,∠A =35°27′,a =15,•解这个直角三角形.(精确到1) 解:∠B =90°-∠A =54°33′.AC B∵tan B =b a ,sin A =a c∴b =a ·tan B ≈21.∴c =26sin a A≈. 三、实战应用1、在Rt △ABC 中,︒=∠90C ,已知︒=∠30A ,6=AB ,求B ∠、AC 和BC 的长.根据下列条件解直角三角形.在Rt △ABC 中:2、2045c A =∠=︒,3、3630a B =∠=︒,4、a =A =60°5、a =18,∠A =56°6、a =A =60°7、a =16,∠A =45°8、b =,∠A =30°9、b =13,∠A =26°10、b =,∠A =55°11、a =9,∠A =75°教学小结1、解直角三角形的方法.2、依据.3、思想方法._C _。
23.2.2 解直角三角形及其应用 第2课时 教案

沪科版数学九年级上册23.2.2 解直角三角形及其应用教学设计例3 如图 23-16,一学生要测量校园内一棵水杉树的高度。
他站在距离水杉树8米的E处,测得树顶端A的仰角∠ACD为52°,已知测角器CE=1.6米,问树高AB为多少米?(精确到0.1m).例4 解决本章引言所提问题。
如图23-17,某校九年级学生要测量当地电视塔的高度AB,因为不能直接到达塔底B处,他们采用在发射台院外与电视塔底B成一直线的C,D两处地面上,用测角器测得电视塔顶部A的仰角分别为45°和30°,同时量得CD为50m,已知测角器高为1m,问电视塔的高度为多少米?(结果精确到1m).例5 如图23-18,一船以20n mile/h的速度向东航行,在A处测得灯塔C在北偏东60°的方向上,老师提示:解决这个问题的方法,我们称为实际问题数学化,这是解决实际问题常用的方法。
通过学生自己的观察、比较、总结出在这些结论。
实际问题数学化,由实际问题画出平面图形,也能有平面图形想像出实际情景,再根据解直角三角形的来解决实际问题。
并且了解了仰角,俯角的概念。
引导学生再次思考。
加强学生的合作意识,使学生养成大胆猜测和想象的能力,积极参与数学问题的谈论,敢于发表自己的见解。
强调易错点,加继续航行1h到达B处,再测得灯塔C在北偏东30°的方向上,已知灯塔C四周10 n mile 内有暗礁,问这船继续向东航行是否安全?分析:这船继续向东航行是否安全,取决于灯塔C 到AB航线的距离是否大于10 n mile解直角三角形应用的基本图形①不同地点看同一点(如图①);②同一地点看不同点(如图②)建筑物BC上有一旗杆AB,由距BC 40m的D处观察旗杆顶部A的仰角54°,观察底部B的仰角为45°,教师再给予点评、引导,然后共同完成问题的解决。
在探索中发现,这样才能理解其中的规律并能加以总结.通过问题的解决和延伸,引发学生自主思考,培养学生解决问题的逻辑思维能力。
九年级数学《解直角三角形(2)》教案新人教版

教学重难点 及解决措施
课前准备
学生活动 起立向老师问好
了解课堂目标
教师布 置本节探 究的相关内容 三、 探究释疑 (20min)
小组成员分工合作探究,最后由小组 发言人展示其成果
学生主动参与探究,培养学生探 究能力和小组合作学习能力。
教师提出问题 , 让 学生完成
学生自主完成探索并讨论,抽取一名 学生回答
在这个过程中, 要关注学生参与 活动的程度和在活动中表现出来 的思维水平,还要关注学生能否 用不同的语言(自然语言、符号 语言)表达自 己的想法 巩固所学知识 培养礼仪习惯
布置作业 组 织 下 课 (30s) 宣布下课
记录 起立互致问候
板书设计意图:重点突出,整洁美观,便于学生记忆。 解直角三角形(2) 一、回顾旧知………… 情况 学生 对错误之处进行修改 小组内实行兵教兵
检验学生对本节掌握情况并予以 反馈 培养学生的纠错能力
学生先完成拓展升华题目,然后与同 伴交流自己的想法,教师再讲解
加强学生本节内容的理解
七、 小结及布 置课外作业 (3min)
总结本节课所学 的内容
学生回顾探究的整个过程,体会 学习 的成果,感受成功的喜悦,产生后继 学习的激情
初步感受如何用锐角三角函数的 相关知识解决问题
四、 当堂训练 (15 min)
1. 教 师 评 讲 课 堂 前 置 的 内 容 (3min)
学生根据教师评讲修改错误之处
学生加深对自主学习内容的理解
1
2. 教 师 布 置 当 堂 训练内容(8min) 3. 教 师 对 学 生 的 完成情况进行点 评(4min) 布置拓展升华题 目 六、 拓展升华 (5min)
板书设计
教学反思
人教初中数学九下 《解直角三角形》教案 (公开课获奖)

解直角三角形教学目标:理解解直角三角形的概念和条件重点:解直角三角形难点:解直角三角形的基本类型及解法28.2.1 解直角三角形理解解直角三角形的概念和条件(1)解直角三角形在直角三角形中,由元素求出元素的过程,就是解直角三角形.(2)解直角三角形的条件在直角三角形中除直角外的五个元素中,已知其中个元素(至少有一个是),就能求出其余的个未知元素,即“知二求三”.重点一:解直角三角形解直角三角形的基本类型及解法Rt△ABC中,∠C=90°已知条件解法(选择的边角关系)斜边和一直角边c,a 由sin A=,求∠A;∠B=90°-∠A; b=两直角边a,b 由tan A=,求∠A;∠B=90°-∠A; c=斜边和一锐角c,∠A ∠B=90°-∠A;a=c·sin A;b=c·cos A一直角边和一锐角a,∠A ∠B=90°-∠A;b=; c=1.(2013兰州)△ABC中,a、b、c分别是∠A、∠B∠C的对边,如果a2+b2=c2,那么下列结论正确的是( )(A)csin A=a (B)bcos B=c (C)atan A=b (D)ctan B=b2.(2013安顺)在Rt△ABC中,∠C=90°,tan A=,BC=8,则△ABC的面积为.3.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,请分别根据下列条件解直角三角形.(1)a=6,b=2;(2)c=4,∠A=60°.重点二:利用特殊角解非直角三角形非直角三角形可通过作三角形的高,构造直角三角形求解.在选择关系式时要尽量利用原始数据,直接求解,防止累积误差.4.如图所示,在△ABC中,∠A=30°,tan B=,AC=2,则AB的长是( )(A)3+(B)2+2(C)5 (D)5. (2013曲靖)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,则CD= .6.等腰三角形的三边长分别为1、1、,那么它的底角为.7.如图所示,在△ABC中,∠A=60°,∠B=45°,AB=8,求△ABC的面积(结果可保留根号).A层(基础)1.在下面的条件中,不能解直角三角形的是( )(A)已知两锐角(B)已知两条边(C)已知一边和一锐角(D)已知三条边2. 如图所示,在△ABC中,cos B=,sin C=,AC=5,则△ABC的面积是( )(A)(B)12 (C)14 (D)213. 如图所示,正三角形的内切圆半径为1,那么三角形的边长为( )(A)2 (B)2 (C)(D)34.若等腰三角形ABC的底边BC上的高为4,sin B=,则△ABC的周长为( )(A)24(B)16+4 (C)8+8 (D)16+85.在△ABC中,AB=4,AC=,∠B=60°,则BC的长为( )(A)1 (B)2 (C)3 (D)1或36.如图,已知Rt△ABC中,斜边BC上的高AD=4,cos B=,则AC= .7. 如图所示,在高为2米,∠ABC为30°的楼梯上铺地毯,地毯的长度至少应有米.8. (2013陕西)如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为.(结果保留根号)9. 如图所示,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形,若AB=2,求△ABC的周长.(结果保留根号).教学反思:15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习1.计算: (1))1)(1(yx x y x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”). 2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”). [师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.D CA BD CABDC A B在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?DC AB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD . 3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .DC ABEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=CE .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标E DC A B P明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
九年级数学下册《解直角三角形》全章教案 新人教版

九年级数学下册《解直角三角形》全章教案新人教版九年级数学下册《解直角三角形》全章教案(新人教版)第一课时:锐角三角函数教学目标:知识目标:初步了解正弦、余弦、正切的概念;能正确地用sinA、cosA、___表示直角三角形中两边的比;熟记30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
能力目标:逐步培养学生观察、比较、分析和概括的思维能力。
情感目标:提高学生对几何图形美的认识。
教学程序:一、探究活动1.通过特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数的定义。
sinA = 对边/斜边,cosA = 邻边/斜边,tanA = 对边/邻边3.例1.求如图所示的直角三角形Rt⊿ABC中的sinA、cosA、___的值。
二、探究活动二1.让学生画30°、45°、60°的直角三角形,分别求sin30°、cos45°、tan60°,并归纳结果。
sinA cosA ___30° 1/2 √3/2 √3/345° √2/2 √2/2 160°√3/2 1/2 √32.求下列各式的值。
1) sin30° + cos30°2) 2sin45° - cos30° + tan60° - tan30°三、拓展提高1.P82例4.(略)2.如图,在直角三角形ABC中,∠A = 30°,tanB = 1/3,AC = 2√3,求AB。
四、小结通过本节课的研究,我们初步了解了正弦、余弦、正切的概念,并学会了用sinA、cosA、___表示直角三角形中两边的比。
同时,我们也熟记了30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
青岛版数学九年级上册教案第二章解直角三角形2.1《锐角三角比》教案

青岛版数学九年级上册教案第二章解直角三角形2教学目的1、使先生了解直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边的比值是固定的;2、经过实例看法正弦、余弦、正切三个函数的定义.教学进程一、新课导入:操场里有一个旗杆,小明去测量旗杆高度.小明站在离旗杆底部10米远处,目测旗杆的顶部,视野与水平线的夹角为34度,并目高为1米.然后他很快就算出旗杆的高度了.你想知道小明怎样算出的吗?二、新课教学(一)、看法三个三角比1、看法角的对边、邻边与斜边.如图,在Rt △ABC 中,∠A 所对的边BC ,我们称为∠A 的对边;∠A 所在的直角边AC ,我们称为∠A 的邻边.∠C 所对的边AB 为斜边.说出∠B 的对边和邻边稳固练习:﹙讨论﹚如图,﹙1﹚在Rt △ABE 中,∠BEA 的对边是 ,邻边是 ,斜边是 . ﹙2﹚在Rt △DCE 中,∠DCE 的对边是 ,邻边是 ,斜边是 . ﹙3﹚在Rt △ADE 中,∠DAE 的对边是 ,邻边是 ,斜边是 . 2、看法三个三角比在Rt △ABC 中,∠C =90∠A 、∠B 、∠C 所对的边区分记为a 、b 、c . (1)我们把锐角A 的对边与斜边的比叫做∠A 的正弦.记作sin A .sin A =A aA c ∠=∠的对边的斜边(2)我们把锐角A 的邻边与斜边的比叫做∠A 的余弦.记作cos A .cos A =c b=∠斜边的邻边A(3)我们把锐角A 的对边与邻边的比叫做∠A 的正切.记作tan A .tan A =ba=∠∠的邻边的对边A A∠A 的正弦、余弦、正切统称为∠A 的三角比︒341米10米?[读一读]你知道三角函数符号的由来吗?三角学和算术、几何、代数一样,都是人类最早涉足的数学范围,sin 的英文全文是sine(正弦),sine 一词开创于阿拉伯人,最早运用这一词的是西欧数学家雷基奥蒙坦(1463-1476),cos 的英文全名是cosine(余弦),cot 的英文全名是cotange nt ,这个词为英国人跟日耳所创用,tan 的英文全名是tangent(正切),这个词为丹麦数学家托玛斯.芬(1561-1646)所创用.留意:1、sin A 不是sin 与A 的乘积,而是一个全体; 2、正弦的三种表示方式:sin A 、sin56°、sin ∠DEF 3、sin A 是线段之间的一个比值;sin A 没有单位.其他类同.讨论:∠B 的正弦怎样表示?要求一个锐角的正弦值,我们需求知道直角三角形中的哪些边?3、尝试练习:如图,在Rt △ABC 中,∠C =90°,求.∠A 、∠B 的三个三角比值 (二)例题教学:例1如图2-4(课本第40页)在Rt △ABC 中,∠C=90°,a =2,b =4.求∠A 的正弦、余弦、正切的值.(三)课堂小结掌握∠A 的正弦,余弦,正切.(1)C B43。
《解直角三角形》示范公开课教学设计【北师大版九年级数学下册】

第一章 直角三角形的边角关系1.4 解直角三角形 教学设计一、教学目标1.了解解直角三角形的含义.2.经历解直角三角形的过程,掌握解直角三角形的方法.二、教学重点及难点重点:直角三角形的解法.难点:灵活运用三角函数的知识解直角三角形.三、教学用具多媒体课件、直尺或三角板。
四、相关资源《复习三角函数》动画.五、教学过程【复习引入】生活中,我们常常遇到与直角三角形有关的问题.为了解决这些问题,往往需要确定直角三角形的边和角.在直角三角形中有6个元素,分别是三条边、三个角,请根据所学知识写出它们之间的关系.师生活动:教师提出问题,引导学生思考,然后让学生讨论,尝试回答.答:能,如图,在Rt △ABC 中,∠C =90°,(1)三边之间的关系:a 2+b 2=c 2(勾股定理);(2)锐角之间的关系:∠A +∠B =90°;(3)边角之间的关系:正弦:;余弦:;正切:. sin A A =∠的对边斜边cos A A =∠的邻边斜边tan A A A =∠的对边∠的邻边A CB ab c 那么至少知道几个元素,就可以求出其他的元素呢?这节课我们就来探究这个问题. 设计意图:回顾复习直角三角形中边与边、角与角、边与角之间的关系为本节课的学习作准备.【探究新知】做一做 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C所对的边分别为a ,b ,c ,且a=b师生活动:教师出示问题,学生思考并完成解题过程.解:在Rt △ABC 中,∵a2+b 2=c 2,ab∴c=在Rt △ABC 中,sinB =12b c ==,∴∠B =30°.∴∠A =60°. 归纳:在直角三角形中,如果已知其中两边的长,那么就能求出这个三角形的其他元素.由直角三角形中已知的元素,求出所有未知元素的过程,叫做解直角三角形.设计意图:通过探究让学生明白在直角三角形中,如果已知其中两边的长,那么就能求出这个三角形的其他元素.鼓励学生结合勾股定理、三角形内角和定理以及锐角三角函数的知识进行初步的解直角三角形的探索.想一想 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且b =30,∠B =25°,求这个三角形的其他元素(边长精确到1).师生活动:教师出示问题,学生思考并完成解题过程.解:在Rt △ABC 中,∠C =90°,∠B =25°,∴∠A =65°. ∵sin B =b c ,b =30,∴c =3071sin sin 25b B =︒≈. ∵tan B =b a ,b =30,∴a =3064tan tan 25b B =︒≈. 归纳:在直角三角形中,如果已知一边和一个锐角,那么就能求出这个三角形的其他元素.设计意图:通过探究让学生明白在直角三角形中,如果已知一边和一个锐角,那么就能求出这个三角形的其他元素.求解方法另外有很多,可引导学生思考各种求解方法之间的差异与共性.结论:在直角三角形的6个元素中,直角是已知元素,如果再知道一条边和第三个元素,那么这个三角形的所有元素就都可以确定下来. 总结 解直角三角形的类型及方法(1)解直角三角形有四种基本类型:①已知斜边和一条直角边;②已知两条直角边;③已知斜边和一个锐角;④已知一条直角边和一个锐角.(2)在解直角三角形时,可以用勾股定理确定直角三角形的三边关系,由锐角三角函数得到边角关系.在选择关系时,应遵循以下基本原则:有斜(斜边)用弦(正弦、余弦),无斜(斜边)用切(正切),宁乘勿除,尽量采用原始数据.设计意图:通过总结让学生明白解题方法和规律.【典例精析】例 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且∠A =60°,c =20,解这个直角三角形.师生活动:教师出示例题,学生思考并完成本题.解:在Rt △ABC 中,∠C =90°,∠A =60°,∵∠A +∠B =90°,∴∠B =90°-∠A =30°. ∵sin B =b c ,即sin 30°=b c ,c =20,∴b =c ·sin30°=120102⨯=. 由勾股定理,得a =22222010300103c b -=-==.设计意图:通过解特殊的直角三角形,训练学生解直角三角形的思路和方法,提高分析和解决问题的能力.【课堂练习】1.在下列所给出的直角三角形中,不能求解的是( ).(1)已知一直角边和所对锐角;(2)已知两锐角;(3)已知两直角边;(4)已知斜边和一锐角;(5)已知一直角和斜边.A .仅(2)B .(2)(3)C .(2)(4)D .(2)(5)2.在Rt △ABC 中,∠C =90°,∠B =35°,AB =7,则BC 的长为( ).A .7sin 35°B .C .7cos 35°D .7tan 35°3.如图,在△ABC 中,∠C =90°,AC =5 cm ,∠BAC 的平分线交7cos35︒BC 于点D ,ADcm ,则BC =________cm. 4.如图,在Rt △ABC 中,∠C =90°,点D 是BC上一点,∠DAC =30°,BD =2,AB =,则AC =________.5.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,根据下列条件求出直角三角形的其他元素(角度精确到1°);(1)已知a =4,b =8;(2)已知b =10,∠B =60°;(3)已知c =20,∠A =60°.师生活动:教师先找几名学生板演,然后讲解出现的问题.参考答案1.D .2.C .3..45.解:(1)在Rt △ABC 中,∠C =90°,a =4,b =8,由勾股定理,得c 2=a 2+b 2.∴c =又∵tan A =4182a b ==,∴∠A ≈27°. ∵∠A +∠B =90°,∴∠B =90°-∠A ≈63°.(2)在Rt △ABC 中,∠C =90°,∵∠A +∠B =90°,∠B =60°,∴∠A =90°-∠B =30°.又∵tan B =b a ,b =10, ∴tan60°=10a. ∴a = ∵sin A =a c ,即sin 30°=a c , ∴c =2a ,∴c =2=. (3)在Rt △ABC 中,∠C =90°,∠A =60°,∵∠A +∠B =90°,∴∠B=90°-∠A=30°.∵sin B=bc,即sin 30°=bc,c=20,∴b=c·sin30°=120102⨯=.由勾股定理,得a===.设计意图:通过学生自主练习,可以查看学生答题的情况,统计差错及目标达成率,也可以让学生真正地动手、动脑,从而达到很好地掌握知识的目的.六、课堂小结1.解直角三角形的概念由直角三角形中已知的元素,求出所有未知元素的过程,叫做解直角三角形.2.解直角三角形的类型及方法(1)解直角三角形有四种基本类型:①已知斜边和一条直角边;②已知两条直角边;③已知斜边和一个锐角;④已知一条直角边和一个锐角.(2)在解直角三角形时,可以用勾股定理确定直角三角形的三边关系,由锐角三角函数得到边角关系.在选择关系时,应遵循以下基本原则:有斜(斜边)用弦(正弦、余弦),无斜(斜边)用切(正切),宁乘勿除,尽量采用原始数据.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心内容.七、板书设计1.4 解直角三角形1.解直角三角形的概念2.解直角三角形的类型及方法。
教案:解直角三角形的应用(第二课时)刘新旺

abcB CA铅直线视线仰角 俯角视线 春来初中集体备课教学案春来初中集体备课教学案年级年级九科别科别 数学数学周次周次月 日主备课人主备课人刘新旺刘新旺课题课题 解直角三角形的应用(第二课时)一、 教学目标:教学目标:1. 知道方向角、方位角、坡角、坡比(坡度)的意义. 2. 能将有关实际问题转化为解直角三角形的问题. 3. 培养严谨致学的学习态度. 二、 教学重点:教学重点:把实际问题转化为解直角三角形的问题. 三、 教学难点:教学难点:将实际问题中的数量关系抽象为直角三角形中元素间的关系. 四、 教具准备:课件教具准备:课件 五、 教学过程:教学过程: (一)知识回顾:(一)知识回顾: 1.解直角三角形解直角三角形在直角三角形中,除直角外,由已知两元素(必有一边)求其余未知元素的过程叫解直角三角形. 2.解直角三角形的依据解直角三角形的依据(1)三边之间的关系: a 2+b 2=c 2(勾股定理); (2)两锐角之间的关系:∠ A + ∠ B = 90º;(3)边角之间的关系: sinA =a ccosA =b ctanA =a b3、仰角和俯角、仰角和俯角 在进行测量时,在进行测量时,从下向上看,视线与水平线的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角. (二)探究新知:(二)探究新知:65°34°PCA 30° 45° BOA(结果保留小数点后一位)?一位)?900的角,叫BADF60°30°i=1:1.5 .问:根据定义,你能用坡度来刻画斜坡的倾斜、即陡的程度吗? 楼厅比楼外的地面高0.4米,求残疾人通道的坡度与坡角 (角,其他近似数取四位有效数字). hLa()222223AD D Fx x x--=A F 3tan 30x=31:1.6 2.8 1.2).米22223.20.4AB BC --AD6mα βi =1:3i =1:1.5 B F =2269117313+=»。
九年级数学下册《解直角三角形及其应用》教案、教学设计

3.挑战题:设置一些拓展性题目,激发学生的思维,培养他们解决问题的能力。
4.练习过程中,鼓励学生相互讨论,共同解决问题,教师及时给予反馈和指导。
(五)总结归纳,500字
在总结归纳阶段,我将完成以下任务:
1.让学生回顾本节课所学的知识点,总结三角函数的定义、公式及其应用。
2.强调直角三角形在实际问题中的求解方法,以及如何运用勾股定理和三角函数。
4.案例教学,突破难点:结合典型案例,引导学生分析问题、建立数学模型,运用三角函数求解,帮助学生突破难点。
5.实践操作,巩固提高:设计具有实际背景的练习题,让学生动手操作,运用所学知识解决问题,巩固所学知识,提高解题能力。
6.归纳总结,拓展延伸:对本节课的知识点进行归纳总结,强调重点,梳理难点,并进行拓展延伸,激发学生的思考。
2.提高作业:选取两道具有实际背景的题目,要求学生运用所学知识解决问题,并将解题过程和答案写在作业本上。此类题目旨在培养学生的应用能力和解题技巧。
3.拓展作业:针对学有余力的学生,布置一道拓展性题目,要求学生通过查阅资料、思考讨论等方式,探索直角三角形在其他领域的应用,如物理学、工程学等。
4.小组作业:分组进行课题研究,选取一个与直角三角形相关的实际案例,共同探讨解决方案,并将研究成果以报告的形式提交。此作业旨在培养学生的团队协作能力和研究能力。
3.梳理本节课的教学重点和难点,帮助学生巩固记忆。
4.鼓励学生提出疑问,解答他们在学习过程中遇到的问题。
5.布置课后作业,要求学生在课后进行复习和巩固,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学知识,提高学生的解题能力和应用意识,特布置以下作业:
4.4解直角三角形的应用(2)-湘教版九年级数学上册教案

4.4解直角三角形的应用(2)- 湘教版九年级数学上册教案一、教学目标1.掌握解决直角三角形的应用问题的方法。
2.运用正弦、余弦、正切定理进行直角三角形应用问题的解题。
3.发扬团队协作精神,互相帮助、学互帮互学,树立学生互相协作、共同进步的意识。
二、教学重点1.掌握正弦、余弦、正切定理的适用条件。
2.能准确的运用正弦、余弦、正切定理解决直角三角形的应用问题。
三、教学难点1.如何确定三角形中的比例关系。
2.如何选用合适的定理解决问题。
四、教学方法通过教师讲解、例题演示、学生练习等多种教学方法进行教学。
五、教学过程及课时安排课前准备(5分钟)教师放一道与直角三角形相关的应用问题,并提出解题思路。
新课讲解(25分钟)1. 正弦、余弦、正切定理的适用条件教师介绍三种定理的适用条件,并结合范例讲解。
2. 解题方法根据主要分类,分别介绍解决“直角三角形证明”、“直角三角形计算”、“直角三角形与平面几何相互应用”三种类型题目的解题方法。
其中,计算类题目的解题过程涉及到的基本步骤包括:•按照题目要求,将角度、边长标记在图中;•按照所选用的定理算出相关的比例关系;•代入数值计算。
3. 例题演示教师挑选数个例题进行演示,并让学生依照解题思路尝试自己解答。
练习(30分钟)1. 合作练习让同桌两人配对,相互分别出题,对方根据解题思路独立解答,并互相修改错题。
2. 个人练习教师放置数个题目让学生依照解题思路自行解答,充分锻炼学生解决应用题目的能力。
课堂总结(5分钟)让学生回答“为何要学习直角三角形”,并问答解决本课中遇到的问题。
六、板书设计板书设计板书设计七、作业布置1.完成《湘教版九年级数学上册》p58-59的练习;2.自己编出数个直角三角形应用题并解答。
八、教学反思本节课,教师围绕“解直角三角形的应用”这个话题,从适用条件、解题方法、例题演示以及练习等多个方面出发,构建起一个综合性的授课体系,使学生们全面掌握了正弦、余弦、正切定理的运用技巧。
28.2解直角三角形(教案)-九年级下学期数学教材解读(人教版)

(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解直角三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量高度或距离的情况?”(如测量房顶的高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索解直角三角形的奥秘。
-例如:已知直角三角形的一个锐角的正弦和余弦值,求该角的正切值。
-将实际问题抽象为解直角三角形的数学模型。
-学生在将实际问题转化为数学模型时,往往难以确定直角三角形的相关边长和角度,需要通过案例分析,引导学生抓住问题的关键。
-例如:在房屋建设中,如何根据屋顶的斜率和底边长度计算屋顶的高度。
-正确使用计算器求解三角函数值。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“解直角三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
其次,在新课讲授环节,我发现通过案例分析的方式能够让学生更直观地理解锐角三角函数在实际中的应用。但在讲解难点内容时,感觉学生们对三角函数间的关系理解不够深入。这可能是因为我在讲解时,没有充分运用图示和实际操作,让学生更直观地感受这些关系。在今后的教学中,我会注意运用更多直观的教学手段,帮助学生突破难点。
-正弦、余弦、正切函数值的计算。
2.学会使用计算器求解直角三角形,并能解决一些与直角三角形有关的实际问题。
-使用计算器进行正弦、余弦、正切函数值的查询;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级九年级课题28.2 解直角三角形(2)课型新授教学媒体多媒体
教学目标知识
技能
1.使学生会把实际问题转化为解直角三角形问题,能运用解直角三角形的方法解决问题;
2.认识仰角、俯角等概念,学会综合运用所学知识解决实际题.
过程
方法
经历解直角三角形的实际应用,运用转化思想,学会把实际问题转化为数学问题来解决,培养学生分析问题、解决问题的能力.
情感
态度
渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识
教学重点将实际问题中的数量关系归结为解直角三角形元素之间的关系,从而利用所学的知识解决实际问题.
教学难点将实际问题转化为数学模型
教学过程设计
教学程序及教学内容师生行为设计意图一、复习引入
1.什么是解直角三角形?
2.直角三角形的边边、角角、边角之间有哪些关系?
3.怎样解直角三角形?
这节课利用解直角三角形的知识解决实际问题,引出课题.
二、自主探究
●教材74页例3
分析:(1)从飞船上最远能直接看到的地球上的点,应该是视线与地球相切时的切点;
(2)所要求的距离应该是点P与切点之间的弧长。
(3)已知哪些条件?求弧长需要知道哪些条件?
(4)如图,⊙O表示地球,点F式飞船的位置,FQ
是⊙O的切线,切点Q是从飞船观测地球时的最远
点,弧PQ的长就是地面上P,Q两点间的距离,为
了计算弧PQ的长,需要先求出∠POQ的度数.
(5)如何求∠POQ的度数?
归纳:根据题意将实际问题转化为数学问题,该题综合运用了圆和解直角三角形的知识,关于圆的知识用到了切线的性质,弧长公式,解直角三角形用到了已知一条直角边和斜边求它们所夹的锐角.构造出解题所需的几何图形,把已知条件和所求有机的结合进行分析,是解决此类题的关键.
●教材75页例4
分析:(1)什么是仰角、俯角?
在视线和水平线所成的角中,视线在水平线上方的角是仰角;视线在水平线下方的角是俯角.
(2)如何根据题意构造几何图形?
(3)怎样求出BC的长?
在两个直角三角形中分别求出BD、CD,也可以先求出AB、AC的长,再运用勾股定理求出BC.
归纳:该题是测量楼高的问题,涉及到仰角、俯角的概念,解决这个问题运用了解直角三角形的已知一个锐角和一条直角边求另一条直角边的方法教师提出问题,引
导学生思考,回答,
教师强调解直角三
角形的注意事项
教师给出问题,引
导学生阅读、思考、
尝试画出几何图
形,结合图形分析,
小组讨论,把实际
问题中的已知和求
解转化为数学问题
中的已知和求解。
之后,学生叙述解
题思路,师生交流,
达成一致,教师板
书规范的解题过程
师生归纳将实际问
题转化为数学问题
的方法
教师给出问题,学
生独立思考,运用
不同方法分析解题
思路
为下面应用解直角
三角形知打下基
础,并引出课题
通过学生亲自探究
实际问题,初步领
会把实际问题转化
为数学问题的方
法,培养学生用数
学的能力
使学生形成方法,
技能,更熟练的运
用解直角三角形解
决实际问题
将实际问题转化为
数学问题,画出几
何图形是解决这类
题的关键,解直角
三角形的方法又是
灵活多样,让学生
独立完成,培养其
分析问题、解决问
题能力的能力
47
补充 在山顶上处D 有一铁塔,在塔顶B 处测得地面上一点A 的俯角α=600
,在塔底D 测得点A 的俯角β=450
,已知塔高BD=30米,求山
高CD 。
分析:在RT △ABC 中,有AC=CD,在RT △ADC 中, 有BC=ACtan ∠BAC,由图形可知BD+CD=BC,用到了方程的思想.
思考:将β=450
改为β=300
,解题思路发生变化吗? 三、课堂训练 1.教材76页练习1、2
2补充:在山脚C 处测得山顶A 的仰角为45°,
1)沿着水平地面向前300米到达D 点,在D 点测得山顶A 的仰角为600 , 求山高AB 。
2)沿着坡角为30 °的斜坡前进300米到达D 点,在D 点测得山顶A 的仰角为600 ,求山高AB
四、课堂小结
1.将实际问题转化为数学问题,综合所学知识,分析图形特点和数量之间
的内在关系求出所需要的量,关键在于构建直角三角形并解直角三角形. 2.方程思想方法的运用:解直角三角形,用三角函数表示线段长度,利用图形中线段的和差关系建立方程,求解 五、作业设计
教材77页习题28.2
补充:1.国外船只,除特许外,不得进入我国海洋100海里以内的区域,如图,设A 、B 是我们的观察站,A 和B 之间的距离为157.73海里,海岸线是过A 、B 的一条直线,一外国船只在P 点,在A 点测得∠BAP=450,同时在B 点测得∠ABP=600,问此时是否要向外国船只发出警告,令其退出我国海域.
2.两座建筑AB 及CD ,其地面距离AC 为50.4米,从AB 的顶点B 测得CD 的顶部D 的仰角β=250,测得其底部C 的俯角a =500, 求两座建筑物AB 及CD 的高.(精确到0.1米)
教师组织学生进行练习,学生独立完成,,选学生板书,之后师生评议,达成一致 教师组织学生回顾一节课的学习体会,进行自我总结,归纳方法,教师点评并补充、完善
学生独立完成,教
师巡视,选学生板书,之后,师生共同评议,达成共识 注重方法,形成技能,提高学生的学习效率
28.2 解直角三角形
例3分析 例4分析 补充题分析。